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Abstract: This is a review of relevant Raman spectroscopy (RS) techniques and their use in 
structural biology, biophysics, cells, and tissues imaging towards development of various medical 
diagnostic tools, drug design, and other medical applications. Classical and contemporary 
structural studies of different water-soluble and membrane proteins, DNA, RNA, and their 
interactions and behavior in different systems were analyzed in terms of applicability of RS 
techniques and their complementarity to other corresponding methods. We show that RS is a 
powerful method that links the fundamental structural biology and its medical applications in 
cancer, cardiovascular, neurodegenerative, atherosclerotic, and other diseases. In particular, the key 
roles of RS in modern technologies of structure-based drug design are the detection and imaging of 
membrane protein microcrystals with the help of coherent anti-Stokes Raman scattering (CARS), 
which would help to further the development of protein structural crystallography and would 
result in a number of novel high-resolution structures of membrane proteins—drug targets; and, 
structural studies of photoactive membrane proteins (rhodopsins, photoreceptors, etc.) for the 
development of new optogenetic tools. Physical background and biomedical applications of 
spontaneous, stimulated, resonant, and surface- and tip-enhanced RS are also discussed. All of these 
techniques have been extensively developed during recent several decades. A number of interesting 
applications of CARS, resonant, and surface-enhanced Raman spectroscopy methods are also 
discussed. 
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1. Introduction 

Raman spectroscopy (RS) is an experimental method for detecting molecular vibrations, or other 
excitations, such as rotational modes, energy gap in superconductors, etc. It is sensitive to local 
structure, so it can be used to fine-tune structural data obtained by other methods, such as X-ray 
diffraction (XRD). RS is based on inelastic scattering of light (Raman scattering). The pioneering 
works that laid the foundation for research while using the non-Rayleigh scattering method, later 
called Raman spectroscopy, were published in 1923–1928 [1–3]. The theory of Raman scattering in 
crystals was developed in 1947 [4]. However, RS applications to the studies of biomolecules were 
demonstrated later. Since the 1960s, laser-excited Raman spectroscopy has been widely used in 
investigation of both small biomolecules [5] and biopolymers [6–9]. 

This review aims to show the potential of RS in applications for structural studies of different 
biological objects in a range from small peptides to proteins and protein complexes. RS might reveal 
previously unknown structural peculiarities of these objects and provide insight into their 
interactions in native and artificial environments. The structural RS studies underlie diverse 
biotechnology applications in drug design, diagnostic and therapeutic, bioengineering of proteins, 
and other macromolecules with desirable properties. 

The link between structural biology and medical applications is based on understanding the 
function of membrane proteins—drug targets for certain diseases through the structural studies of 
these targets at molecular level. In this review, we show that Raman scattering is highly efficient 
when it is used complementarily with other techniques for structural studies of membrane proteins 
and protein complexes (X-ray diffraction on synchrotron sources, XFEL, cryo-EM, etc.). One of the 
bottlenecks of protein crystallography is the detection of membrane protein microcrystals for 
contemporary protein crystallographic research. The existing methods of imaging crystals are not 
sensitive enough to detect protein chiral crystals at submicron and micron scale, which are buried in 
lipid membrane-mimicking crystallization matrices. CARS might solve the problem of microcrystals 
detection, however, it is more efficient when complementarily used with other methods for imaging 
crystallization samples (SHG, UV-TPEF, or SONICC technique) [10]. 

Structural studies of photoactive proteins are another possible application of RS, especially 
rhodopsins, being used as a core of optogenetics. Optogenetics is a powerful technique that was 
primarily viewed as a tool for studying neuroscience and brain mapping [11,12]. Nowadays, it has a 
broad range of applications and it is also used to recover neuronal pathways that are impaired as a 
result of neurodegenerative diseases, traumas, or stroke [13], studying nociceptive function of 
peripheral nervous system important for pain treatment [14], engineering retinal implants [15], 
investigation of cardiac tissue [16], developmental biology [17], and controlling cellular processes 
with light [18]. 

However, only a few of these proteins are actually applicable in optogenetics, despite several 
high-resolution structures of microbial rhodopsins from all domains of life [19]. One of the reasons is 
that important properties, such as ion selectivity and conductivity of native proteins, are not always 
suitable for optogenetics applications. High resolution structure in the crystal might differ from 
actual protein state in nature due to crystallization conditions. RS might fill the gap in our knowledge 
of protein structure dynamics providing data of light-induced changes of chromophore geometry 
and conformation [20], consequently giving an insight into protein function. 

RS is applied to distinguish between normal tissue and cancer tumor and specify the types of 
tumors [21]. In modern research, cluster analysis neural networks are often used to analyze RS data 
[22–24]. RS complementarily applied with SHG, UV-TPEF, and other imaging techniques is a 
promising approach for fast and accurate non-invasive cancer diagnostics [23,25]. In addition, RS can 
be a useful tool for monitoring cancer cell response for therapy [26–28]. 
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The detection of nucleic acids plays an essential role in a number of applications, including 
clinical diagnostics and food safety monitoring [29,30]. Raman difference spectroscopy (subtraction 
of spectra) allows for quantitatively characterizing nucleic acid conformational changes that are 
caused by the addition of binding agents (i.e., ions, proteins, drugs) or induced by altering 
environmental factors (temperature, pH, salinity, etc.) [31–33]. Using surface-enhanced Raman 
spectroscopy (SERS) makes it possible to identify and classify RNA structures, to recognize fully 
complementarily duplexes, hairpins, short RNAs, and diversify microRNA, to quantify DNA 
hybridization events and detect base methylation and single nucleotide mismatch [29,34]. Therefore, 
methods that are based on SERS underlie third-generation sequencing. A new approach in 
DNA/RNA sequencing that is based on SERS can detect specific gene in genomic DNA sample with 
high precision [35]. 

Raman scattering is a sensitive and selective method for studying molecular bonds, 
conformation, and environments, and it is also a promising non-invasive technique for biomedical 
applications [36]. RS proved to be a powerful technique that complements the structural studies of 
biomolecules and provides an understanding of the connection between structure and function. At 
the moment, a lot of different variants of RS exist, which allows for widening the number of 
applications [37]. 

The ability to probe vibrational spectra of selected chemical bonds makes resonance Raman 
spectroscopy an excellent tool for studies of biomolecules. RS methods are applied in the studies of 
disease mechanisms, the associated development and optimization of new drugs, diagnosis, and 
treatment. The main advantages of these methods are non-invasiveness and possibility of label-free 
application, no need to transfer the sample to a special solution, and—in the case of diagnosis—the 
speed. In opposite to FTIR, RS allows for working with highly hydrated biomolecules. 

In this review, we discuss RS studies in a wide variety of fields, including protein 
crystallography, protein, DNA and lipid dynamics, microscopy, cell and tissue imaging, diagnostics, 
and therapeutic applications, and they provide a background for understanding the fundamentals of 
RS. 

2. Background 

2.1. Spontaneous Raman Scattering 

In terms of the corpuscular theory of light, the Raman effect is an inelastic collision between a 
photon and matter, in which the photon loses (Stokes scattering) or acquires (anti-Stokes scattering) 
one (first-order scattering) or more (higher-order scattering) quanta of vibrational energy of the 
studied system. The incident photon excites the system to a virtual energy level due to interaction 
with the electronic cloud of a molecule [38]. The virtual state cannot be occupied, as it is not an 
eigenstate of the molecule, so the system spontaneously drops to the ground state or to an excited 
level with a re-emission of a photon. The re-emitted photon exhibits an energy shift to the incident 
photon if the system makes a downward or upward transition between two discrete energy levels. 
The effect then would be called Raman scattering while the alternative elastic effect (Rayleigh 
scattering) occurs without the transition and change of the photon energy. The photon energy 
decreases (Stokes scattering) during the transition from the ground to a higher vibrational state 
(through the virtual level). In case of the reverse transition from a higher vibrational state to the 
ground state, the photon energy increases (anti-Stokes scattering). A pair of corresponding peaks 
equally shifted from the excitation wavelength appears in the energy spectrum of the scattered light 
(Figure 1). The probability of the effect to happen, Raman cross-section, depends on the excitation 
wavelength, temperature, and experimental geometry, i.e., polarization vectors of the incident laser 
beam and of the scattered light reaching the detector. Polarized Raman spectroscopy means an 
evaluation of the geometry, i.e., by introducing a polarizer in the optical path of the scattered light to 
only detect a single polarization component; spectra obtained in different geometries are then 
compared. Unpolarized Raman spectroscopy means a simple evaluation of the intensities. 
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Figure 1. Comparison of the different Raman scattering methods. (A) Energy level diagrams of 
spontaneous Stokes and anti-Stokes Raman Scattering (on the left), Stimulated Raman Scattering (in 
the middle) and Coherent Anti-Stokes Raman scattering (on the right). For Stimulated Raman 
Scattering (SRS) and Coherent Anti-Stokes Raman Scattering (CARS), the case of νP − νS = Δν is shown 
(i.e., νAS = 2νP − νS), that corresponds to the coherence condition, where hΔν is an energy difference 
between the ground state and the first vibrational energy level for selected molecular bond. (B) On 
the left—the spectra of non-scattered (red) and scattered pump laser beam (green) in case of 
Spontaneous Stokes (νS) and Anti-Stokes (νAS) Raman Scattering. On the right—the spectra of both 
pump beam (νP), Stokes beam in the case of SRS and anti-Stokes beam in the case of CARS before 
(red) and after (green) interaction with the sample containing molecules with selected molecular 
bond. 

2.2. Instrumentation 

Inelastic Raman scattering is a very weak phenomenon in comparison with the elastic Rayleigh 
effect (six to ten orders of magnitude), which requires sophisticated optical filtering to detect 
extremely weak signals in a close vicinity of an extremely strong signal. For signal detection, a 
diffraction grating monochromator or a Fourier-transform spectrometer can be used. Lasers are used 
as the excitation sources with various wavelengths that span from IR to UV region. Raman cross-
section is proportional to the fourth power of excitation photon frequency ν4, shorter-wavelength 
excitation provides higher output signal. On the other hand, high-energy photons can kill living 
entities, such as cells, so IR excitation is often used. Fluorescence, which is typically present in 
aromatic compounds, can reach intensities far above Raman signal so that weak Raman signal is 
completely masked. Techniques for extracting Raman signal in the presence of red-shifted 
fluorescence involve UV excitation, Fourier-transform detection with near-IR excitation, and coherent 
multi-photon methods. 

2.3. Surface-Enhanced Raman Scattering 

Raman scattering that is generated by molecules can be tremendously enhanced. Placing 
analyzed molecules near a surface of appropriate nanostructured electrically conducting surfaces 
typically enhances Raman scattering signals by 104–106, and, in some special cases, the enhancement 
factor could become as high as 1010–1012 [39]. The total enhancement is the result of multiplication of 
electromagnetic enhancement and non-electromagnetic contribution, referred to as chemical 
enhancement [40–42]. The electromagnetic effect is based on the excitation of surface plasmons that 
induce a strong spatial localization and, hence, the laser light amplification in so-called hot spots 
(small spatial regions) and re-radiation by metal surface. The chemical enhancement originates from 
interaction of analyte with the surface and, thus, a modification of molecular polarizability. The 
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electromagnetic component is major, it could reach values up to 108 in average and 1010 in a hot spot, 
while the chemical enhancement is 10–104 [43,44]. Electromagnetic enhancement depends on the 
substrate and it is independent of the type of molecule. Various patterns can be used, both periodic 
to enhance the signal uniformly and aperiodic to enhance the signal within a certain spot. 

Tip-enhanced Raman scattering (TERS) is a special case of SERS. It is an approach where an 
enhancement of Raman scattering only occurs at the point of a nearly atomically sharp pin, typically 
coated with gold [45]. TERS is usually coupled with atomic force microscopy or scanning probe 
microscopy, which allow for simultaneous analysis of topology and Raman characteristics with a 
lateral resolution of tens of nm [46]. 

2.4. Coherent Raman Scattering 

Multiphoton techniques have received great attention in recent years due to increased signal 
output and easy three-dimensional (3D) visualization of microscopic objects. In the case of coherent 
scattering, an additional light beam, where frequency is equal to the frequency of the transition 
between vibrational and virtual levels, is applied to the sample. In a typical setup, the frequency of 
the additional beam scans over the studied spectral region. Under resonant conditions, the 
probability of the transition and thus resulting signal can increase by orders of magnitude. Unlike 
the spontaneous Raman effect, the scattered light is blue-shifted relative to the excitation light, so that 
it can be separated from red-shifted fluorescence. Bachler et al. performed a systematic comparison 
of spontaneous and coherent techniques [47]. The following two spectroscopic methods are based on 
this effect. 

2.5. Stimulated Raman Scattering (SRS) 

SRS detects an enhanced Stokes spectral component. The enhancement of the Stokes signal 
depends on the frequency difference of the additional beam with a scanning frequency νS and a main 
(pump) beam with a fixed frequency νP. A noticeable increase of the signal, called stimulated Raman 
gain (SRG), occurs in the case of resonance when the difference between νP and νS corresponds to the 
difference between energies of the ground and excited levels (νP − νS = Δν) [48]. The main advantage 
of SRS over spontaneous Raman scattering is its higher intensity of the Stokes signal and insensitivity 
to electronic nonresonant background effects [49]. 

2.6. Coherent Anti-Stokes Raman Scattering (CARS) 

CARS also uses an additional beam with a scanning frequency νS and a pump beam with a fixed 
frequency νP, but it detects an enhanced anti-Stokes spectral component. The pump beam is used 
both jointly with the Stokes beam to establish coupling between the ground state and excited 
vibrational state, and separately to excite the system to enable anti-Stokes signal emission. Anti-
Stokes emission has a blue-shifted frequency, so it is not affected by the presence of single-photon 
fluorescence. Resonant frequency νAS can be simply found while using the expression νAS = 2νP − νS. 

There are some useful modifications of the CARS method. First, different scattering geometries 
can be used. The signal can be collected in the direction of the initial light beam (forward CARS) and 
in different directions with an angle to pump emission (epi-detected CARS). E-CARS provides 
dramatically higher sensitivity for submicron scattering objects, i.e., objects that are smaller than the 
wavelength of light [50]. A polarization-resolved experiment (P-CARS) can bring additional 
information and even better resolution [51]. There are also some benefits that are connected with 
alteration of the light’s wavelength, such as broadband CARS [52] and Terahertz CARS [53]. 

CARS is an alternative to spontaneous or stimulated Raman spectroscopy. It provides enlarged 
signal intensity with high spatial resolution, fast scanning process enabling imaging at video rates, 
and no fluorescence background at all [54]. The main difference between CARS and SRS is in their 
background sensitivity. CARS has a noticeable non-resonant contribution from different molecules 
and bonds from the sample (especially from solvents), which leads to difficulties in spectrum 
interpretation. SRS provides a higher signal output when compared to CARS, and the output is 
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linearly proportional to the spontaneous Raman response, as well as to both laser intensities [49] so 
that interpretation is more straightforward. These features make both SRS and CARS convenient tools 
for in vivo and in situ research [55,56]. In addition, the SERS technique can be used to enhance the 
signal of both CARS [57,58] and stimulated Raman scattering (SRS) [59,60]. 

2.7. Resonance Raman Scattering (RRS) 

RRS is a minor modification of spontaneous Raman scattering. The intensity of Raman spectrum 
components increases by up to six orders of magnitude if the energy of the pump beam coincides 
with an electronic transition of the molecule (i.e., the difference between the two energy levels 
involved). The method is described in [61]. 

2.8. Raman Microscopy 

Raman microscopy facilitates investigation of a small scattering volume by focusing the 
excitation laser beam by a microscopic objective. Confocal Raman microspectroscopy allows making 
three-dimensional Raman images of the studied object. Incident light is focused on the sample 
through the microscope objective, which also collects the backscattered light, and a pinhole on the 
output acts as a spatial filter. The pinhole allows for the propagation of only a part of the 
backscattered beam generated from a selected scattering volume. Each point of the recorded Raman 
image represents a Raman spectrum with Raman peaks corresponding to bonds vibrations in the 
molecules located in the selected volume. Raman mapping is a method of obtaining of two-
dimensional (2D) or 3D object images where each point corresponds to the numerical value of the 
chosen Raman spectral feature (typically integral intensity/maximal intensity of the selected Raman 
peak or ratio of the intensities of the selected Raman peaks) that were obtained across the sample 
surface [62]. 

All of the reviewed RS techniques are used in different studies. Freudiger et al. created a detailed 
description of SRS application in biology [63]. More information regarding CARS microscopy is 
contained in a review of Evans and Xie [64]. The SERS microscopy method is described in [65]. TERS 
technique is described by Xiang Wang et al. [66]. Finally, one can see Paul Rostron et al. for a detailed 
review on Raman spectroscopy [67]. 

3. Raman Scattering in Structural Biology and Cell Biophysics 

Raman spectroscopy is a widely used technique in structural biology and cell biophysics applied 
to different studies of lipids, proteins, peptides, DNA and RNA, and small organic molecules in the 
isolated purified preparations and inside cells and of conformational changes of molecules. In 
addition, RS allows for one to probe different kinds of protein-protein and protein-lipids interactions 
under various conditions (in crystals, solution, or lyophilized powder). It is also used to study 
different properties of lipids, lipid vesicles, lipidic cubic phases, and imaging of protein crystals in 
them. RS became a widely-used method that has important applications in structural biology and 
biophysics. 

3.1. RS of Lipids and Lipid Structures 

Lipids and lipid structures are inherent elements for membrane protein structural studies. 
Different self-organized structures, such as lipid vesicles, liposomes, bilayers, etc. have specific 
properties that affect their function and the conformation of membrane and submembrane proteins 
and protein complexes. Raman scattering investigation of lipids and lipid structures has possible 
application in developing different membrane-mimicking systems for structural studies of 
membrane proteins in close to native conditions. Near-infrared Raman spectroscopy (NIRS) was 
successfully applied to study lipids in brain [68], lipid droplets in skeletal myocytes [69], and special 
lipid vesicles in algae [70]. While the precise quantitative measurement of different lipid types is 
complicated, it is possible to evaluate the total amount of lipids, relative amount of cholesterol, its 
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esters and phosphatydilcholine, level of lipid unsaturation, and the relative amount of fatty acid 
chains in gauche conformation versus trans conformation. 

An assessment of changes in RS fingerprints for different lipidic phases (gel, liquid) [71], 
studying thermodynamic properties of lipid membranes [72,73], can be also performed by the CARS 
method. CARS also allows for performing experiments with lipid vesicles and liposomes and even 
in living cells [74], investigating lipid phase transitions and detecting the lipid main phase transition 
for unilamellar lipid DMPC vesicles [75]. 

3.2. RS of Proteins, Protein Interactions and Dynamics 

Structural investigation of proteins by Raman scattering is a great opportunity to image 
microcrystals, to study protein-protein interactions, their conformational and functional changes 
inside organelles, living cells and tissues, or in solutions and in the crystals. Although the method, as 
any other, has limitations, it has huge advantages and complementarily allows for one to work in 
some cases with pico and nanomolar protein concentration. 

Numerous RS studies are dedicated to investigation of hemoproteins: hemoglobin, myoglobin, 
and cytochromes in in vitro, in vivo, and in situ conditions. The protein part of these molecules 
comprises heme of b, c, or a-type having unique RS fingerprints sensitive to the heme type, redox 
state of the Fe atom, and its coordination bonds with ligands [76,77]. Application of the excitation 
laser light that is absorbed by the studied hemoprotein results in the resonance Raman conditions 
that allow for achieving intensive Raman scattering of heme molecules without contribution from 
aminoacids of hemoprotein or other cell components. Resonance RS was successfully applied for the 
quantitative study of the oxyhemoglobin amount in vessels of tongue, skin, mucosa, muscles, liver, 
and brain of anesthetized intubated rats or mice [78–81], and in blood samples of patients or rats with 
various cardiovascular pathologies or healthy donors under the application of chemicals [82–85]. 
Resonance RS was also proposed for the noninvasive monitoring of blood oxygenation in tissue 
vessels of neonates [41]. Figure 2 demonstrates the Raman spectra of the mouse blood probes with a 
different level of oxygenation (Figure 2A) and the typical Raman spectra of isolated purified 
oxyhemoglobin (red spectrum) and deoxyhemoglobin (blue) (Figure 2B). Red numbers show 
maximum positions of peaks at 1375, 1585, and 1638 cm−1, corresponding to symmetric vibrations of 
pyrrol rings (so-called pyrrol breathing) and methine bridges (CaCm bonds). Under hemoglobin 
deoxygenation, these peaks down-shift to maximum positions at 1355, 1552 and 1602 cm−1, 
respectively (shown by blue numbers). Black numbers indicate the peak positions that do not depend 
on hemoglobin oxygenation. It can be seen that the Raman spectra of blood with various levels of 
oxygenation demonstrate a combination of peaks of oxy-and deoxyhemoglobin. 
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Figure 2. (A) Resonance Raman spectra of the blood samples taken from the mouse tail artery under 
various pO2 resulting in different oxygenation of hemoglobin (sO2); (B) resonance Raman spectra of 
isolated purified oxyhemoglobin (red spectrum) and deoxyhemoglobin (blue spectrum). Inset figure 
shows structural formula of b-type heme. Reprinted from [81] with permission of Wiley. 

Multiple studies employ resonance RS to study the redox state of cytochromes in the respiratory 
chain (electron-transport chain, ETC) of mitochondria in yeasts, cultured cells, isolated 
cardiomyocytes, or perfused heart under different conditions, including oxidation stress or hypoxia 
[86–95]. Relative amount of the reduced cytochromes correlates with the overall ETC loading with 
electrons and increases under hypoxia, allowing for the monitoring of the mitochondria respiration 
in heart cells under various pO2 levels, acute hypoxia, and hypoxic preconditioning, under 
myocardial infarction and heart arrest [91–95]. Most of RS studies of c-and b-type cytochromes are 
performed with 532 nm laser light ensuring resonance Raman conditions and the excitation of the 
predominantly heme Raman scattering. The Raman spectra of isolated cardiomyocytes and 
cardiomyocytes in the heart under rest conditions with normoxia represent a set of peaks that 
correspond to heme vibrations in the reduced cytochromes c and b (peaks at 750, 1126–1127, 1300, 
1313, 1338 cm−1) and to heme vibrations in oxymyoglobin (1375, 1587, and 1640 cm−1) that serve as the 
temporal storage of O2 releasing under hypoxia (Figure 3). Cardiomyocyte Raman spectra also 
possess some lipid peaks, e.g., with the maximum at 1450 cm−1. Hypoxic conditions cause an 
accumulation of the electrons in the respiratory chain due to the absence of O2—their terminal 
acceptor—that can be seen of RS spectra as an increase in the intensities of cytochrome peaks. Under 
hypoxia, oxymyoglobin releases O2, which results in the shift of peaks at 1375, 1587, and 1640 cm−1 to 
1355, 1556, and 1606 cm−1 (Figure 3). The increase in relative intensities of reduced cytochromes under 
hypoxia and other conditions correlates with the overall overloading of the respiratory chain with 
electrons and can be used for the estimation of the mitochondria recovery after restoration of cell 
supply with O2. 

It was also shown, by means of confocal resonance RM, it is possible to study dynamics and 
location of hemoproteins in cells, e.g., to monitor exit of cytochrome c from mitochondria of cultured 
cells under apoptosis [87] and visualize the distribution of the reduced cytochrome b558 in 
neutrophils and eosinophil peroxidase in eosinophils under stimulation of the innate immune 
response [86]. 

It also became possible to detect both reduced and oxidized c and b-type cytochromes in cells 
while using near-infrared RS [69], allowing for recording Raman scattering of various lipids, proteins 
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Fe-S clusters, and ETC cytochromes b and c in oxidized and reduced forms. RS was also used to 
measure the distribution of oxidized and reduced forms of cytochromes b and c in different 
compartments of hyphae [89]. 

Different kinds of protein interactions can be probed with Raman scattering. Protein-protein 
interactions for LasR proteins—representatives of LuxR family with bacterial quorum sensing 
modulators—were characterized by SERS at low ~0.5 nanomolar concentrations of the protein [96]. 
Protein-lipid interactions were analyzed by the CARS approach as a complementary technique used 
with TEM and SEM that allowed for characterizing protein lysozyme distribution in solid lipid 
microparticles [97]. 

Other types of proteins that do not contain specific cofactors or ligands can also be investigated 
with RS [98]. However, there should be a reference for such RS experiments or database with RS 
spectra for comparison [99]. 

 

Figure 3. (a) Raman spectrum of the perfused rat heart under rest conditions with normoxia. (b) 
Raman spectra of rat hearts under perfusion (blue spectra), under 120 min. of global heart ischemia 
(red spectra) and under 120 min. of global hypoxia with the ischemic preconditioning (black spectra). 
Reprinted from [93] with permission by Creative Commons License. 

3.3. Conformational Changes of Proteins 

The crystal packing might somehow influence (disturb) a protein. Therefore, the difference 
between protein structure in a crystal and solution is one of the important issues for protein 
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crystallography. For instance, Raman signal of amide bonds helps to detect different protein 
conformations [100], and there are successful cases of qualitative detection of structural differences 
of lysozymes in crystal and in solution [101] and the phase transition in crystals of lysozyme [102]. 
However, it is not always possible to probe some protein crystals due to the specificities of the 
surrounding of the crystals, especially in the case of membrane proteins. 

Proteins in solution are usually investigated by small-angle scattering (SAS) method [103–109] 
that can be complementarily used with RS technique. An approach to the detection of conformational 
changes of protein secondary structure by RS was applied to investigations of small molecules, such 
as proline dipeptides [110] as well as human hairs [111] at the 10–100 μm scale. The detection of 
unique RS fingerprint of specific amino acids in proteins is a commonly used technique. It can be also 
applied for tracking their conformational changes [112,113]. Another widely-used approach includes 
RS amide I band investigation [114]. A protein collagen was studied by RS amide I band [115] and 
the approach can be complementary to study another RS amide bands (for example, amide III), SHG 
technique [116], and birefringence [117]. Collagen has an ordered structure, well-known RS 
fingerprint, great importance for medicine, and it is a good target for RS studies [118–120]. 

Protein folding and unfolding, different protein transient states can also be studied with the help 
of RS [121,122]. The secondary structure of proteins plays a crucial role when investigating their 
functional properties under different conditions. The study [123] reveals that changes in the 
secondary structure of proteins significantly affect their spectra, which could be measured by 
complementary used RS and FTIR. RS can also noninvasively study secondary structures of proteins. 
For example, in the work [124], changes in the amount of α-helixes and β-structures during early 
stages of development were revealed in mouse embryo in vivo. RS can be also used to study 
peculiarities of the protein secondary structure. Thus, the method of Raman Optical Activity was 
applied to distinguish two types of α-helixes in proteins. Thus, it was shown that, in peptides, 
proteins, and viruses Raman peak around 1300–1340 cm−1 (amide III band) depends on the presence 
of water and hydration of α-helix environment: positive ROA band around 1300 cm−1 dominated in 
hydrophobic environment, whereas positive ROA bands around 1340 cm−1 dominated in hydrophilic 
environment [125]. RS can be also applied to study conformational changes in the prosthetic group 
of proteins under their function, interaction with other molecules, organelles, or under pathological 
changes. Thus, by means of RS, it was demonstrated that cytochrome c heme underwent changes 
from the plane to the ruffled conformation under cytochrome c interaction with the inner 
mitochondrial membrane [126] and under site-directed mutagenesis in the non-ordered Ω-loops 
[127,128]. 

3.4. Pigments are Unique Proteins’ Ligands for RS Studies 

Many proteins comprise small molecule pigments (retinal, beta-carotene, chlorophyll, CoQn, 
etc.), which are tightly associated with them. The pigments were found in proteins of the respiratory 
chain of mitochondria and chloroplasts [129–131], photoreceptors in plants and bacteria [132], and in 
a huge class of photosensitive proteins rhodopsins (Section Raman spectroscopy of photoactive 
proteins). They are key molecules in the proteins and protein complexes function and make these 
proteins fully accessible to RS methods. 

Protein-ligand interactions (similar to the cytochromes) can be studied with the help of RS [61]. 
Ligands in different conformations can also be tracked by RS methods in living cells [133–135] or in 
the crystals [136,137]. In this case, RS allows for one to easily detect crystals of protein. However, the 
approach is not holistic for the detection of protein crystals in general, especially in the case of 
membrane protein crystals in lipidic cubic phases. 

3.5. CARS Imaging of Membrane Protein Crystals 

Protein crystallization has a near century history, however it only became widely used a couple 
of decades ago. Protein crystallography methods such as X-ray diffraction (XRD) on fourth 
generation synchrotron sources and X-ray free electron lasers (XFEL) opened new horizons in 
structural biology [138]. In particular, membrane proteins are a challenge of structural biology. New 
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X-ray sources allow for one to work with microcrystals, which is easier to grow. Recent development 
of XRD sources has led to the XFEL technique, which requires myriads of protein microcrystals. It 
helped to obtain high-resolution structures of high-priority proteins such as, for example, G-protein 
coupled receptors (GPCRs)—membrane proteins that are responsible for cell signaling—the largest 
and most important membrane protein family in eukaryotes [139]. Recent successes of XRD in GPCR 
field includes inflammation-related CysLT receptors [140,141]. 

Such powerful X-ray sources for structural biology require new methods of protein 
microcrystals detection and characterization. It became crucial when the working range of crystals 
for obtaining the high-resolution structure shifted to the micro and sub micrometer scale. It becomes 
even more critical in case of membrane proteins crystallized with lipid in meso phases, in particular 
lipidic cubic phases (LCPs) [142,143], when protein crystals are not well resolved with an optical 
microscope due to not completely transparent crystallization matrix. 

The commonly used methods of detection of protein crystals are: light microscopy, fluorescent 
microscopy [144], cross-polarized visual light (CP), ultraviolet two-photon excited fluorescence (UV-
TPEF), second harmonic generation (SHG), and second-order nonlinear imaging of chiral crystals 
(SONICC) [10,145,146]—a technique combining UV-TPEF and SHG, allowing for imaging chiral 
crystals up to the micrometer scale buried in LCP [144]. 

However, SONICC is not enough to distinguish between salt and protein microcrystals and does 
not work in the case of high symmetry protein crystal. This implies the necessity of the development 
of new methods for protein microcrystals detection. A new approach was developed. It is P-CARS 
[147]—the third order nonlinear technique, which can be used for membrane protein 
submicrocrystals imaging and 3D characterization. It allows for resolving protein crystals up to less 
than 1 μm size in the presence of LCP and salt crystals in the probe, and characterize their 3D shape. 
It also allows for revealing twinning of the crystals and their disordered parts. Moreover, this 
technique can provide information regarding the state of the proteins in the crystals. There are several 
trials published to investigate LCPs with additional lysozyme supplements while using RS [148]. 

Thus, polarized coherent anti-Stokes Raman scattering (P-CARS) [147] is a powerful technique 
for imaging proteins and studying proteins in crystals. It is extremely useful in the case of membrane 
protein crystals (Figure 4). 

 
Figure 4. Comparison of second harmonic generation (SHG) and polarized coherent anti-Stokes 
Raman scattering (P-CARS) (A) detection of hexagonal bacteriorhodopsin crystal with twinning and 
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contouring disordered part. (B) lysozyme microcrystals. Panels A and B were redrawn from Figures 
2 and S9 [147], respectively with permission from ACS Publications. 

P-CARS detects disordered and ordered parts of protein crystals, even in the case of non-chiral 
crystals where SHG technique fails. The resolution of the CARS technique can easily reach submicron 
scale (Figure S6 from [147]), which makes it applicable for the high-throughput detection of protein 
microcrystals for XFEL experiments. 

However, the technique has a limitation—time of measurement, which can be 5–10 min. for one 
crystallization probe. That is why CARS imaging of microcrystals should be complementarily used 
with other imaging techniques that are more high-throughput, although not so sensitive. 

4. Raman Spectroscopy in DNA Structural Investigations 

The applications of RS to DNA initially started in late 1960s. RS was used as an experimental 
probe of nucleic acid constituents by Richard C. Lord and his co-workers at MIT in 1967 [149]. Soon 
after their publication, a wide range of nucleic acid structure investigations were done with 
conventional (off-resonance) RS and a number of Raman signals were identified. The information on 
RS spectra of nucleobases, nucleosides, nucleotides, sugars, and orthophosphate esters was used to 
assign RS peaks of nucleic acids. Details of these studies are described in [150]. 

For nucleic acids structural studies two groups of Raman markers are usually used. Some are 
sensitive primarily to the structural changes of the phosphodiester bond network of the backbone (-
P-O5′-C5′-C4′-C3′-O3′-P-), but they do not strongly depend on the identity of the base attached at C1′, 
the others are sensitive to nucleoside conformation. DNA has several possible conformations that 
include right-handed A-DNA and B-DNA, and left-handed Z-DNA forms. RS is applied to 
distinguish forms of DNA from each other by the appearance of specific bands in spectra (745 ± 2 
cm−1 for Z-DNA, 807 ± 3 cm−1 for A-DNA, and 835 ± 7 cm−1 for B-DNA). The intensity of those specific 
bands makes it possible to calculate the proportion of different DNA forms [151–153]. Relatively large 
deviations for B-DNA reflects the structural complexity and dependency upon AT and GC base pair 
content [154]. While structures of DNA forms were revealed by X-ray studies, RS allowed for 
investigating DNA structure not only in crystals, but also in solutions. 

Raman difference spectroscopy allows one to quantitatively describe nucleic acid 
conformational changes induced by an addition of binding agents (ions, proteins, drugs, etc.) or 
induced by altering environmental factors (temperature, pH, salinity, etc.). For example, Raman 
difference methods were used for identifying the melting temperatures of DNA and RNA molecules 
[155] spectroscopy investigation of the phage P22 dsDNA packaging process. It was shown that 
phosphodiester geometry and glycosyl orientation change while base pairing and sugar pucker stay 
untouched, and B-DNA form is maintained [32]. In melting experiments with DNA, it was shown 
that the temperature-dependence of Raman intensity of DNA shows two peaks at 38 and 82 °C in 
solution [33]. The peak at 38 °C is related to the biologically active region of DNA. Raman difference 
methods work particularly well for revealing localized interactions in nucleic acid complexes (e.g., 
with proteins, drugs, etc.), in combination with site-specific labeling [156], residue-specific labeling 
and single-site mutagenesis [157]. 

The application of polarized RS provides information about molecular orientation and 
symmetry of bond vibrations in addition to general chemical identification, which unpolarized 
Raman scattering provides. For example, relative residue orientation in the filamentous virus or DNA 
helical conformation was identified [158–160]. Polarized RS can determine the relative spatial 
orientation of DNA residues and drug molecules. In [161], the authors described positioning of EtBr 
inside the genomic dsDNA by measuring the angles between phenanthridinium ring of EtBr and 
bases of DNA. For that experiment, Raman tensors were obtained from polarized Raman analyses of 
oriented specimens of EtBr (single crystal) and DNA (hydrated fiber). Polarized RS is also applied to 
DNA quadruplexes and telomeres identification and characterization [162]. 

SERS in Nucleic Acids Detection 
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A significant breakthrough in the detection and determination of DNA occurred with the 
development of SERS technology. Great enhancement of the Raman signal from analyte that was 
fixed on a silver electrode was discovered in the middle of the 1970s. Currently, an array of different 
nanoparticles with various coating is used for DNA and RNA detection and even sequencing [163–
165]. 

The detection of nucleic acids plays an important role in a wide range of applications, including 
clinical diagnostics and food safety monitoring [30]. In 2014, a group of investigators showed that Ag 
nanoparticles in SERS measurements enable selective label-free RNA detection [29]. The SERS 
analysis of RNAs at the ultrasensitive level has also been performed using positively charged 
spermine-coated silver nanoparticles. The SERS signal with this substrate allows for one to identify 
and classify RNA structures. It was possible to recognize fully complementarily duplexes, hairpins, 
short RNAs, and diversify microRNA by individuating chemical differences, like nucleotide 
modifications and single-base variances [34]. Negatively charged DNA sequences adsorbed on 
positively charged spermine-coated Au-nanoparticles promoted nanoparticle aggregation into long-
term stable clusters with no need for external aggregating reagent, and then made direct SERS 
analysis of double-stranded DNA possible. This strategy allowed for the quantification of DNA 
hybridization events and detection of base methylation and single nucleotide mismatch [166–169]. In 
addition, SERS enhanced sensitivity was used not only to study ss- and dsDNA, but also such DNA 
complexes as quadruplexes. The authors of recent work [170] claimed the availability of quantitative 
assessment of the stability of G-quadruplexes. Qian et al. [171] developed in situ DNA-metallization, 
while using a glass slide to fasten a peptide nucleic acid as a recognition probe to be used in the 
detection procedure. Label-free and Raman dye-free SERS can obtain highly reproducible SERS 
signals with detection limits of 34 pM. Quantitative detection for nucleobases was achieved, even at 
single base level, using the SERS signals of phosphate backbone as internal standard (Figure 5). This 
new label-free DNA-detection technology was proved to be able to diagnose nasopharyngeal cancer 
by analyzing blood circulating DNA with >80% accuracy [172]. 
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Figure 5. Comparison of surface-enhanced Raman spectroscopy (SERS) spectra of Ag nanoparticles 
(NPs), DNA, DNA + Ag NPs and DNA + Ag NPs + MgSO4. Intensities of Raman peaks allow 
quantitative analysis of nucleobase content in DNA molecule with PO2 signal as reference. Reprinted 
from [172] with permission from Elsevier. 

Raman labels in combination with surface-enhanced resonance Raman scattering (SERRS) 
provide a key advantage over fluorescent techniques due to the ability of quantitative detection of 
multiplexed labeled DNA in one sample [173]. Labeled DNA detection also covers the application of 
fluorescent-labeled (FAM, ROX, R6G, etc.) DNA-probe immobilized on the surface of nanoparticles. 
When the target sequence is found, DNA duplex changes conformation and the Raman signal 
increases significantly. Prostate cancer antigen 3 mimic DNA was detected by hybridization reactions 
with the detection limit of 2.7 fM, which means that it has a higher sensitivity than conventional 
polymerase chain reaction [174]. One can find more information on labeled DNA SERS detection in 
a recent review [35]. 

A new approach in DNA/RNA sequencing is based on the combination of biological/solid-state 
nanopores with electrochemical measurements. While the DNA molecule goes through the gold 
SERS-active nanopore it produces a series of specific Raman signals that correspond to the bases in 
nanopore [165]. This DNA sequence research tool can be used for third generation sequencing (single-
molecule reading), however, at the moment it does not have sufficient resolution to compete with 
other methods such as Oxford Nanopore, and it is now at the development and optimization stage 
while using oligonucleotides. This precise tool for molecule manipulations underlies the third-
generation sequencing. Another method allows for one to analyze nucleobase content in DNA blocks 
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by means of SERS with Ag nanoparticles. The relative content of each nucleobase is calculated 
according to intensity of characteristic Raman bands. Such analysis could provide information on the 
presence of specific gene (e.g., β-lactamase) in genomic DNA sample [175]. 

SERS was also demonstrated to be an effective and sensitive tool for detecting specific DNA 
sequences. The novel SERS-based approach was proposed based on the increase in SERS signal 
intensity when target DNA was present while using a specifically designed SERS primer [176]. 

5. Raman Scattering Applications for Cancer Research and Diagnostics 

Conventional Raman spectroscopy and CARS in a variety of modifications are applied in cancer 
research and diagnostics. Raman spectra of biological samples are sensitive to biochemical and 
structural alterations within cells that arise due to malignant cell transformation. The idea to use 
Raman spectroscopy to differentiate between normal and cancerous tissues is about 30 years old and 
various reviews describe RS achievements, advantages, and limitations in this field [177–181]. Here, 
we describe recent advances in the field of RS of solid and hematopoietic tumors. Despite the 
development of powerful instrumentation, in the last decade, a variety of high-throughput data 
processing and analysis methods arose and became widespread. 

RS is used to analyze the biopsy samples of solid tumors, since the origin of the idea of Raman 
application to cancer diagnostics. Breast cancer was one of the first cases where differences in Raman 
spectra of normal and malignant tissues were found. Frank et al. [182] showed that, in 180° 
backscattered geometry, 784 nm laser wavelength the most noticeable changes between normal and 
cancerous specimens are in a range of 1654–1439 cm−1 bands of the spectrum. In recent works, 
different mathematical models and algorithms were applied to spectral analysis. For example, a 
linear combination model fit of spectral data distinguishes between fibroadenoma (benign), 
fibrocystic change (age-related structural changes), infiltrating carcinoma (malignant), and normal 
tissue [183]. A combination of PCA and DFA was used for Raman spectra analysis of breast cancer 
tissue from a mice model. The data were processed firstly with PCA to reduce the dimensionality. 
Secondly, DFA was used for sample classification. 91% of tumor spectra were correctly classified [22]. 

RS was used to study oesophagus pathologies, including pretumor conditions and cancer 
development. Recently Raman microspectroscopy was applied for the chemical imaging of Barett’s 
oesophagus—histological sections from the patient subjected to oesophagus biopsy—and the 
presence of certain cellular and extracellular regions with cancer features were revealed [184]. 

Recently, K. Aljakouch et al. [23] combined CARS/SHG/TPEF imaging with PCA and DCNNs to 
distinguish between normal and cancer cells in human cervical cells that were obtained by 
Papanicolaou (Pap) test. CARS and SHG/TPEF imaged Pap test samples and the identified cells were 
studied by Raman spectroscopy. DCNNs were trained with spectra that were obtained from the cells. 
This technology provided a non-invasive, fast and high throughput approach to discriminate cancer 
cells from normal ones with almost 100% accuracy. 

RS could be applied to prostate cancer diagnostics [185,186]. Benign pathologies of bladder and 
prostate were successfully distinguished from malignancies using fiber-optic (potentially) in vivo 
applicable near-infrared RS. Significant differences were detected in spectra at 1003, 1083, 1260, 1310, 
1446, and 1655 cm−1 wavenumbers [187]. 

In the case of lung cancer, near-infrared RS provided the ability to distinguish between two types 
of malignancies: squamous cell carcinoma and adenocarcinoma, as well as normal tissue on histology 
samples. Major differences in spectra appeared in ranges of 1000–1100, 1200–1400, and 1500–1700 
cm−1, which contain peaks that correspond to conformation of proteins and lipids, as well as DNA 
stretch mode [188]. 

Near-infrared RS was applied to gastric cancer identification. Authors report that cancerous 
mucosa samples showed higher intensities at 807 and 1661 cm−1 and lower at 748, 944, and 1520 cm−1 
in comparison with normal tissue. Support vector machine algorithms were used to classify the 
spectral data. 90.3% diagnostic accuracy was achieved [189]. For gastric cancer, noninvasive 
diagnostic tools which that can be used in endoscopic examinations are important. It was recently 
suggested that the CARS/TPEF/SHG technique could be applied for noninvasive gastric cancer 
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diagnostics [25]. Raman endoscopy was also applied to control the treatment of colorectal tumors 
with three anticancer drugs in live mice [190]. 

It was also demonstrated that RS can be successfully used for the quantitative detection of 
human tumor necrosis factor α in the enzyme-linked immunosorbent assay (ELISA) instead of the 
traditional colorimetric detection and RS allowed for achieving 50 times lower detection limit [191]. 

Various brain tumors could be identified with the help of RS [192–197]. Gliomas of various types 
and one of the most malignant glioma—glioblastoma multiforme could be distinguished from other 
tumors. For example, the glioblastoma sample Raman spectrum is similar to meningioma, but a band 
near 719 cm−1 is more intense, which corresponds to phosphatidylcholine accumulation in 
glioblastoma [198,199]. Raman spectra can also provide useful information regarding tumor structure 
and boundaries: different groups demonstrated, that vital glioblastoma cells could be distinguished 
from necrotic regions [200] and dense tumor cells of II-IV type of glioma can be distinguished from 
normal cells [195,197]. The RS-based approach was already proposed and successfully applied for 
the intraoperative detection of the dense tumor region [194,197]. 

It was demonstrated that the main spectral difference between cells in the normal brain region 
and the dense tumor corresponds to the higher relative intensity of the peak at 2930 cm−1 relating to 
the vibrations of -CH3 bonds versus intensities of peaks at 2845–2885 cm−1 (vibrations of -CH2- bonds) 
(Figure 6). This difference was attributed to the higher amount of proteins relative to lipids in tumor 
when comparing to normal cells [197]. 

RS could be utilized for diagnostics of melanoma—one of the most aggressive skin cancers. 
Melanoma skin samples could be distinguished from other tumors while using a neural network 
approach to sample classification with the sensitivity of 85% and specificity of 99% [24]. 

RS diagnostics are not limited by solid tumors and they can also be applied for hematopoietic 
tumors examination. Manago et al. classified B-cell acute lymphoblastic leukemia and then 
monitored the effects of treatment using Raman microscopy [201]. RS applications for cancer are not 
limited to diagnostic purposes. This method could also provide important information when used 
for monitoring cancer cell structure and physiology during treatment in experimental models [26–
28]. 

 
Figure 6. (a) The scheme of the Raman measurements from various brain regions with the dense 
tumor, peritumor with infiltrating tumor cells and without cancer cells recorded during brain surgery. 
(b) Raman spectra of cancer cells, peritumoral region with infiltrated tumor cells and of normal brain 
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region. (c) Microphotographs for each brain tissue type. Reprinted from [197] with permission by 
Creative Commons License. 

SERS in Cancer Research and Diagnostics 

SERS is a promising technique in tumor diagnostics and research [202–205]. It is necessary to use 
highly specific nanostructures that interact predominantly with the cancer cells and that possess 
highly intensive Raman scattering to detect and to visualize tumor cells. To achieve this purpose 
SERS nanotags should contain organic reporter molecules that possess the intensive specific Raman 
scattering and adsorbed on the nanoparticles that should be additionally functionalized with 
antibodies that are specific to tumor antigens. This system is similar to the conventional 
immunohistochemistry, but the SERS reporter is used instead of dyes or fluorophores. For the first 
time, Schlücker et al. proposed such an approach in 2006 and named “immuno-Raman” [206] or 
iSERS [207]. 

The main complications of immunofluorescence are photobleaching, autofluorescence of tissues, 
and wide emission spectra of fluorophores which limit the number of fluorescent labels due to the 
possible spectral overlap. SERS nanotags help to overcome these difficulties. The higher sensitivity 
and selectivity of golden NIR SERS nanotags with 7-mercapto-4-methylcoumarin as a Raman 
reporter over AF647 fluorescent dye conjugated to anti-PD-L1 antibody was recently shown recently 
for single breast cancer cells ex vivo [208]. Another advantage of iSERS is multiplexing capabilities. 
Many targets can be visualized simultaneously in the same specimen due to the narrow spectra of 
Raman reporter molecules. Two-color iSERS with malachite green isothiocyanate and Rubpy as 
reporter molecules was used to co-localize CD24 and CD44 in breast cancer cells [209]. Later, these 
authors offered a three-color approach with silica-encapsulated hollow nanospheres to visualize and 
evaluate the expression levels of receptors of epidermal growth factor (EGF), the tyrosine-protein 
kinase ErbB2, and the insulinlike growth factor-1 (IGF-1) to distinguish different breast cancer cell 
lines [209]. Up to 10 different SERS probes were simultaneously applied to visualize tissues in vivo. 
Limited only by the volume that can be injected in a single mouse, authors chose a combination of 
five optimal SERS probes with minimal spectral overlap to map mouse liver in vivo (Figure 7) [210]. 
In this work SERS nanotags were injected directly to the organ of interest, and did not contain 
antibodies, but these results demonstrate the fascinating multiplex capabilities of SERS and seem to 
be very promising in future specific tumor targeting agents development. Multimodality can be 
expanded due to the development of novel classes of reporter molecules. Thus, triple bond-
containing Raman reporters (4-ethynylbenzenethiol derivatives or 4-mercaptobenzonitrile metal 
carbonyl compounds) with sharp peaks in the so-called silent region (approximately 1800–2800 cm−1), 
which does not contain peaks from biological molecules were recently proposed [211]. This might 
pave the way for the development of more efficient and multiplex iSERS approaches for disease 
diagnostics and theranostics. 
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Figure 7. (A). Raman spectra of Raman reporters. (B). in vivo imaging of mouse liver after 
simultaneous injection of SERS nanotags with five different Raman reporters. Redrawn from Figure 
3 [210] with permission from PNAS. 

Poor laser penetration into tissues limits in vivo SERS applications. Therefore, it is very 
important to use reporters with the absorbance in NIR range. In the paper by Zavaleta et al. [210], 785 
nm laser was used noninvasively to excite all five SERS probes (Figure 7). NIR laser excitation was 
also recently applied to detect dual fluorescence-SERS tags in vivo in subcutaneous ovarian cancer 
xenograft model and an RCAS/TVA glioblastoma mouse model [212]. 

Developing a Raman endoscope is another way to overcome poor laser light penetration into 
tissues. For the first time it was done by Gambhir group to detect colon cancer cells and polyps [213]. 
Later, SERS nanotags specific to EGFR and HER2 were applied for endoscopic detection of 
esophageal cancer [214] and breast tumor xenografts [215]. 

The next step is not just to detect and to visualize tumor in vivo, but to remove it. Such an 
approach is called theranostics. The Vo-Dinh group, together with the Badea group, created 
multimodal probes based on gold nanostars for SERS detection, x-ray computed tomography, two-
photon luminescence imaging, and photothermal therapy to detect and treat primary sarcoma in the 
mouse model [216]. A very recent paper describes novel SERS nanotags, which consists of hollow 
CuS nanoparticles with encapsulated NIR Raman reporters. They are photodegradable when 
exposed to laser irradiation at 980 nm and, therefore, they can be used as an agent in photothermal 
therapy. As a proof-of-concept, authors used the mouse model with prostate cancer [217]. 

Each year new sensitive, selective, and multimodal SERS nanotags for cancer detection and 
therapy appear. We believe that SERS will become a routine method in oncology, like 
immunohistochemistry, despite several disadvantages (like more complicated data analysis, big size 
of nanoparticles in the comparison to dyes and fluorophores, the tendency of nanoparticles to 
aggregate, and the presence of only few commercially available SERS nanotags). 
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6. RS and SERS for Other Biomedical Applications 

6.1. RS in Biomedicine and Diagnostics 

RS can be applied for studying disease mechanisms, the associated development and 
optimization of new drug production, diagnosis and treatment. The main advantages of RS methods 
are non-invasiveness and possibility of label-free application, no need of transferring the sample to a 
special solution, and in the case of diagnosis—the speed. In addition, RS allows in situ and in vivo 
studies. The aggregation of peptides PolyQ during Gettington’s disease was observed [218]. The 
alternative non-invasive fluorescence microscopy method in this case has a significant drawback. It 
requires a GFP label, with almost the same size as PolyQ; consequently, it distorts the result as 
compared to the label-free SRS method [218]. NIR Raman microspectroscopy was also demonstrated 
to be an effective and promising tool for the differential diagnostics of Alzheimer’s disease while 
using blood plasma [219]. 

Imaging samples with RS helps to understand the molecular mechanisms of different diseases 
more deeply. For example, the structure of the spore wall of pathogenic fungi while using confocal 
RM was studied [220]. The spore’s cell wall was shown to consist of α-glucan. In contrast, vegetative 
cells and Asmus walls comprise a mixture of α- and β-glucan. The structure of amyloid-β plaques 
occurring in Alzheimer’s disease was explored [221] with the application of SRS and CARS. The 
protein nucleus was found in the center of the plaque and lipidic halo was found around it. In the 
study [222], the structure of amyloid fibrils, which are an infectious form of prions, was determined 
while using AFM and TERS. It was shown that it depends on the pH of the environment: at pH 2, the 
fibrils are folded in β-sheets, and, at pH 5.6, they form a mixture of β-sheets, random coils and α-
helices. Carboxyl, amino and imino group distribution within the β-sheet, α-helix, and unordered 
regions in insulin fibrils were studied [223] with TERS. The propensity of different amino acids to 
form various protein secondary structures on the fibril surface was demonstrated. In [224], the 
features of myelin organization in a damaged spinal cord were studied with the help of circularly 
polarized CARS. 

RS also allows for one to study the mechanisms of treatment different diseases in vivo and in 
situ. The effect of two different drugs (ezetimibe and atorvastatin) on atherosclerotic plaques using 
fluorescent and RM was investigated [225]. The study confirmed the pharmaceutical effect of both 
drugs and showed that the drug ezetimibe reduces the deposition of lipids in the vascular walls. 
Additionally, atorvastatin cleans the vessels and has an antioxidant effect on them. The authors of 
the work [226] obtain the Raman spectrum of cells (S.nodosus), producing the antifungal antibiotic 
amphotericin. Analysis of RS spectra helped to select the proper cells. 

The study of diseases that are connected with 3D inflammation processes requires 
corresponding model systems for conducting tests of developed drugs and different kinds of 
diagnostics. In [227], SERS was used to investigate the spheroid culture of HeLa cells (Au aggregates 
were inside the spheroid), and the non-invasiveness of the method provided an opportunity of 
observing the culture in dynamics. 

RS has high potential for diagnostics of different diseases. It was used to measure a blood pH 
with an accuracy of 0.04 and lactate concentration with an accuracy of 20 mM [228]. These parameters 
are of great importance in the detection of sepsis and hypoxia. The possibility of non-bioptic 
diagnostics of eosinophilic esophagitis was also studied [229]. The disease is characterized by a large 
number of eosinophils on the esophageal mucosa. RS helped to identify eosinophils in the esophagus 
of mice that were suffering from inflammation. However, the accuracy of the method is still 
insufficient for clinical analysis due to the small size of the eosinophils. 

Tissue visualization is another possibility that is offered by RS in terms of medical applications. 
Thus, an endoscope using CARS for visualization of nerves and nerve plexuses for robot-assisted 
surgery has been designed [230]. 

The loss of bone fracture resistance with aging and during osteoporosis is caused not only by 
decrease of bone mass, but also by changes in bone tissue organization. Current X-ray based 
techniques for clinical diagnostics allow for one to examine bone strength through analysis of mineral 
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density, bone macrostructure, or microarchitecture. However, these properties do not completely 
reflect fracture toughness. Polarization RS can be used to complement existing clinical methods [231]. 

Near-infrared RS was demonstrated to be an excellent sensitive tool in forensic science and 
medicine [232,233]. Near-infrared Raman spectra that were recorded from small volumes of saliva, 
blood and blood serum, urine, semen, sweat and vaginal fluid can be discriminated and identified 
using advanced mathematical approaches. Authors demonstrated that the Raman spectra of these 
biological substances possessed a similar set of peaks, which corresponded to proteins, Phe residues, 
lipids, DNA, and RNA. However, the relative input of the peaks into the whole spectrum differed 
for various preparations in both liquid and dried form, which was proposed to use for the 
identification of specified biological liquids. The same approach was demonstrated to be successful 
for the discrimination and identification of races, gender, species and for the determination of the 
blood age while using blood serum and blood [234–237]. 

In general, the methods that are associated with Raman scattering provide extensive 
opportunities for the development of medicine at all its stages: from understanding of disease 
mechanisms to assistance in the surgery. 

6.2. SERS in Biomedicine and Diagnostics 

Each year, the number of publications on various SERS applications in the biomedical research 
is growing (for review, see [238–241]). The key point of the successful SERS application in biomedical 
studies is the right choice of plasmonic nanostructures, usually silver or gold. Properties of Ag and 
Au nanoparticles should be carefully investigated while taking into account their biocompatibility 
and possible toxicity. The peculiarities of the application of Ag and Au nanoparticles in biomedical 
research and especially for in vivo SERS experiments are described in detail in the review [241]. 
Plasmonic nanostructures that are used in various fundamental biomedical studies and applied 
diagnostics approaches can be divided into several groups: SERS-sensors, SERS-detectors, and 
nanostructures for the label-free SERS research. 

6.2.1. SERS-Sensors/Nanoprobes 

SERS-sensors are applied to quantitative measurements of concentrations of specific ions or 
small organic biomolecules in living cells and tissues. The common approach is to construct 
functionalized nanoprobes that consist of Ag or Au nanoparticles covered by the reporter molecules 
that possess the intensive Raman scattering with the spectrum parameters (peak positions and/or 
relative intensities), depending on the concentration of the measured ions/molecules. Novel approach 
is in the development of nanosensors having dual reporters—SERS-active and fluorescence-emitting 
molecules. SERS-sensors should be delivered to the studied cells or tissues and then excited by the 
laser light, which results in the enhancement of the reporter molecule Raman scattering due to the 
nanoparticle. Talley et al. offered using SERS nanotags as intracellular pH sensors [242]. Silver 
nanoparticles functionalized with 4-mercaptobenzoic acid (pMBA), where Raman scattering 
depended on the pH value, were internalized into Chinese hamster ovary cells, SERS spectra of 
pMBA were recorded from intracellular nanoparticles in different cell regions and the pH value was 
recalculated on the basis of the obtained Raman parameters. Later Kneipp et al. performed SERS 
imaging of a living cell with endocytosed gold pMBA-modified nanoaggregates [243]. The obtained 
SERS map of pMBA SERS parameters showed the acidity of different lysosomes, which might be 
used for the investigation of endosome maturation. Another type of SERS pH-sensor is an optic fiber 
tip that is coated with Ag nanoparticles with the reporter molecule 4-mercaptopyridine (MPy) 
immobilized by Ag-S bonds to the Ag naoparticle surface. Coated tip was used for the insertion into 
living cells or extracellular space in tissue and the optic fiber was used to excite and to collect the 
SERS signal [244]. Authors successfully tested this system on MCF-7, HepG2, and SGC7901 cancer 
cell lines to detect the intracellular and extracellular pH. 

Another type of SERS-sensors are sensors for the glucose [245–247]. There are several types of 
coating allowing for glucose detection, e.g., silver nanostructure surfaces coated with self-assembled 
monolayer consisting of decanethiol and mercaptohexanol allowing reversible absorbance of the 
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glucose. It was demonstrated that the difference spectra of glucose, partitioning and departitioning 
on the SERS-sensor, allow for quantitative estimation of the glucose level in the solution and in the 
mouse tissues [245]. 

Au nanoparticles that were modified with oxidized cytochrome c were created as a superoxide 
anion radical (O2−) SERS-sensor with detection limit up to 10−8 M for O2− in living cells [248]. 
Interaction of oxidized cytochrome c with O2− leads to the reduction of cytochrome c, which results in 
the change in recorded SERS spectra of cytochrome c, which can be quantitatively recalculated into 
the O2− concentration. The advantage of the proposed O2− SERS-sensor is its high specificity, whereas 
all fluorescent probes for reactive oxygen species (ROS) have low selectivity towards O2−. The SERS-
based approach for measurement of O2− level is very promising for biomedical applications and the 
detection of early stages of cell pathologies since the elevation of ROS in cells results from many 
pathological processes in mitochondria and may lead to the oxidative stress and apoptosis [249]. 

6.2.2. SERS-Detectors 

These types of SERS nanostructures are developed to enhance Raman scattering from molecules 
(toxins, dangerous drugs, etc.) or cells of interest (e.g., bacteria) to detect their presence in cells, 
tissues, liquids, or bioliquids (lymph or blood) on the basis of specific SERS peaks that corresponded 
to detected molecules or bacteria [250]. Specific molecules coat Ag or Au nanostructures to detect 
bacteria, e.g., vancomycin, which ensure bacteria binding to SERS-nanostructures and do not give 
intensive SERS signal itself. The binding of bacteria to SERS-detector results in the appearance of 
intensive highly specific SERS peak/peaks [251–254]. Recently Goodacre et al. proposed a label-free 
approach to obtain intensive SERS signal from lipids, proteins, nucleic acids, cofactors, etc. in bacteria 
in situ while using silver NP with external and internal localization [255]. This approach was applied 
to discriminate the different mutant forms of Campylobacter jejuni, which is a major cause of foodborne 
gastroenteritis. SERS was also applied to detect and quantify three types of bacterial meningitis 
pathogens in the cerebral spinal fluid [256]. Masson group developed plasmonic nanosensors to 
detect metabolites that were secreted from cells, such as pyruvate, lactate, ATP, and urea [257,258], 
or neurotransmitters (dopamine and glutamate) [259] near living cell surface. SERS-detectors may 
provide quantitative estimation of the analyte or can give qualitative information regarding analyte 
presence in the studied medium. 

6.2.3. Label-Free SERS Studies of Living Cells and Biological Liquids 

There are a growing number of publications regarding the application of the label-free SERS 
nanostructures to study conformational and functional changes in biomolecules or monitor number 
of biomolecules under certain conditions in cells. In these cases, the enhancement of Raman scattering 
might occur for biomolecules in the submembrane regions of cells or cell organelles and cell 
cytoplasm. Gogotsi group developed an extraordinary approach to visualize different cellular 
molecules in cytoplasm of living cell [260]. The SERS-sensor is a nanopipette comprised of a glass 
capillary with a 100–500 nm tip coated with gold nanoparticles. Authors demonstrated different SERS 
spectra from different compartments of the cell and determined the changes in SERS spectra in 
response to KCl addition, which led to a change in cellular activity. Later, this group proposed SERS-
based approach for the estimation of the amount and the monitoring intracellular distribution and 
dynamics of second calcium messengers, such as nicotinic acid adenine dinucleotide phosphate 
(NAADP), cyclic adenine dinucleotide ribose, and inositol trisphosphate. Even 10 nM of NAADP is 
possible to detect in cell extracts with this approach, which is on the order of basal intracellular levels, 
so it might pave the way for in vivo applications [261]. 

SERS was shown to be a highly potential tool for the lab-on-chip diagnostics of different 
pathologies and diseases. Thus, it was beautifully demonstrated, that SERS can be used for the 
Alzheimer’s disease diagnostics [262]. In the proposed approach Ag colloids were used for the 
enhancement of Raman scattering of components of the blood serum and the neural networks-based 
classification of the SERS spectra that were recorded from the blood serum of patients with 
Alzheimer’s disease, other neurodegenerative dementias and healthy donors achieved high 
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sensitivity in the differentiating of the samples and in the discriminating of Alzheimer’s disease 
patients, not only from the healthy donors, but also from patients with other types of dementias. 

SERS was also demonstrated to be a highly efficient tool in the detection of biological liquids 
(blood, blood serum, urea, etc.) and biomacromolecules (DNA and RNA, proteins, and lipids) in the 
submicromolar concentrations and in tiny volumes, making SERS an invaluable method in the field 
of the forensics [240]. 

Nanostructures that do not penetrate cell cytoplasm can be used to enhance Raman scattering 
of membrane-bound and submembrane molecules. Thus, Ag colloids and Ag nanostructures surfaces 
were used to studying heme conformation of submembrane hemoglobin molecules in intact 
erythrocytes [263–266]. Authors demonstrated that heme conformation of submembrane 
hemoglobin, which indicated that they possess different O2-binding properties. The study of 
submembrane hemoglobin can be used as additional diagnostics of cardiovascular pathologies, since 
properties of plasma membrane and ion concentration in the submembrane region of erythrocytes 
change under various cardiovascular diseases that affect membrane-bound hemoglobin [267]. 

Ag nanostructures were also used to study cytochrome c in functional isolated mitochondria 
[266,268]. It was shown that SERS spectra of mitochondria excited with 532 nm laser light 
corresponded to the SERS spectra of heme of oxidized cytochrome c and represented various peaks 
originated from vibrations of pyrrol half-rings and methine bridges in heme c (Figure 8). It is 
important to note that the Raman scattering intensity of oxidized cytochrome c in mitochondria is 
very low and cannot be detected by RS. The SERS spectra of oxidized cytochrome c change under 
application of the ETC substrates, ATP-synthase inhibitor oligomycin and protonophore FCCP 
demonstrating the dependence of oxidized cytochrome c conformation on the overall activity of the 
electron transport in mitochondria ETC and to the inner mitochondrial membrane potential. Further 
SERS-based study of mitochondria can help to uncover the novel mechanisms of ETC activity 
regulation. 

 

Figure 8. SERS study of functioning mitochondria. (A,B): SERS spectra of mitochondria suspension 
placed on Ag nanostructured surface under conditions ensuring electron transport in ETC and ATP 
synthesis (black spectra) and after FCCP or oligomycin applications (red and blue spectra, 
respectively). (C): ratios of chosen peak intensities under control conditions, depolarization of the 
inner mitochondrial membrane and proton gradient dissipation (FCCP) and inhibition of ATP 
synthesis (oligomycin). Reprinted from [268] with permission by Creative Commons License. 

The most sophisticated application of SERS to the study of living biological preparation is in 
vivo SERS (for review see [241]). Stone and co-authors proposed SERORS—Surface-enhanced 
spatially offset Raman spectroscopy—to perform SERS imaging of biosamples on various depths 
from the tissue surface. Authors performed injections of a mixture of four different SERS-active 
nanoparticles with various Raman reporters into the 20 × 50 × 50 mm porcine tissue and demonstrated 
that upon near-infrared illumination, the SERS signal could be collected from the samples of 45–50 
mm thickness [269]. Another example of in vivo SERS is the glucose SERS-sensor—Ag film over 
nanosphere surfaces functionalized with a two-component self-assembled monolayer that provided 
reversible absorption of the glucose [270]. The sensor was implanted in a Sprague−Dawley rat and 
the glucose concentration of the interstitial fluid was measured according to the SERS signal that was 
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recorded through an optical window. In conclusion, the application of SERS to live cell studies can 
provide unique information about structure and conformation of cell molecules that cannot be 
detected under non-SERS conditions. Besides, the SERS-based approach with the advanced data 
analysis can be used for the development of novel highly sensitive lab-on-chip diagnostical tools. The 
important methodological peculiarity is the strict requirement for the stability of nanostructures in 
biological liquids and high stability of the Raman scattering enhancement in the whole studied 
spectral region. 

7. Raman Scattering for Cell Imaging 

The implementation of RM for biology can be separated into hyperspectral broadband imaging 
(BCARS) [271] and single frequency CRS imaging. BCARS [271] allows for spectral separation of 
different components in range of 500 to 3500 cm−1 for simultaneous multicomponent imaging, but 
sacrifices signal to noise ratio and speed of imaging—around 3.5 ms pixel dwell time. Slow image 
acquisition (~2 min.) makes this method more suitable for tissue imaging or fixed sample studies. A 
more constrained spectral window with multichannel data acquisition [272] allows for one to reduce 
the pixel dwell time to tens of microseconds bringing RM much closer to confocal laser scanning 
microscopy (CLSM) speeds. 

Single-frequency CARS or SRS, on the other hand, allows for rapid imaging of the cells with 
pixel dwell times in nanoseconds, but they are restrained to specific bond vibrations and by extension 
specific molecules inside cell, such as fatty acids/DNA/proteins or special labels/specific proteins, like 
aforementioned cytochromes/chlorophyll/CoQ. High selectivity of single frequency CRS microscopy 
allows for the incorporation of extremely small labels when compared to usual fluorescent ones, such 
as alkynes, diynes, or even the detection of 13C or deuterated samples, which spectrally all fall into 
relatively “silent” region of a living cell. Labelling by alkynes was first shown in [273] by labelling 
CoQ analogues and EdU, showing mitochondrial and nuclear colocalization, respectively. Later, the 
same strategy was adopted to label several other small molecules, such as DNA. RNA, proteins, 
phospholipids via alkyne labelled metabolic precursors [274,275], and to study cholesterol storage by 
diyne labels [276]. SRS can be also used for the label-free studies of living cells. Thus, label-free SRS 
was applied for the sensitive monitoring of the peripheral nerve degeneration in mouse models of 
amyotrophic lateral sclerosis [277]. 

Labelling with different isotopes is even more attractive to study metabolism due to near 
complete unobtrusiveness of such labels for cell processing machinery. Such techniques were used 
to image protein degradation in vivo by labelling phenylalanine with 13C [278] study deuterium 
labelled choline metabolism [279] and deuterium labelled fatty acids processing into lipid droplets 
[280]. The molecular level of insight into cell metabolism finds its niche in medical studies on resistant 
strains of different infections due to its relative speed when compared to normal 24 h waiting period. 
Labelling of glucose with deuterium allows for differentiating metabolism in antibiotic-resistant and 
wild-type bacteria during one cell cycle, which is extremely useful for rapid screening of new 
antibiotics effectiveness [281]. For similar purpose, SRS imaging of lipogenesis under antimicrobial 
treatment in c. albicans fungi allows for screening for antibiotic resistance in a matter of hours instead 
of days [282]. 

Label-free Raman imaging is mainly applied to study intracellular and tissue distribution of the 
spectrally unique compounds with the intensive Raman scattering, such as fatty acids (due to 
abundant C-C, C-H, and C=C bonds), Phe-residues of proteins, cytochromes and/or other 
hemoproteins, DNA/RNA, and various drugs [87,275,283,284]. These studies may provide valuable 
and sometimes unexpected insight into the intracellular processes, distribution of various cellular 
molecules, exogenous drugs and toxins, composition and morphology of organelles, etc. Label-free 
Raman imaging is widely used to study pharmacokinetics of anticancer drugs in living cells: drug 
internalization inside cells, its intracellular distribution, and metabolism [27,285,286]. Thus, label-free 
Raman imaging was applied to monitor intracellular distribution of the anticancer drug 
topoisomerase I inhibitor CPT-11 and its intracellular conversion to non-toxic SN-38 molecule [285]. 
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Label-free Raman imaging can also be used to discriminate between the healthy and cancer cells, 
demonstrating difference in the distribution of organelles and the relative amount of various cytosolic 
molecules [287,288]. Raman imaging was employed to study yeasts and it was shown that yeast death 
was preceded by the disappearance of the Raman peak that corresponded to semiubiquinone radical 
and/or ergosterol depletion [289]. 

Raman imaging was also applied to the study distribution of c and b-type cytochromes in 
cardiomyocytes [90], cytochrome c release from mitochondria of cultured cells [87]. It was found, that 
mitochondria in the periphery and in the center of healthy rod-shaped cardiomyocytes differ in the 
relative amount of reduced b-type cytochromes vs. reduced c-type cytochromes and that round-
shaped transformed cardiomyocytes did not possess such mitochondria difference, having a lower 
relative amount of all reduced cytochromes (Figure 9). The heterogeneity of mitochondria in healthy 
cardiomyocytes was already shown by biochemical methods with the selective isolation of 
mitochondria from the peripheral and central cell regions; however, it was never non-invasively 
demonstrated on living cells. 

 

Figure 9. (A) Cluster maps of rod-shaped (range and brown colors) and round-shaped (yellow) 
cardiomyocytes. Each color corresponds to the individual cluster consisting of pixels that were 
defined to have similar Raman spectra. (B) Averaged Raman spectra for each cluster. Spectrum color 
and number correspond to the color and number of its cluster in panel A. For clearer representation 
spectra are vertically shifted. Peaks with the maximum positions at 750 and 1125 cm−1 correspond to 
heme vibrations in c-and b-type cytochromes of mitochondria; peaks at 1585 and 1640 cm−1 correspond 
to heme vibrations in oxymyoglobin in cardiomyocyte cytoplasm. Reprinted from [90] with 
permission by Creative Commons License. 

The visualization of blood vessels and monitoring of hemoglobin oxygenation depending on the 
activity of the adjacent cells, is another promising biochemical application of Raman imaging. It is 
possible to perform quantitative Raman measurements and visualization of blood oxygenation in 
vessels in different organs due to the intensive and highly specific Raman scattering of oxy-and 
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deoxyhemoglobin. It was demonstrated that resonance Raman imaging allows for one monitoring of 
hemoglobin saturation with O2 in venules and arterioles of cortex of anesthetized intubated mice 
(Figure 10) [81]. 

 
Figure 10. (A) Microphotograph of the cortex region in the reflected light with two arterioles and two 
venules, marked as a1, a2, v1, v2, respectively. (B) Raman image of the chosen region and (C) Raman 
map obtained on the basis of (B) and showing level of blood saturation with O2 calculated from Raman 
spectra in each point of the recorded Raman image (B). (D) Visualization of regions that were used to 
calculate average values of blood saturation in arterioles and venules. (E–H) Resonance Raman 
spectra from the points of interest marked by white circles 1–4 in (C) on arterioles and venules. 
Reprinted from [81] with permission from Wiley. 

8. Raman Spectroscopy of Photoactive Proteins 

Photoactive proteins functioning is based on changes in protein structure that are initiated by 
light absorption by a chromophore. Initial local photoinduced structural change of the chromophore 
is then propagated, which leads to protein function. Clarification of the structural dynamics that are 
associated with the chromophore isomerization is crucial for understanding of photoactive proteins 
mechanisms [290]. Table 1 shows the main classes of photoactive proteins discussed here and RS 
techniques that were used to describe them. 
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Table 1. RS relevant techniques applied to the most studied classes of photoactive proteins. 

Retinal 

 

FAD

 

Bilin 

 

Vertebrate 
Rhodopsins 

Channel 
Rhodopsins 

Sensory 
Rhodopsins 
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near-IR RRS 

UVRR 
DFWM Near-IR RR 
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SERS 
CARS 
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Near-

IR 
RRS 

RR 
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Transient 
RRS 

UVRR 

Fourier 
transform 

RRS 
RRS 

* Abbreviations not introduced earlier: fs, ps—femto- and picosecond, IR—infrared, DFWM—
nonresonant degenerate four- wave mixing, TR—time-resolved, UVRR—ultraviolet resonance 
Raman spectroscopy. 

8.1. RS of Microbial Rhodopsins 

Microbial rhodopsins are canonical photoactive proteins that are present in microscopic 
organisms from all life domains. They consist of seven transmembrane α-helices (opsin), and a retinal 
chromophore that was covalently bound to the lysine residue via protonated Schiff-base. The 
absorption of a photon by the retinal causes its isomerization (Figure 11A). The photoisomerization 
of the chromophore takes place within sub-picoseconds. The abundance of microbial rhodopsins, 
their structural and functional diversity, relative simplicity of heterological expression, and stability 
in artificial membrane mimetics make them excellent model systems for fundamental studies and 
provide their numerous applications in biotechnology. Most microbial rhodopsins are light-sensitive 
ion channels, pumps or sensors. The study of one of these light-gated cation channels ChR2 led to the 
development of optogenetics, a technique that allows for altering neuronal activity by means of light. 
First one-component optogenetic system was introduced in 2005 and used ChR2 [291]. At this 
moment, the conception of optogenetics covers a lot of applications, i.e., fundamental study of inner 
membrane structures of the cell, peripheral nervous system investigation, degenerative retina 
prosthetics, and a lot more. Robust development in this field opened new era of microbial rhodopsins 
study [292,293] and generated a tsunami of structural-functional studies of retinal proteins that aimed 
at the development of new optogenetic tools [19,293–300]. Advanced RS, such as resonance, time-
resolved, SRS provide exclusive information regarding their functional and structural peculiarities, 
thus facilitating the design of novel optogenetic tools. 

 

Figure 11. Resonance Raman spectroscopy (RRS) applied to determine chromophore structure in 
rhodopsins. (A) Retinal chromophore photoisomerization in microbial rhodopsins. It should be noted 
that animal (Type-2) rhodopsins typically utilize 11-cis/all-trans retinal configurations in the ground 
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state. (B) Typical RRS spectra of a microbial rhodopsin. Adapted from [301] with permission from 
ACS Publications. 

The best-studied microbial rhodopsin is bacteriorhodopsin (BR), a 27 kDa light-driven proton 
pump from the purple membrane of Halobacterium salinarum. The absorption of a photon by the 
retinal prosthetic group in bacteriorhodopsin initiates the cyclic photochemical reaction (photocycle), 
which correlate with transport of protons across the cell membrane. The resulting electrochemical 
proton gradient is coupled to ATP synthesis [302]. In the late 1970s, it was confirmed that BR 
underwent a photocycle leading from the dark state, absorbing at 568 nm, through the K, L, M, N, 
and O states (discovered later) back to the dark state within about 30 ms [303,304]. 

Resonance RS was first used in 1970s as an in situ probe of the light-induced structural changes 
of the retinal during BR photocycle, and it has been reviewed in work [305]. 

Both frequencies and intensities of the resulting vibrational spectra are highly sensitive to 
chromophore structure and environment (Figure 11B). The method provided unambiguous 
information regarding the configuration of the C13=C14 and C=N bonds, and the protonation state 
of the Schiff base. The vibrational spectra were also used to examine the conformation of the C-C 
single bonds. Intense hydrogen out-of-plane wagging vibrations in the Raman spectra allowed for 
identifying conformational distortions of the chromophore in K and O intermediates, direct products 
of chromophore isomerization. 

There were two challenges that were encountered in Raman experiments on photoactive 
molecules, which stimulated further development of the technique. First, because of the retinal 
chromophore photosensitivity and its absorption of probe laser light, the sample structure may be 
altered during the study. Second, the intermediates accumulate with rising times ranging from 
picoseconds to milliseconds, so one has to obtain Raman spectra with different time resolution. These 
limitations were overcome by fruitful studies in 1970s–1980s, which resulted in the development of 
rapid-flow sampling systems, time-resolved resonance RS, and low-temperature set-ups. In the rapid 
flow experiment, the photosensitive sample was passed through the laser beam in a high-velocity 
stream, so that photoproducts could not accumulate to a significant level. Most experimental designs 
for time-resolved resonance RS used a “pump” laser beam to initiate photocycling of BR and a 
“probe” laser beam to excite the Raman spectrum. The low-temperature methods allowed for 
obtaining resonance Raman spectra of the primary photoproduct of BR [305–307]. 

The individual resonance Raman spectra of the light-adapted purple membrane from 
Halobacterium salinarum have been measured while using the low technique in 1977 [308]. The Raman 
data indicated that Schiff base became unprotonated and then protonated again during photocycle. 
The spectral features of the two forms are different from each other because of different electron 
delocalization. The advantage of this technique was that the Raman spectra only characterized the 
chromophore, not other colorless purple membrane components. Thus, the technique provided 
specific information regarding the conformation of the in situ chromophore [308]. 

Another difficulty with studying microbial rhodopsins (and membrane proteins in general) is 
their amphiphilic nature. However, they could be trapped, for instance, with amphipathic polymers 
called amphipols (APols), which are low-detergent and have very low critical aggregation 
concentration. Therefore, proteins are more stable in APols than in most other membrane mimetics 
and they remain stable and functional when immobilized onto solid surfaces. These properties of 
APols make them useful in performing SERS studies. Polovinkin et al. used BR amphipole complexes 
to explore the feasibility of studying APol-trapped membrane proteins by SERS. It was found that 
amphipole-trapped BR stays native and stable, even in a dried state at low humidity, thus it may be 
assembled with noble metal nanoparticles (NPs). A dried mixture of BR/amphipole solution and Ag 
NPs colloids showed a considerable enhancement of Raman signals by at least two orders of 
magnitude [309]. Thus, BR is also suitable as a model object for testing SERS in potential membrane 
protein studies. 

One of the ways to observe the structural dynamics of specific sites of protein structure is 
picosecond time-resolved ultraviolet resonance RS [310]. This technique allows for one to enhance 
the vibrational Raman bands that correspond to aromatic amino acid side chains and polypeptide 
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bonds with high selectivity. Although UVRR spectroscopy application to protein dynamics in the 
picosecond range is limited due to high requirements of the light source, the proper design of 
experimental set-up overcomes these difficulties. The developed apparatus consisted of two widely 
tunable light sources for time-resolved UVRR spectroscopy while using a 1-kHz picosecond 
Ti:sapphire laser/regenerative amplifier system which allowed for generating independently tunable 
pump and probe pulses with a high repetition rate [310]. 

Another common technique in retinal-binding proteins characterization is near-infrared RS due 
to retinal bands domination in the Raman spectra of rhodopsins, even when the excitation 
wavelength is far from the wavelength of chromophore absorption maximum. Thus, the use of near-
IR excitation allows for one to probe the vibrational spectrum of the retinal chromophore without 
driving the photocycle or interference from protein bands [311]. 

Resonance RS was used to study retinal conformation and the environment of a bunch of 
rhodopsins, including BR, mammalian visual rhodopsin, sensory rhodopsin I and II, halorhodopsin, 
Anabaena sensory rhodopsin, anion, and cation channelrhodopsins, heliorhodopsins, 
proteorhodopsins, KR2 sodium pump (Figure 12). 

 
Figure 12. RR spectra of selected microbial rhodopsins. (a) BR (light-adapted state) in the purple 
membrane of Halobacterium salinarum, 532 nm excitation. (b) HR from Natronomonas pharaonis, 532 nm 
excitation. (c) GR, 441.6 nm excitation. (d) NaR from I. alkaliphilus, 441.6 nm excitation. (e) SRII from 
N. pharaonis, 441.6 nm excitation. Reprinted from [312] with permission from ACS Publications. 

Different methods determined the retinal isomer composition of ChR2 dark state(s). RS showed 
a mixture of 70:30% all-trans,15-anti and 13-cis,15-syn retinal, the C=N–H vibration was down-shifted 
and sharpened by H/D exchange [313]. The obtained isomer ratio was extremely important for 
refining the crystallographic data and revealing high-resolution structure of ChR2 that was elusive 
for 15 years [314]. 

Confocal near-infrared resonance Raman spectroscopy (RRS) was recently applied to the 
studying retinal structure, as well as its interactions with the protein in the unphotolyzed state of an 
ACR from Guillardia theta (GtACR1) [301]. 

K. eikastus KR2 is a hybrid outward sodium ion–proton pump in the marine flavobacteria 
[295,315]. Watermarked, baseline-free femto- to picosecond transient stimulated Raman spectroscopy 
(TSRS) enabled gathering more information regarding photocycle, excited-state dynamics and the 
retinal isomerization of KR2 and its mutants. Hontani et al. [315] demonstrated real-time retinal 
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chromophore dynamics with high spectral resolution. The authors proposed a new photocycle model 
of KR2, evolving to J (formed in B200 fs) − K(B3 ps) − K/L1 (B20 ps) − K/L2 (B30 ns) − L/M (B20 ms), 
by considering the transient Raman spectra on hydrogen-out-of-plane (HOOP), C–C stretching and 
C=C stretching modes. Recently, the photochemistry of one more sodium pump IaNaR from 
Indibacter alkaliphilus was described by transient resonance RS while using the single-beam rapid flow 
technique discussed earlier. The data provide evidence for a gate structure of NaR during its Na+ 
pumping process, implying the unusually strong hydrogen bonding environment and the HOOP 
band at 955 cm−1 in L-state in the Schiff base group [312]. 

Heliorhodopsins (HeRs) are representatives of a recently discovered class of retinal proteins 
with yet unclear function featured inverted position in membrane when compared to known 
rhodopsins and low sequence homology with them [316]. Otomo et al. characterized the RR spectra 
of HeR 48C12 and HeR T. archaeon SG8-52-1 and demonstrated that a strong hydrogen bond is likely 
to form to a counter-ion residue in the HeRs. The vibrational coupling of the ν(C=C) and δ(N–H) 
modes indicates different Schiff base geometry in HeRs and other known microbial rhodopsins. 
These results agree with structural data, which demonstrated distinct retinal pocket organization of 
HeRs [296]. Nevertheless, Figure 13 shows that the RR spectra of heliorhodopsin HeR 48C12 have a 
lot of similarities with other microbial rhodopsin spectra although the protein has unique structural 
features and unclear function. 

 

Figure 13. RR spectra of HeR 48C12 obtained using a 532 nm probe laser for 60 min accumulation. 
The emission background and the spectral component of the buffer were subtracted in the spectra. 
Reprinted from [317] with permission from ACS Publications. 

The X-ray crystallographic structure showed that Tyr174 might be one of the key residues in the 
SRII signal transduction pathway, but it did not provide direct evidence of structure and/or 
environment of Tyr174 changes after retinal photoisomerization [318]. Mizuno et al. applied time-
resolved UVRR spectroscopy to study the photochemical characteristics of sensory rhodopsin SRII. 
The observed reduction of the intensity of Raman bands of tryptophan and tyrosine residues located 
in the vicinity of the retinal chromophore clearly showed the changes [319]. Another sensory 
rhodopsin from Anabaena (ASR) has 13C (13-cis, 15-syn) and AT (all-trans) isomers that have 
structural and dynamical differences in the isomerization. In the recent study, the Raman 
measurements showed that the longer dynamics that were observed for AT ASR may result both 
from a barrier in the excited state and the lack of a pre-distortion (compared to 13C isomer) in the 
ground state [320]. The increase of ground-state C14−HOOP Raman activity of AT and 13C-isomers 
caused by point mutation showed that localized change in electrostatic interaction mutation might 
induce a subtle distortion of retinal geometry, which might lead to an accelerated isomerization 
kinetics [321]. 
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One of the challenges of structural biology is proving that obtained crystal structure is relevant 
to the actual conformation of functional protein. Morizumi et al. [322] solved the crystal structure of 
Gloeobacter rhodopsin (GR), cyanobacterial proton pump that can be potentially used in 
optogenetics and performed RS and time-resolved laser spectroscopy in the visible range to probe 
the GR dark state and the photocycle in the crystals. The plate-like crystals were grown in bicelles at 
pH 3.4 in the dark (see below) and then harvested without freezing for spectroscopic studies. The 
results confirmed the similarity of crystalline GR to the functional state of GR in membranes. 

RS was successfully used for identifying the differences between highly homologous proteins. 
For example, Kralj et al. compared the resonance Raman spectra of the two most investigated 
representatives of proteorhodopsins, from marine bacteria GPR and BPR. The chromophore 
structures of these proteorhodopsins were remarkably similar, but resonance RS with near-IR 785 nm 
was able to reveal minor differences in the environments of the C13 methyl group and of the Schiff 
base, which may explain different spectral tuning and photocycle rate [311]. In another work, Harris 
et al. applied Raman spectroscopy for the characterization of PspR from Pseudomonas putida, which is 
a close homologue of BR from marine proteobacteria and it shows proton activity but possesses 
unusual proton donor, histidine residue [323]. Raman spectra of PspR in crude E. coli membranes in 
lysis buffer and reconstituted in proteoliposomes were recorded [323]. The position of the main 
ethylenic C=C stretch was at 1532 cm−1, which correlated with the absorption maximum in the visible 
range, while the major fingerprint C–C stretches were at 1200 and 1165 cm−1, respectively, and an 
observable band at 1184 cm−1 was absent. The authors concluded that PspR mainly contains all-tans-
retinal, and the retinal composition has not changed upon light- and dark-adaptation, in great 
contrast to BR. The observed isotope shift, such as N–D wag vibration at 977 cm−1 and the 21 cm−1 
shift of C-N stretch from 1646 to 1625 cm−1, indicated stronger than in BR hydrogen-bonding of the 
Schiff base. Resonance Raman spectroscopy was used to reveal the properties of the diverse group of 
channelrhodopsins. While channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) is studied 
extensively [314], a promising light-gated cation channel channelrhodopsin-1 from Chlamydomonas 
augustae (CaChR1) is less described. Ogren et al. showed the surprising stability of Raman spectra 
over the wide pH range, being stronger than in BR hydrogen bonding of protonated Schiff base and 
distinct retinal composition from ChR2 [324]. Muders et al. recorded the Raman spectrum of the open 
(conductive) P2 state of a channelrhodopsin and the frequency of the deprotonated RSB, showed 
ground-state heterogeneity of the CaChR1 retinal chromophore and suggested distinctive structures 
for the conductive states of two channelrhodopsins. The Raman stretching vibrations of the C = C 
were determined at 1533 cm−1 for CaChR1 with all-trans retinal (1550 cm−1 for CrChR1 with all-trans 
retinal) [325]. 

8.2. RS of Type-2 Microbial Rhodopsins, Bilin- and Flavin-Bound Photoreceptors and Artificial Near-
Infrared Rhodopsins 

Type-2 (animal) rhodopsins were also extensively studied by Raman spectroscopy techniques. 
For instance, ultrafast photoisomerization in bovine rhodopsin was confirmed by [326]. Picosecond 
time-resolved coherent anti-Stokes Raman scattering (CARS) was applied to study the twists in the 
retinal backbone of bovine rhodopsin intermediates [327]. 

Chromophore heterogeneity and its relation to signaling is the focus of a number of studies on 
phytochromes [328]. Phytochromes are biological photoreceptors that can be reversibly 
photoconverted between a dark and photoactivated state by photoisomerization of a 
phytochromobilin (P8B) and a phycocyanobilin (PCB) in plant and cyanobacterial phytochromes, 
respectively. In addition, the photoactivated state, i.e., Pfr in phytochromes, can be thermally reverted 
to the dark state (Pr). The cofactor structure of various P8B- and PCB-binding phytochromes in the 
Pfr state was analyzed by vibrational spectroscopic techniques. Resonance Raman spectroscopy 
(RRS) revealed two Pfr conformers (Pfr-I and Pfr-II) that form a temperature-dependent 
conformational equilibrium [329]. Spillane et al. studied another cyanobacterial phytochrome Cph1 
by Raman spectroscopy [330]. 
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The Raman studies indicate that Meta-Rc in BphP has a deprotonated bilin, which occurs on a 
millisecond timescale and requires the reprotonation of the bilin to generate Pfr. The transient release 
of a proton to the solvent during population of the Meta-Rc intermediate was also confirmed [290]. 

Unno et al. devoted their study to blue-light sensing BLUF domain from flavin-containing 
photoreceptor family. The BLUF domains are present in various proteins from Bacteria and lower 
Eukarya. The authors obtain insight into the dynamics of the amino acid side chains that interact with 
the isoalloxacine ring of FAD (flavin adenine dinucleotide) while using femtosecond stimulated 
Raman experiments [331]. 

Near-infrared (NIR)-driven rhodopsins are of great interest for optogenetics. Preresonance 
watermarked stimulated Raman spectroscopy was applied to the PR:MMAR, a proton pump 
proteorhodopsin (PR) containing a NIR-active retinal analogue MMAR, a retinal analog containing a 
methylamino modified β-ionone ring. Various modes (1169, 1191, and 1216 cm−1) comply with C−C 
stretching modes in the native all-trans retinal chromophore in bacteriorhodopsin and PR. The 
isolated hydrogen-out-of-plane (HOOP) modes (856 cm−1), coupled HOOPs (947, 957 cm−1), showed 
increasing distortion of the chromophore upon lowering the pH. The 1250 cm−1 band is assigned to 
the aromatic amine C−N stretch that is particular to the MMAR chromophore. The study provided 
the main features of this promising retinal analogue protein system: strong pH-dependent NIR 
absorbance, fluorescence intensity, and an excitation-wavelength-dependent photocycle [332]. Mei et 
al. studied the same protein with combination of UV-Vis-NIR absorption and RRS and concluded 
that the NIR species exhibit spectral features, which are very similar to that of the O 
photointermediate of the light-adapted BR (BR570) photocycle [333]. 

8.3. Optogenetics and Physiology in Terms of Raman Spectroscopy Applications 

Engineered microbial rhodopsin protein with three states underlie the technique “flash 
memory”, being designed to record a photochemical imprint of the activity state of a neuron at a 
particular moment. Two mutants of the fluorescent voltage indicator Arch can be used as flash 
memory sensors, one of them as a light-gated storing a photochemical record of action potentials in 
a rat neuron, and the other as a light-gated voltage integrator reporting the number of electrical spikes 
that had occurred in a HEK cell. 

One of the most common methods of investigation of action potential in cells is patch-clamp and 
other electrophysiological techniques. However, they are invasive, so the next step in optogenetics 
development might be designing new non-invasive probes of membrane potential that are based on 
voltage-induced changes in mechanical (such as membrane shift during action potential) and optical 
(i.e., intensity of scattered light) cell properties [334,335]. The recently developed coherent Raman 
scattering microscopy, including coherent anti-stokes Raman scattering (CARS) and stimulated 
Raman scattering (SRS), is promising in biomedical imaging applications and has already been 
applied to show correlation of membrane spectral profile with transmembrane potential in a model 
membrane [336]. Recently, Lee et al. identified two potential SRS spectroscopic signatures for 
transmembrane potential from the near-infrared-absorbing proteorhodopsins and demonstrated the 
opportunity of quantitative mapping of membrane voltage in living cells [337]. The SRS spectra 
analysis of neuronal membrane under somatic voltage-clamp control demonstrated that CH3 
vibration at 2930 cm−1, which is mainly contributed by proteins, is sensitive to membrane voltage. 
Thus, SRS allows for the mapping of membrane potential with subcellular resolution and high-speed 
imaging for multi-neuron analysis in mouse brain slices [338]. 

Single cell Raman spectroscopy and imaging allows for discovering and explaining other 
intriguing properties of cells. For example, Song et al. examined the time-dependent assembly of PR 
in E. coli single cells; they quantified PR production while using mass spectrometry, and then showed 
that populations of E. coli cells containing PR surprisingly exhibited significantly extended viability 
Raman spectroscopy that was detected the vibrational fingerprints of PR, nucleic acids, and 
membrane lipids in nine-month-old cells. This property might be inherent to membrane assemblies 
of PR, which invests significantly in metabolic resources of marine bacteria extending the survival of 
their population during periods of severe nutrient limitation [339]. 
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9. Conclusions 

The number of applications of RS in structural biology and medicine is amazing. Currently, RS 
is widely used in protein crystallography and structural biology in general. For example, RS allows 
for tracking ligand conformations in protein crystal structures, studying the phase transitions in 
protein crystals, protein and DNA conformational changes and interactions, determination of the 
secondary structure of proteins, protein folding, comparison of protein structures in crystals, and 
solutions and protein pharmaceutical studies. 

Recent advances in RS open new horizons for biological and medical studies in THz range (<300 
cm−1) (THz-CARS) under biologically relevant conditions, detection of isotope-labelled molecules 
using multimodal CARS technique. The technique is already developing towards covering the cell 
and tissue scales and even towards applications in surgery. 

Obtaining the structure of a membrane protein BR in purple membranes by the electron 
diffraction method in 1975 greatly inspired further development of structural biology of proteins 
[293]. Photoactive proteins remain one of the favorite research objects due to their broad range of 
applications. 

The accumulated X-ray structural data help to explain the mechanisms underlying 
photoreactive protein function, to design and predict novel optogenetic tools. Raman scattering is 
one of the techniques that has proven to be exclusively informative in understanding protein 
dynamics upon illumination, including crystalline proteins. 

However, RS techniques also have limitations. Simultaneous RS and RRS have relatively low 
intensity of Raman scattering of most of biological molecules which requires high power of laser 
excitation. Accordingly, each studied object should be carefully checked for the potential 
photodamage and some cell types cannot be studied by RS due to this negative effect or the light-
induced processes changing the cell state. The limitation of SERS approach is the possible negative 
effect of nanostructures and nanoparticles or by-products of their synthesis on the morphology and 
function of cells. Direct interaction of nanoparticles with biomacromolecules (proteins, DNA, RNA) 
can also result in the change of their conformation. Hence, multiple tests should be applied to be sure 
in the applicability of the chosen SERS-active structures to the study of biological objects. Another 
limitation of non-resonance RS studies, including imaging, is complication in the spectral analysis 
due to the low specificity of Raman peaks of proteins to the certain protein. Thus, it is possible to 
characterize total changes in the secondary structure of all proteins in the studied cell region, 
however, without additional studies it is difficult to point out the exact protein that was changed. 

Despite the limitations, Raman spectroscopy complemented structural research results in a 
number of applications for structural biology, biophysics, and optogenetic tools. In the present 
review, we also discussed the effectiveness of the CARS technique in the detection of small membrane 
protein crystals, including those that were grown in meso. We believe that it is essential to combine 
structural studies with Raman scattering techniques to obtain full and unambiguous understanding 
of protein function. 

Thus, a comparison of different imaging techniques shows that each of them has its own 
advantage. The recently introduced CARS approach certainly enables e.g. imaging of chiral crystals 
independently of crystals quality, it can identify twinning and be very sensitive to detect small 
crystals of (submicron) size, hidden into lipidic meso phases, and hardly detectable with other known 
techniques. CARS allows for overcoming some limitations of RS. In this review, we compared 
different methods of protein crystals detection, especially in the case of membrane protein 
microcrystals, which is a real challenge for modern protein crystallography. We showed that P-CARS 
might be a perspective method of detection of membrane protein microcrystals, serving as an 
instrument in the commonly used pool of techniques for crystals detection. 

Highly sensitive methods of non-resonance Raman spectroscopy helped to work out label-free 
cell sorters and track changes in the state of cells by their Raman fingerprints. Recent developments 
in the field of CARS and SERS allowed for high-resolution imaging of cells and cellular structures 
(for example, the distribution of chromatin in a cell) without the use of specific dyes or other labels 
that can alter the behavior of a living cell. 
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Significant progress was made in detecting noticeably small amounts of specific marker 
molecules, proteins, and nucleic acid fragments. The detection of specific DNA molecules circulating 
with the bloodstream is already being used to create a personalized medicine [30]. The sensitivity of 
CARS and SERS biosensors turned out to be significantly higher than that of traditional methods, 
such as PCR, and help to solve the problems of detection in specific DNA and RNA fragments. 

We hope that this review will be helpful due to covering a wide range of RS techniques and 
approaches, their applications in science and medicine, and will serve as a quick guide to enormously 
large information ‘hidden’ in the literature. 
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Abbreviations 
CARS coherent anti-Stokes Raman scattering 
DCNN deep convolutional neural network 
DFA discriminant function analysis 
EM electron microscopy 
LCP lipidic cubic phase 
PCA principal component analysis 
P-CARS Polarized CARS 
RM Raman microscopy 
RS Raman spectroscopy 
RRS resonance Raman spectroscopy 
SEM scanning electron microscopy 
SERS surface-enhanced Raman scattering 
SHG second harmonic generation 
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SONICC second order nonlinear imaging of chiral crystals 
SRS stimulated Raman scattering 
TEM transmission electron microscopy 
TERS tip-enhanced Raman spectroscopy 
TPEF two-photon excited autofluorescence 
XRD X-ray diffraction 
XFEL X-ray free electron laser 
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