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Abstract: Theoretical model is suggested, which describes of a new micromechanism of crossover from
deformation twinning to lattice dislocation slip in metal–graphene nanocomposite with a bimodal
structure. In the framework of the model, the lattice dislocation slip occurs through emission of lattice
dislocations from the disclinated grain boundary fragments between a nanocrystalline metal–matrix
and large (micrometer-size) grains providing the plastic deformation of bimodal metal–graphene
nanocomposite. It is shown that the lattice dislocation emission serves as an effective stress relaxation
channel being in competition with nanocrack generation.

Keywords: lattice dislocation slip; deformation twinning; strength; ductility; nanocrack; graphene
inclusions; bimodal structure

1. Introduction

Graphene demonstrates unique mechanical, transport and thermal properties [1–3]. These unique
mechanical characteristics of graphene determine a great potential in the use of graphene inclusions
(sheets, nanoplatelets) in composites with polymer, ceramic and metal matrix [4–8]. So, in recent years,
researchers have obtained metal–matrix nanocomposites reinforced by graphene inclusions [4–8]. Such
nanocomposites exhibit enhanced mechanical characteristics, as compared to unreinforced metals.

It is well known that the main mechanism of hardening of polycrystalline metal–graphene
composites is suppression of the lattice dislocation slip by graphene inclusions, which act as obstacles
for sliding of the lattice dislocations [4–8]. However, graphene inclusions also act as effective obstacles
for realizing grain boundary migration and deformation twinning in metal–graphene composites
with a nanocrystalline and ultrafine-grained matrix. These mechanisms are the dominant modes
of the plastic deformation in the nanocomposites. All this leads to a significant decrease in the
ductility of the metal–graphene nanocomposites in comparison with the initial nanocrystalline or
ultrafine-grained materials without graphene inclusions. For example, the experiments [5,6] on
measuring the microhardness and elongation to failure of the copper-graphene composite show an
increase in microhardness by 39% and a decrease in elongation to failure by more than three times, as
compared to pure copper.

At the same time, in recent years, a new class of materials with a bimodal structure
(materials consisting of large (micrometer-size) grains embedded into a nanocrystalline or
ultrafine-grained matrix) has been fabricated. The combination of various sizes of the
microstructure in bimodal materials leads to a significant improvement of the tensile ductility in
higher-strength nanostructured materials. According to the experimental papers [9–12] and computer
simulations [13–16], bimodal nanomaterials have superior synergy in strength and ductility. For
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example, in the experimental work [9], copper (Cu) with a bimodal grain size distribution was
fabricated, which showed both good ductility and a high yield stress, which is several times larger
than the yield stress of coarse grained Cu. Thus, the presence of the large (micrometer-size) grains
into a nanocrystalline or ultrafine-grained matrix reinforced by graphene inclusions can significantly
increase the ductility of the metal–graphene nanocomposite.

The main aim of this paper is to suggest a theoretical model describing a new micromechanism
of the crossover from deformation twinning (which dominates in nanocrystalline matrix) to lattice
dislocation slip in micrometer-size grains in metal–graphene nanocomposites with bimodal structures.

2. Model

Consider a two-dimensional model of bimodal metal–graphene nanocomposite with an average
grain size of metal–matrix d under mechanical load (Figure 1). In the framework of the model,
the bimodal metal–graphene nanocomposite consists of nanometer-size metal–matrix I reinforced
by homogeneously dispersed graphene inclusions and micrometer-size grains II embedded into
a nanocrystalline metal–matrix (Figure 1). The chemical compositions of large grains II and the
nanocrystalline metal–matrix I are identical.
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Figure 1. Model of crossover from deformation twinning to lattice dislocation slip in bimodal
metal–graphene nanocomposite. (a) The initial structure with nanotwin, which is modeled by the
disclination quadrupole ABCD. (b) Formation of nanocrack in the stress filed of the disclination dipole
AB. (c) Emission of lattice dislocation from the disclinated grain boundary AB fragment.
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It is well known that specific plastic deformation mechanisms such as deformation twinning, grain
boundary migration and grain boundary sliding effectively operate in materials with nanocrystalline
structure. It is suggested that the external stress τ initiates deformation twinning in the nanocrystalline
metal–matrix. In this situation, the graphene inclusions act as effective obstacles for the deformation
twinning enhancement. Thus, the suppression of specific deformation modes (deformation twinning,
etc.) and the absence of both lattice dislocation accumulation and associated strain hardening
during plastic deformation often lead to plastic strain instability. Besides, the deformation twinning
leads to formation of dipoles AB and CD of disclinations having strengths ±ω (hereinafter called
±ω-disclination dipole; Figure 1a). The disclination dipoles AB and CD compose a ±ω-disclination
quadrupole configuration with sizes d and h (Figure 1a). The disclination dipoles and quadrupoles
serve a powerful stress sources. Its local can be relieved through either crack formation (Figure 1b) or
local plastic deformation occurring through a new mode of the lattice dislocation emission into large
grains II from grain boundaries (Figure 1c). In the former case, the metal–graphene nanocomposite
deformed by the deformation twinning tends to show brittle behavior. If plastic relaxation of the
stresses created by dipoles of disclinations due to the lattice dislocation emission dominates, the
twinning deformation does not initiate cracking. In this situation, the metal–graphene nanocomposite
with bimodal structure tends to exhibit a good ductility.

Within the model, a lattice dislocation with the Burgers vector b (hereinafter called b-dislocation)
is emitted from the grain boundary AB into the adjacent large grain II under the combined action of
the external shear stress τ and the shear stress field created by the disclination quadrupole (Figure 1c).
The lattice edge dislocation slips along a crystallographic plane that makes the angle α with the grain
boundary AB plane (Figure 1c). In terms of the continuum approach, the emission of the lattice
b-dislocation can be represented as formation of a dipole AB of lattice dislocations with Burgers vectors
±b (Figure 1c).

Further, consider the energy characteristics of the dislocation emission. To analyze the energy
characteristics, a semi-analytical energetic approach, which is based on the calculation of the total
energy of the defect structure under consideration was used. In the framework of this approach, the
difference between the total energies characterizing the structure after and before the transformation
event is calculated. It is considered that a transformation of the defect system energetically favorable if
the total energy of the defect system decreases and energetically unfavorable if this transformation
leads to an increase in the total energy of the defect system.

The dislocation emission process (Figure 1) is specified by the energy difference ∆W = W2 −W1,
where W1 is the energy of the initial state of the system containing the disclination quadrupole ABCD
(Figure 1a), and W2 is the energy of the system after the dislocation emission (Figure 1c). Such a
transformation of the defect system is energetically favorable if ∆W = W2 −W1 < 0.

The energy difference ∆W is determined by the expression:

∆W = Eb + Eω−b
int − Eτ. (1)

Here Eb denotes the proper energy of the dislocation dipole of the±b-dislocations; Eω−b
int is the energy

that characterizes the interaction between the ±ω-disclination quadrupole and the ±b-dislocations
dipole and Eτ is the interaction energy of the applied shear stress τ with mobile lattice b-dislocation.

The self energies Eb of dipole of ±b-dislocations are given by standard formula [17]:

Eb = Db2
(
ln

p− rc

rc
+ 1

)
, (2)

where D = G/[2π(1− ν)], G is the shear modulus, ν is the Poisson ratio, p is the path moved by the
mobile b-dislocation and rc ≈ b is the cut-off radius of the stress fields of ±b-dislocations.

To calculate the interaction energy Eω−b
int between deferent defects, we used the standard procedure

of calculating the work spent to nucleate a defect (or a group of defects) in the stress field of another
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defect (see, for example, [17] for details). In doing so, according to Mura’s method [18], the energy
Eω−b

int can be found as a work for the generation of the ±b-dislocations dipole in the stress field of the
±ω-disclination quadrupole ABCD using the following formula:

Eω−b
int = −b

p∫
0

τq(x1, y1 = 0)dx1, (3)

where τq is the shear stress of ±ω-disclination quadrupole ABCD acting in the slip plane of the
±b-dislocations dipole (Figure 1c). The non-vanishing components of the stress tensor σq

i j of the
disclination quadrupole ABCD in the coordinate system (x, y, z) (with the z-axis being parallel with
the disclination lines, Figure 1c) are determined by the standard formulas [19]

σ
q
xx = Dω

(
y2

x2+y2−
y2

(x−d)2+y2
−

(y−h)2

x2+(y−h)2 +
(y−h)2

(x−d)2+(y−h)2 +
1
2 ln (x2+y2)[(x−d)2+(y−h)2]

[(x−d)2+y2][x2+(y−h)2]

)
,

σ
q
yy = Dω

(
x2

x2+y2−
(x−d)2

(x−d)2+y2
−

x2

x2+(y−h)2 +
(x−d)2

(x−d)2+(y−h)2 +
1
2 ln (x2+y2)[(x−d)2+(y−h)2]

[(x−d)2+y2][x2+(y−h)2]

)
,

σ
q
zz = ν(σ

q
xx + σ

q
yy),

σ
q
xy = Dω

(
(x−d)y

(x−d)2+y2
+

x(y−h)
x2+(y−h)2 −

xy
x2+y2 −

(x−d)
(x−d)2+(y−h)2

)
.

(4)

These components cause the shear stress τq acting along the x1-axis of the (x1, y1, z1)

coordinate system (Figure 1c). From the geometry of the (x, y, z) and (x1, y1, z1) coordinate systems
(Figure 1c) follows:

τq(x, y) = σ
q
xxα1α2 + σ

q
yyβ1β2 + σ

q
xy(α1β2 + α2β1), (5)

where α1 = cos(x1, x) = cosα, β1 = cos(x1, y) = sinα, α2 = cos(y1, x) = − sinα and β2 = cos(y1, y) =
cosα.

Since the integration in Formula (8) is made along the x1-axis of the (x1, y1, z1) coordinate system
at y1 = 0 (Figure 1c), the coordinate transformation is as follows:

x = d + x1 cosα, y = y0 + x1 cosα. (6)

With substitution of the expressions (4)–(6) into Formula (3) and integration, we found the final
expression for the interaction energy Eω−b

int

Eω−b
int = Dbω

2

{
y0

(
ln

[
1 + p2

y2
0

]
− ln

[
1 + p2+2pd

d2+y2
0

])
+

+(y0 − h cosα)
(
ln

[
1 + p2+2pd−2hp sinα

h2+d2+y2
0−2hy0 cosα−2hd sinα

]
− ln

[
1 + p2

−2hp sinα
h2+y2

0−2hy0 cosα

])} (7)

where y0 is the distance between the point A and the immobile −b-dislocation.
The energy that specifies the interaction of the external shear stress τ with dislocation dipole is

given as:
Eτ = −bτ p cos 2α . (8)

3. Results and Discussions

Let us analyze the dependences of the energy change ∆W on characteristics of the system under
consideration in the exemplary cases of bimodal Cu-graphene composite. First, with Formulas (1),
(2), (7) and (8), we calculated the dependences of ∆W on the distance p moved by the b-dislocation in
the grain interior and angel α. In our calculations, we used the following typical values of material
parameters [20,21]: G = 48 GPa, ν = 0.34, a = 0.36 nm and b = a

√
2/2. Other parameters of the defect

system were taken as d = 100 nm, h = 3 nm and y0 = h/2. Value of the external shear stress τ was
taken as 500 MPa (this value is typical for Cu-graphene composites).
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The maps of the energy difference ∆W (in units of eV/nm) on the angle α and the distance p
are presented in Figure 2. As it follows from Figure 2, the emission of the lattice dislocations was
energetically favorable in a certain range of the angle α: 60◦ < α < 100◦, in the case of ω = 30◦

(Figure 2a), and 70◦ < α < 90◦, in the case of ω = 15◦ (Figure 2b). As it is seen in Figure 2, the range
of the energetically favorable angles α expanded with rising of the strength ω of the disclination
quadrupole. This tendency illustrates the significant effect of disclination quadrupole produced by
deformation twinning on the lattice dislocation emission.
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Figure 2. Maps of the energy difference ∆W(p, α), for various values the strength ω of the disclination
quadrupole (a) ω = 30◦ and (b) ω = 15◦. The values of ∆W are given in units of eV/nm.

Now let us consider the generation of a nanocrack in the stress field of a dipole AB of
±ω-disclinations formed due to deformation twinning (Figure 1b). Following the approach [22],
the nanocrack of length l can be generated at the grain boundary fragment adjacent to the disclination
with the strength−ω of the dipole configuration (Figure 1b). The condition for the nanocrack generation
is given as [22]: q(̃l) > qc, where l̃ = l/L,

q(̃l) = l̃


2(

√
1 + l̃− 1)

l̃
− ln

√
1 + l̃ + 1√
1 + l̃− 1


2

+
(
τ

Dω

)2

,qc = 16π(1− ν)(2γ− γb)/(Gpω2), (9)

with γ being the specific (per unit area) free surface energy, and γb being the specific (per unit area)
grain boundary energy.

The condition q(le1,2/p) = qc allowed one to calculate the critical lengths le1 and le2 of the nanocrack.
The generation and growth of the nanocrack in the length interval l < le1 occurred with the aid of
thermal fluctuations. The nanocrack growth in the length interval le1 < l < le2 was energetically
favorable and occurred in the athermal way. Further nanocrack growth (at which the nanocrack length
exceeds the second critical length: l > le2) was energetically unfavorable. Following [22], we took
le1 = 5a, where a is the lattice parameter. Then, with both Formula (9) and the condition q(le1,2/p) = qc,
we found values of the disclination dipole size h and the angel α corresponding to le1 = 5a. Let us make
these calculations in the exemplary cases of bimodal Cu-graphene nanocomposites with γ = 1.725 J/m2

and γb = 0.65 J/m2 [23].
Figure 3 shows the map of parameters (h,α), which was divided into regions where the formation

of a nanocrack and/or the emission of lattice dislocations was energetically favorable or unfavorable.
The formation of a nanocrack was favorable in the region above and unfavorable in the region below the
horizontal dashed line (Figure 3). In region 1, the emission of lattice dislocations was more energetically
favorable than the nucleation of nanocracks. At the same time, in the region 2, the generation of
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nanocracks was energetically favorable only (Figure 3). Finally, in region 3, both the formation of
nanocracks and the emission of lattice dislocations were energetically unfavorable (Figure 3). As it
follows from Figure 3, the region of energetically favorable the lattice dislocation emission reduced
significantly when the value of the external shear stress decreased.
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4. Conclusions

Thus, the theoretical model of the new micromechanism of the crossover from the deformation
twinning to the lattice dislocation slip in the bimodal metal–graphene nanocomposites was developed.
It was shown that the crossover from the deformation twinning to the lattice dislocation slip could
effectively occur at the grain boundaries between the nanocrystalline metal–matrix I and the large
(micrometer-size) grains II (Figure 1) in the metal–graphene nanocomposites with bimodal structures
improving the ductility of these materials. Within the model, the lattice dislocation slip due to
emission from the disclinated grain boundary fragments produced by the deformation twinning led
to a partial relaxation of the disclination dipole stresses preventing crack formation. The presence
of the large grains II embedded into the nanocrystalline metal–matrix I reinforced by graphene
inclusions significantly increased the plastic characteristics of the metal–graphene nanocomposites
while providing simultaneously high strength and functional ductility.
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