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Abstract: The crystal and molecular structure of the title compound, viz., (2Z)-2-[3-(4-

methoxybenzoyl)-4,4-dimethyl-1,2,-oxazolidin-2-ylidene]-1-(4-methoxyphenyl)ethanone 

(4), is reported. Compound 4 crystallises from toluene/hexanes mixtures in the P21/c space 

group with eight molecules in the unit cell. The unit cell parameters are: a = 20.9410(11) Å, 

b = 8.7523(5) Å, c = 21.2291(9) Å; β = 93.529(3)° and V = 3883.5(3) Å3. There are two 

structurally distinct molecules of 4 found in the solid-state which differ primarily in terms 

of the observed torsion angles and the overall intramolecular spacing between the aromatic 

groups. Bond lengths and angles of this tertiary amide are otherwise typical. This is the first 

crystallographically characterised example of this class of oxazoline precursors, which 

have previously found application in the syntheses of other heterocycles. Density functional 

theory (B3LYP 6-311++G** level of sophistication) has likewise been applied to estimate 

the gas-phase structure of the title compound. 
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1. Introduction 

The 2-oxazolines, a sub-class of the azoles, consist of a 5-membered ring system consisting of one 

O- and one N-atom separated by a single carbon; these latter two atoms being formally sp
2  

hybridised [1,2]. The group itself represents an important heterocyclic functionality as these molecules 

are routinely used as ligands in coordination chemistry [3-6] and catalysis [7-10], as directing groups in 

chemical modification strategies [11-14] and as a protecting group for carboxylic acids [15-18]. The 

ring is also found in a number of natural products, many of which have been the subject of total 

synthesis. Examples of these include complex molecules such as Basilibactin A down to very simple 

small molecules such as Oxytriphine (1 and 2, respectively: Figure 1) [19-21].  

Figure 1. The molecular structures of the natural products Brasilibactin A (1) and Oxytriphine (2). 

 
 

Sometime ago, Tohda and co-workers presented [22] a facile two-step strategy for the synthesis of 

enol-containing oxazolines initiating from 2,4,4-trimethyl-2-oxazoline (3). This protocol (Scheme 1) 

involves the (i) treatment of 3 with base (NEt3) in the presence of two equiv. of a benzoyl- or  

alkoyl-chloride to yield an intermediate ethanone. This latter compound is then hydrolysed with excess 

alcoholic base (ii) to yield the desired enol-oxazoline product (5: Scheme 1). Materials such as 4 have 

found application in the production of other heterocycles [23] and as general synthetic intermediates 

[24-27]. A compound of general formula 4 (Scheme 1) has not previously been the subject of study via 

single crystal X-ray diffraction. In this report, we detail the solid-state properties of an example of 

crystalline 4 in which the R group (Scheme 1) is –C6H4OCH3-p (i.e., 4: derived from 4-anisic acid).  

 

Scheme 1. The synthesis of enol-oxazolines (5) according to the method of Tohda [22]; 

specific conditions to yield 4: (i) 2 × p-MeO-C6H4-C(=O)Cl / NEt3 / MeCN / ∆. 
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2. Results and Discussion 

As noted above, the title compound is the first crystallographically characterised example of this 

class of tertiary amides; solvent free crystals of 4 were obtained from equal volume mixtures of C7H8 

and hexanes. A list of selected bond lengths and angles appears in Table 1. A noteworthy feature of the 

crystal form is the presence of two structurally distinct molecules of 4 (Molecule A and B) which are 

found in the unit cell (Figure 2).  

 

Figure 2. ORTEP representations (50% probability) of the two distinct molecules of 4 

found in the unit cell: Molecule A (left) and Molecule B (right). 

 

 
 

These differ primarily in the torsion angles observed and the relative spacing of the two 

intramolecular aromatic rings (Table 1). Specifically for Molecule A, the O2A-C7A-C8A-C9A,  

C6A-C7A-C8A-C13A and N1A-C15A-C16A-C17A torsions are all narrower (20.6(5)°, 22.0(6)° and 

33.9(5)°, respectively) than their respective angles observed for Molecule B (24.2(6)°, 28.8(5)° and 

38.2(5)°, respectively). In the case of Molecule A, the relative spacing and twisting of the two aromatic 

rings results in a longer C22A•••O3A distance (6.66 Å) than that observed for the same spacing in B 

(6.27 Å). The heterocyclic rings in both molecules display deviations from planarity of 9.7° (Molecule 

A) and 8.0° (Molecule B) [21] as measured by their respective N1-C1-O1-C3 torsion angles. The bond 

lengths observed (Table 1) for the various functional groups are well within the expected ranges for 

such bonds and hence are otherwise unsurprising [28]. A crystal packing diagram is found in Figure 3. 

This molecule was also subjected to examination of its gas-phase structure using Density Functional 

Theory (DFT) at the B3LYP 6-311++G** level of sophistication. The calculated bond lengths and 

angles also appear in Table 1. The DFT measurements do a reasonable job at mimicking the solid-state 

structure (Table 1); interestingly rotation of the C6-C7 bond to a situation in which the C7-O2 ketone 

functionality is rotated approximately 180° relative to that of Molecules A or B is found to be a more 
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stable gas-phase configuration by approximately 3.0 kJ/mol. The gas-phase form is also predicted, 

perhaps not surprisingly, to have a longer C22•••O3 distance (dcalc = 9.00 Å). Of the three torsion 

angles mentioned above, the gas-phase form is closer to that of Molecule A with the respective values 

of 15.8°, 20.1° and 22.0°. The calculated deviation from planarity of the heterocycle (estimated 

similarly via the N1-C1-O1-C3 torsion, vide supra) is 12.5°. 

Table 1. Selected bond lengths (Å) and angles (°) for observed unit cell Molecules A and B 

(standard deviations in parentheses) and their respective calculated parameters (DFT 

B3LYP 6-311++G**). 

Molecule A Calculated Molecule B 

Designation Parameter Parameter Parameter Designation 

O1A-C1A 1.351(4) 1.361 1.351(4) O1B-C1B 
O1A-C2A 1.456(5) 1.440 1.459(5) O1B-C2B 
O2A-C7A 1.231(4) 1.234 1.248(4) O2B-C7B 

O4A-C15A 1.222(4) 1.214 1.222(4) O4B-C15B 
N1A-C15A 1.401(5) 1.427 1.405(5) N1B-C15B 
N1A-C1A 1.405(5) 1.377 1.407(5) N1B-C1B 
N1A-C3A 1.496(5) 1.500 1.496(5) N1B-C3B 
C1A-C6A 1.344(5) 1.363 1.350(5) C1B-C6B 
C6A-C7A 1.456(5) 1.451 1.438(5) C6B-C7B 
C7A-C8A 1.489(5) 1.501 1.491(5) C7B-C8B 

C1A-C6A-C7A 125.5(4) –125.74* 126.0(4) C1B-C6B-C7B 
O2A-C7A-C8A 119.9(3) 119.41 119.0(4) O2B-C7B-C8B 

O4A-C15A-N1A 119.4(3) 118.85 118.9(3) O4B-C15B-N1B 
* see text. 

 

Figure 3. A crystal packing diagram for compound 4. 
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3. Experimental Section 

3.1. General 

Compound 4 was prepared using the protocols described by Tohda and co-workers [22]. Crystals 

suitable for X-ray diffraction were obtained by recrystallisation of the said material from a sample 

dissolved in an equal volume mixture of warm toluene and hexanes which was allowed to cool and 

slowly evaporate at room temperature.  

3.2. Data Collection and Refinement 

The diffraction data of 4 were acquired and the data refined as described previously [29]. 

Crystal data (4). C22H23NO4, 381.41 g mol−1. Crystal size: 0.36 × 0.22 × 0.22 mm3. Monoclinic, 

P21/c (no. 14), a = 20.9410(11) Å, b = 8.7523(5) Å, c = 21.2291(9) Å, β = 93.529(3)°,  

V = 3883.5(3) Å3, Z = 8. Mo-Kα: λ = 0.71073 Å; T = 150(1) K; θ range: 2.65° to 25.14°; Index ranges: 

−24 ≤ h ≤ 24, −10 ≤ k ≤ 10, −25 ≤ l ≤ 25; Dcalc = 1.305 mg/m3; 17679 reflections measured of which 

6659 were symmetrically independent; Rint = 0.087; F(000) = 1616; Abs. coeff.: 0.093 mm−1; Abs. 

corr.: semi-empirical from equivalents; Parameters/Restraints: 514/0. Max./min.: 0.990/0.701; 

completeness to θ at 25.00° = 96.4%. R values: R1/wR2 for 6659 reflections with [I > 2σ(I)]: 

0.0727/0.1872; for all data: 0.1167/0.2117; GOF on F
2: 1.083, largest difference peak and hole: 

0.235/−0.286 eÅ–3. CCDC number: 841810. Copies of the data can be obtained free of charge from the 

authors or on application to the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge 

CB2 1EZ U.K. (fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk; website: 

http://www.ccdc.cam.uk/conts/retrieving .html). 

3.3. Density Functional Treatment of 4 

The calculated parameters (Table 1) for a hypothetical gas phase molecule of 4 were derived using 

DFT at the B3LYP 6-311++G** level of theory using software (Spartan 10.0®) and parameters as 

previously described [29]. Zero point energy calculations were also carried out and no imaginary 

frequencies or vibrations were noted. Data files (.mol) are available from the authors on request. 

4. Conclusions 

The crystal and molecular structure of the title compound, viz., (2Z)-2-[3-(4-methoxybenzoyl)-4,4-

dimethyl-1,2,-oxazolidin-2-ylidene]-1-(4-methoxyphenyl)ethanone (4), has been reported. These data 

represent the first crystallographically characterised example of this class of tertiary amides. The gas 

phase structure of 4 has also been estimated by DFT and the calculated parameters are in good 

agreement with those observed in the solid-state form. 
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