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Biological systems, in most cases, recognize a pair of enantiomers as different substances 
eliciting different responses. Therefore, one enantiomer may act as a very effective therapeutic agent 
whereas the other enantiomer, at worst, interacts with a totally different target resulting in undesired 
side effects. Thalidomide offers a tragic example that led to the death of approximately 2000 children 
and serious malformation of arms and legs in 10,000 babies born around the world [1]. This disaster 
emphasized the need for a greater regulation governing the use of drugs, particularly enantiomers. 
The impetus is on synthetic chemists to provide highly efficient and reliable methods to access the 
desired compounds in an enantiomerically pure format, avoiding underside effects of unwanted 
enantiomers. Regulatory guidance was published, firstly in the US followed by the EU [2,3], reflecting 
rigorous steps required to follow before an approval of racemates is granted. The Australian and 
Canadian guidance are also based on similar principles [4,5]. As chiral drugs comprise more than 
half the drugs approved worldwide, including many of the top-selling drugs [6], these regulations 
create a chronic problem for the pharmaceutical industry. In particular, the costs associated with 
chiral separation of racemates. 

Among the different approaches used to access enantiomerically pure compounds, chiral 
transition metal complexes [7,8] and organocatalysts [9,10] evolved as essential instruments in the 
toolbox of organic chemists. Their use has become a truly indispensable technology for industrial 
scale production of active pharmaceutical ingredients [10,11]. This power emerges from their high 
efficiency to catalyze a broad range of chemical transformations with high tolerance of numerous 
functional groups and impressive levels of chemo-, regio-, diastereo-, and enantioselectivities. They 
have also facilitated the discovery of new patterns of reactivity that by far opened the door to the 
creation of bonds forming strategies that never existed previously. 

This Special Issue includes four articles and one review. 
The article by Qin et al. [12] provides computational DFT investigations on the 

bisphospholanoethane (BPE)-ligated Cu-catalyzed enantioselective addition of enynes to ketones. 
Two BPE-mesitylcopper (CuMes) catalysts, namely BPE-CuMes and (S,S)-Ph-BPE–CuMes, were 
employed to probe the reaction mechanism with the emphasis on stereoselectivity. The calculations 
on the BPE-CuMes system indicated that the active metallized enyne intermediate acts as the catalyst 
for the catalytic cycle. 

The article by Adly, Ghanem and co-workers [13] contributes to the understanding of the 
stereoselectivity of chiral dirhodium(II) carboxylate catalysts carrying N-protected tert-leucine ligand 
through investigating the possible effect of ligand stereo-purity on catalyst structure and 
enantioselectivity. This was also justified through a new X-ray crystal structure for the Rh2(S,S,S,R-
PTTL)4 catalyst. 

The article by Liu et al. [14] provides a concise method for the preparation of new C2-symmetric 
six-membered NHCs and their application for the asymmetric diethylzinc addition of arylaldehydes. 
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The article by Rafiński [15] provides a highly efficient and enantioselective approach to the 
synthesis of functionalized benzofuran-3(2H)-ones which proceeds via an intramolecular Stetter 
reaction using β,β-disubstituted Michael acceptors in the construction of five-membered rings with 
fully-substituted quaternary stereogenic centers. As a result, a series of chiral 2,2-disubstituted 
benzofuran-3(2H)-one derivatives with linear, branched, and cyclic aliphatic substitutions on the 
quaternary stereogenic center were obtained in high yields and with excellent enantioselectivities of 
up to 99% ee. 

The review by Adly [16] provides an update on how the knowledge around the structure of 
dirhodium(II) carboxylate catalysts has evolved over the years with a particular emphasis on the 
impact of this knowledge on enantioselectivity prediction and catalyst design. 

In conclusion, these five publications give an overview of the possibilities of different catalysts 
to be used in different asymmetric transformations, in particular in synthetic reactions at very mild 
reaction conditions. Finally, we sincerely thank all authors for their enthusiastic support and 
contributions towards the success of this Special Issue. 
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