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Abstract: Melt convection during the directional solidification process of multi-crystalline silicon
plays a critical role in the transport of impurities. The utilization of a static magnetic field is an
effective way to control the melt convection pattern. Studying the effect of the Lorentz force induced
by the vertical magnetic field (VMF) on the melt convection of silicon in detail is beneficial to
optimize the magnetic field parameters in the production process. Based on the numerical simulation
method of multi-physics coupling, this paper explores the effects of different VMF intensities on the
convection of silicon melt and the transport of oxygen in the melt during the directional solidification
of polycrystalline silicon. The results show that in the first 125 minutes of the crystallization stage,
the melt convection velocity is affected significantly by the magnetic field intensities. When different
convection circulations are present in the silicon melt, the upper circulation easily transports oxygen
to the furnace atmosphere, and the subjacent circulation easily lead to the retention and accumulation
of oxygen. Enhancing the VMF intensity to a certain extent can reduce the size of the oxygen retention
region in the silicon melt, and the time of the first disappearance of the subjacent circulation near the
sidewall of the crucible is shortened. Then the average oxygen concentration in the silicon melt can
be reduced. However, a larger vertical magnetic field intensity can result in greater average oxygen
concentration in the oxygen retention region.

Keywords: directional solidification; multi-crystalline silicon; melt convection; oxygen impurity;
numerical simulation

1. Introduction

Directional solidification technology is widely used in the production process of polycrystalline
silicon ingots [1]. Impurities such as oxygen, carbon, and metals will be inevitably introduced during
directional solidification in silicon. The content of impurities effects seriously on the generation of
defects such as dislocations in silicon ingot [2,3]. Controlling the content of impurities in the polysilicon
can improve the properties of the silicon wafers [2,4]. Recently, lots of studies have indicated that
optimizing the solidification process can reduce the impurity in polysilicon [5–12]. Factors like growth
rate [10], the power ratio of heaters [13,14] and the magnetic field [15–18] affect the content of impurities
in the silicon significantly.
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Oxygen is commonly present in polysilicon ingots. Oxygen impurity can lead to many defects in
the crystal [8,19–21], which deteriorates the performance of solar cells. The convection in silicon melt
can be effectively controlled by adding a magnetic field to the directional solidification system [22],
achieving the purpose of reducing impurity in the crystal [11,18]. At present, there are seldom
studies that focus on the effect of static magnetic field on the production of polysilicon by directional
solidification. Researchers [18,23] were interested in the effect of the combination of electromagnetic
field stirring and static magnetic field in a silicon directional solidification process. The influence
on melt convection, melt-crystal interface shape [23], and impurity distribution [18] were discussed
in detail. But the effect when only the static magnetic field is present is not investigated in these
papers. The application of a vertical or horizontal magnetic field [24] significantly affects the mixing
of melt, and both of them have a good performance, and so decrease the interface deflection in a
directional solidification system of polysilicon. However, melt convection and impurity transportation
in silicon melt during the time evolution of crystallization under the effect of VMF are not investigated
profoundly in recent years.

In this paper, by using commercial software COMSOL Multiphysics, the effect of VMF on the
melt convection and oxygen transport in silicon melt during directional solidification was investigated
by numerical simulation. The results show that the VMF can affect the size of the melt convection
circulations at different positions in the silicon melt during directional solidification, and can also affect
the transportation of oxygen in different circulations in the silicon melt.

2. Model Description and Calculation Method

2.1. Directional Solidification System

The process of directional solidification mainly includes the heating and melting, molten state,
crystallization, annealing and cooling stages of the polysilicon. The purpose of the molten stage before
crystallization is to melt the silicon sufficiently. In this paper, the molten state and crystallization stages
were simulated numerically by the commercial software COMSOL Multiphysics, with the molten state
stage of about 40 minutes and the crystallization stage of about 180 minutes. The phenomena in the
crystallization stage were investigated in detail.

The directional solidification system employed in our model was simplified to two-dimensional
axisymmetric, as shown in Figure 1. Components 1–12 constitute the directional solidification
furnace, components 14–15 constitute the magnetic field generating device, and component 13 is the
atmosphere domain between them. The main components of the directional solidification furnace
include polysilicon, quartz crucible, graphite crucible susceptor, heater, argon gas, insulation and so
on. The core component in the magnetic field generating device is the coils that generate a magnetic
field in the current state. During crystallization, the crucible moves downward, so that the cooling rate
at the bottom of the crucible is accelerated, and the temperature difference in the vertical direction is
formed in the silicon to achieve the purpose of directional solidification.
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The model was divided by free triangle meshes in which the melt domain was calibrated by
"fluid dynamics" and the mesh was refined at the boundary. The refined mesh was used in domains
like polysilicon, crucible, and argon where high calculation accuracy was required, and the coarse
mesh was used in domains where the calculation accuracy was relatively low, to save the calculation
cost on the premise of ensuring the calculation accuracy of the main areas. The initial mesh quality
of the directional solidification system which measured by the qual-condition value is shown in
Figure 2a, where a value of 1 indicates the highest mesh quality. Figure 2b shows the variation of the
qual-condition value of the mesh during the molten state and crystallization stages. The minimum
qual-condition value of mesh quality is always above 0.85, and the average value remains above 0.98.
Therefore, the mesh settings in this model can be considered reasonable.
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2.2. Calculation Method

In this study, a global transient model that coupled physical fields such as thermal field, magnetic
field, melt convection and impurity transport was established. The moving mesh module was
employed to simulate the downward movement of the crucible during the crystallization process.
In this simulation, the radius of polysilicon is 22.5 mm, and the height of silicon is 50 mm. The major
assumptions in this model are as follows [7,25,26]: (1) in order to save the calculation cost, the influence
of the flow of argon gas in the furnace chamber on heat transfer is neglected; (2) silicon melt is laminar
flow and incompressible; (3) the surface in which the components are in contact with argon is regarded
as a diffuse reflection gray surface by considering the effect of radiative heat transfer; and (4) the section
whose temperature is lower than 1685 K in the silicon is crystal, and the rest is melt.

The equation for the calculation of conductive heat transfer and convective heat transfer is [27]:

ρCp
∂T
∂t

+ ρCp
→
u∇T −∇ · (k∇T) = Q (1)

where T is temperature, ρ is density, Cp is the specific heat, k is thermal conductivity,
→
u is the flow

velocity and its value is 0 in solid heat conduction, and Q is the heat source term. Radiation heat
transfer is calculated by the following equation:

−
→
n · (−k∇T) = ε

(
G− σT4

)
(2)

(1− ε)G = J − εσT4 (3)

where G is irradiation, σ is the blackbody radiation constant, ε is the emissivity and J is radiosity [27].
Factors such as density, temperature difference, and Lorentz force will affect convection in the

silicon melt. The contact surface between the silicon melt and the crucible wall surface adopts the
condition of the no-slip boundary, and the velocity at the contact surface is 0. The top surface of the
silicon melt considers as an open boundary, and the pressure at the surface is consistent with the
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pressure value of the atmosphere in the furnace. The convection in the silicon melt is mainly controlled
by the following equations [1,16]:

ρ∇ ·
(
→
u
)
= ρ∇ ·

(
→
u
)
= 0 (4)

ρ


→

∂u
∂t

+ (
→
u · ∇)

→
u

 = −∇p +∇ · [µ(∇
→
u +

(
∇
→
u
)T
)] +

→

Fv +
→

J ×
→

B (5)

where p and µ, are pressure and dynamic viscosity, and
→

Fv is volume force in the melt when no

magnetic field is applied [1,28]. The density in the silicon melt [29,30] is ρ = 3194− 0.3701T.
→

J ×
→

B is

Lorentz force term, where
→

J is the current density and
→

B represents the magnetic field. The current

density
→

J is calculated by Ohm’s law:

→

J = σ(
→

E +
→
u ×

→

B) (6)

In our calculation, the oxygen mainly dissolved from the crucible wall by considering the chemical
reaction between the Si3N4 coating and the silica crucible [6]. The governing equation for the transfer
of oxygen atoms in the silicon melt is [7].

→
u∇C = D∇(∇C) (7)

where C and D are the oxygen concentration and diffusion coefficient (D = 5 × 10−8 m2/s).
The equilibrium concentration of oxygen near melt-crucible interface is [7,31]

Co = 0.5× 1023
×

ao

(1− ao)

(
atoms/cm3

)
(8)

ao = 1.32× exp
(
−

7150
T
− 6.99

)
(9)

where Co is oxygen near the melt–crucible interface. Oxygen is transported in the silicon melt and
diffuses into the argon through the upper surface of the melt. The evaporation rate coefficient ε(T) at
the melt surface is [7,32]

ε(T) = 5.9152× 107 exp
(
−4.1559× 104

T

)
(m/s) (10)

The calculation of this simulation only considered the transport of oxygen in the silicon melt.
The calculation of the oxygen accumulation in the silicon crystal was neglected.

The material parameters of the components in this study are mainly from the references [5,22,29].

3. Control of Magnetic Field

A direct current is applied to the coil of the magnetic field generating device, and the current
magnitudes are 1 A, 10 A, and 20 A, respectively, so that a static magnetic field is generated in the
ingot furnace. Figure 3a shows the direction of the magnetic field in the directional solidification
furnace, and Figure 3b shows the direction of the magnetic field in the silicon. It can be thought that
the polysilicon is in a magnetic field that is vertically upward during the crystallization process.

During the crystallization stage, the silicon and the crucible moves downward in the vertical
direction. Therefore, the magnitude of the magnetic field in silicon changes over time during
solidification. The average value of the magnetic flux density in the silicon during crystallization is
shown in Figure 4. The intensity of the magnetic field in the silicon is gradually increased during the
crystallization process. On the subsequent description in this paper, when referring to the magnitude
of the current in the coil, it is essential to indicate the magnetic flux density in silicon shown in Figure 4.
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4. Results and Discussion

In this study, different time of crystallization was selected as the illustration to analyze the effects of
magnetic flux density of VMF on the melt convection and oxygen transportation in silicon melt. Figure 5
shows the Lorentz force and melt flow velocity in the silicon melt at the beginning, the 45th minute,
the 90th minute and the 120th minute of the crystallization stage. The left side shows the magnitude
and direction of the radial component of the Lorentz force. The value less than 0 indicates that the
Lorentz force is directed to the center of the melt, a value greater than 0 indicates that the Lorentz force
is directed to the sidewall of the crucible. The right side shows the melt velocity. The bottom gray
region in subgraphs (ii)–(iv) indicate the silicon crystal. The maximum melt convection velocity occurs
at the upper section of the melt due to factors such as the size of the silicon melt and the volume force,
and the melt velocity at the interface between the melt and the crucible is zero. The melt velocity in the
silicon melt is greatly affected by the Lorentz force.

Figure 6 shows the value of the maximum melt convection velocity in the silicon melt during
crystallization. It implies that when the crystallization time is before the 125th minute, the flow
velocity of the silicon melt is significantly affected by the magnetic field. The greater the intensity
of the magnetic field, the lower the melt velocity. In addition, the convection velocity of the melt is
too small in the late stage of crystallization, so that the influence of the Lorentz force on the melt is
significantly weakened. After 125 minutes of crystallization, there exists an insignificant difference in
melt convection velocity in Figure 6.
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The VMF affects the convection in the silicon melt and simultaneously affects the transport of
oxygen in the melt. Oxygen impurity comes from the contact surface between the silicon melt and the
crucible wall [7]. Convection in silicon melt plays an important role in oxygen transportation.

Figure 7 shows the direction and intensity of melt convection velocity (left) and oxygen distribution
(right) in the silicon melt at the beginning, the 45th minute, and the 90th minute of the crystallization
stage. At the beginning of crystallization, two main convection circulations are present in silicon
melt. The upper melt convection circulation flows upwards near the sidewall of the crucible, and the
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oxygen in the circulation mainly comes from the crucible wall and the lower circulation, and most of
the oxygen will be transported to the top surface of melt to the furnace atmosphere. The lower melt
convection circulation flows downward near the sidewall of the crucible, and the melt carries oxygen
from the crucible wall into the circulation. Part of the oxygen in the lower circulation is transported to
the upper circulation through the junction of the upper and lower circulations, and the rest is recycled
to the subjacent circulation to cause oxygen accumulation. Thus, the oxygen content in the lower
circulation is significantly greater than the upper circulation.
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Figure 7. The direction and intensity of melt convection velocity (left) and oxygen distribution (right)
in the silicon melt when the current magnitude is: (a) 1 A, (b) 10 A, and (c) 20 A at (i) the beginning,
(ii) the 45th minute, and (iii) the 90th minute of the crystallization stage.

For convenience of description, the circulation region in the melt which easily transports oxygen
to the top surface of the melt is defined as the oxygen transport region, and the circulation region
which is disadvantageous for transporting oxygen out of the melt is defined as the oxygen retention
region. Obviously, the lower circulation is the oxygen retention region.

When the current magnitude is 1 A in coil, the size of lower circulation is the largest and the melt
flow direction is complicated. When the current magnitude is 20 A, the size of lower circulation is the
smallest, and the melt flow direction is more regular. With the crystallization process, the size of lower
circulation in silicon melt gradually becomes smaller. The oxygen concentration distribution illustrates
that the size of the oxygen retention region in the melt is smaller when the current magnitude is 20 A,
but its average oxygen concentration is obviously higher in the oxygen retention region.

The area near the sidewall of the crucible is defined as the area in the silicon melt that is less than
4.25 mm from the sidewall of the crucible. Figure 8 shows the maximum value of the flow velocity of
the silicon melt in the vertical direction near the sidewall of the crucible in the crystallization stage.
The positive value indicates that the direction is upward, appears in the upper circulation region.
The negative value indicates the direction downward, which appears in the lower circulation region
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near the crucible. From Figure 8a, it can be inferred that when the current is 1 A, oxygen in the upper
circulation in the silicon melt is more easily transmitted to the top surface of the melt. It can be inferred
from Figure 8b that the size of lower circulation near the sidewall of the crucible decreases with the
crystallization time until it disappears. When the coil current is 1 A, 10 A and 20 A, the time required for
the first disappearance of the lower circulation near the sidewall is about 65 mins, 60 mins, and 47 mins,
respectively. However, when the crystallization time is about 110 mins, the vertical flow velocity in the
downward direction begins to appear again near the sidewall of the crucible, and the absolute value of
the velocity tends to increase first and then decrease as shown in Figure 8b. Implying that during this
stage, there will be a new lower circulation in the silicon melt near the sidewall of the crucible.
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Figure 8. The maximum value of the flow velocity of the silicon melt in the vertical direction near
the sidewall of the crucible in the crystallization stage: (a) the direction is upward; (b) the direction
is downward.

Figure 9 shows the average concentration of oxygen in the silicon melt during crystallization.
It illustrates that since the size of the oxygen retention region gradually decreases during crystallization,
the average oxygen concentration in the melt also gradually decreases. There will be a small increase
in average oxygen concentration during the late stage of crystallization, which may be related to the
re-generation of the lower circulation near the sidewall of crucible implied in Figure 8b. Increasing
the strength of the magnetic field in the furnace will increase the average oxygen concentration in the
oxygen retention region of the silicon melt, but the size of the oxygen retention region will decrease.
Therefore, the total oxygen content in the silicon melt decreases. It can be inferred that, after the
crystallization stage, the oxygen impurity content in the lower portion of the silicon ingot is larger
when the coil current is 20 A, but its overall oxygen content is smaller.
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5. Conclusions

During the directional solidification of polysilicon, the convection and the oxygen impurity
transportation in the silicon melt can be affected obviously by adding a vertical magnetic field in the
silicon region. The conclusions are as follows:
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(1) As the magnetic field intensity increases, the convection in the melt is more affected by the Lorentz
force, and the melt convection velocity decreases significantly with the increase of the magnetic
flux density. However, in the later stage of crystallization, the melt velocity is small enough that
the effect of the Lorentz force on the convection is no longer significant.

(2) When the magnetic field intensity is small, the size of the oxygen retention region in the
melt is larger, but the average oxygen concentration in the oxygen retention region is smaller.
Increasing the magnetic field intensity, the size of the oxygen retention region in the melt becomes
smaller, but the average oxygen concentration in the oxygen retention region is larger. However,
increasing the intensity of the magnetic field is beneficial for reducing the total oxygen content in
the silicon melt.
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