

Article Supplementary Materials

Selective CO hydrogenation over bimetallic Co-Fe catalysts for the production of light paraffin hydrocarbons (C_2 - C_4): Effect of space velocity, reaction pressure and temperature

Seong Bin Jo^{1,†}, Tae Young Kim^{2,†}, Chul Ho Lee², Jin Hyeok Woo², Ho Jin Chae¹, Suk-Hwan Kang³, Joon Woo Kim⁴, Soo Chool Lee^{1,*} and Jae Chang Kim^{2,*}

- ¹ Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu 41566, Republic of Korea; santebin@knu.ac.kr (S.B.J); hwman777@nate.com (H.J.C.)
- ² Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; tyoung0218@knu.ac.kr (T.Y.K.); cjfgh38@knu.ac.kr (C.H.L.); wjh8865@knu.ac.kr (J.H.W.)
- ³ Institute for Advanced Engineering, Yongin 41718, Republic of Korea; shkang@iae.re.kr (S-H.K.)
- ⁴ Research Institute of Industrial Science and Technology, Pohang 37673, Republic of Korea; realjoon@rist.re.kr (J.W.K.)
- * Correspondence: kjchang@knu.ac.kr (J.C.K.), soochool@knu.ac.kr (S.C.L.); Tel.: +82-53-950-5622 (J.C.K & S.C.L)
- ⁺ Seong Bin Jo and Tae young Kim contributed equally to this work.

Received: 6 August 2019; Accepted: 16 September 2019; Published: 19 September 2019

Figure S1. XRD patterns of the monometallic and bimetallic Co-Fe catalysts in fresh and reduced states; (\bigcirc) Co₃O₄, (\blacktriangle) CoO, (\triangle) Co metal, (\diamondsuit) Fe₂O₃, (\blacksquare) Fe₃O₄, and (\Box) Fe metal.

Figure S2. H₂-TPR profiles of the monometallic and bimetallic catalysts supported on γ -alumina: (a) 20Co/ γ -Al₂O₃, (b) 15Co-5Fe/ γ -Al₂O₃, (c) 10Co-10Fe/ γ -Al₂O₃, (d) 5Co-15Fe/ γ -Al₂O₃, and (e) 20Fe/ γ -Al₂O₃ (c) γ -Al₂O₃, (c

Figure S3. CO conversion and hydrocarbon distribution of the monometallic and bimetallic catalysts supported on γ-alumina: 20Co/γ-Al₂O₃, 15Co-5Fe/γ-Al₂O₃, 10Co-10Fe/γ-Al₂O₃, 5Co-15Fe/γ-Al₂O₃, and 20Fe/γ-Al₂O₃ at H₂/CO ratio=3.0, 300 °C, and 10 bar.