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Abstract: This short review makes it clear that after 90 years, the Fischer–Tropsch synthesis (FTS)
process is still not well understood. While it is agreed that it is primarily a polymerization process,
giving rise to a distribution of mainly olefins and paraffins; the mechanism by which this occurs on
catalysts is still a subject of much debate. Many of the FT features, such as deactivation, product
distributions, kinetics and mechanism, and equilibrium aspects of the FT processes are still subjects of
controversy, regardless of the progress that has been made so far. The effect of molecules co-feeding
in FTS on these features is the main focus of this study. This review looks at some of these areas and
tries to throw some light on aspects of FTS since the inception of the idea to date with emphasis and
recommendation made based on nitrogen, water, ammonia, and olefins co-feeding case studies.

Keywords: Fischer–Tropsch product distribution; reaction mechanism; catalysis; process synthesis
and design; catalyst deactivation

1. Introduction

The addition of molecules other than syngas in the reactor during Fischer–Tropsch synthesis
(FTS) is considered co-feeding of that molecule to the FTS. These molecules, usually with lower
molecular weights, could be water, organic or inorganic additives. For instance, there have been
controversies about the co-feeding of water to the FT reactor. Several researchers have investigated
the addition of water to elucidate the water effect on both activity and selectivity [1–4] on the catalyst
deactivation [5–7], the kinetics and mechanism [8–10], and product distribution [3]. Due to the different
views on the effect of water co-feeding in syngas during FTS, some authors have focused their studies
on shedding light on the subject of positive effects of water co-feeding on the FT rate, which was
observed for some, but not all, Co-based catalysts [9]. Reports on the negative effects of water on
FT processes are also available [11]. It is worth noting that the FTS mechanism is not entirely clear,
and the distribution of products does not typically follow a typical Anderson–Schulz–Flory (ASF)
distribution. As such, various molecules have been used in the FT reactions in an attempt to better
the understanding of the reaction mechanism and explain the deviations observed from the ASF
distribution [12–14]. In particular, the additives that have been co-fed to syngas to investigate their
effects on the mechanism and influence on product distribution in FTS include light olefins [14–17],
alcohols [18,19], water [1,20–26], CO2 [27–31], and many more, as illustrated in Figure 1.
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Several researchers [32–34] have reported the effect of ammonia in syngas on the FT reaction.
The authors studied the effect to explore possible phase changes of the Fe catalyst with change in
time on the stream. What they also assessed was the deactivation mechanism of the Fe catalyst by
poisoning during the FT reaction [32]. The effect of co-feeding ammonia on the conversion of syngas
using traditional cobalt catalyst was investigated to probe the catalyst deactivation and ability to affect
the selectivity of methane and C5+ hydrocarbon formation [33]. Sango et al. [34] also reported the
co-feeding of ammonia in different concentrations to a slurry phase, iron-based FT synthesis to study
catalyst deactivation, methane selectivity, the chain growth probability, the olefin selectivity, and the FT
reactions mechanisms. In a separate experimental study, controlled and verified quantities of hydrogen
sulfide and ammonia were added into the feed gas. Hydrogen sulfide was employed to probe the
impact of irreversible catalyst poisoning relative to the intrinsic deactivation profile, whereas ammonia
co-feeding was done to quantify the impact of regenerable catalyst poisoning. The combined effects
provided insight regarding catalyst deactivation and possibly prediction of time dependant catalyst
performance during FTS [35].

In recent studies, the synthesis gas mainly obtained from the reforming of coal, biomass, and
natural gas contains significant amounts of carbon dioxide (CO2) [36]. CO2 removal from the synthesis
gas is quite complex and expensive, hence, consequently, takes part in the FT catalytic activity [36].
A series of FTS experiments, which entail the co-feeding of CO2 were conducted in a fixed bed reactor
over a cobalt-based catalyst to investigate the catalyst deactivation, catalytic activity, and product
selectivity and formation rates [28]. The influence of CO2 content in the feed stream was shown
to improve the product distribution toward valuable hydrocarbons and conversion rates [36]. CO2

was added to the FT feed to investigate the CO conversion, chain growth probability, the products
distribution, and FT reaction mechanisms [37,38]. Further investigations of the CO2 influence in the
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feed gas relate to the economy and sustainability developments of FT technology [29,39,40]. Still, on
the cost-effectiveness of the FT system, it has been reported that the use of nitrogen-rich syngas could
be a better approach than the classical processes where syngas is free of nitrogen [39,40]. Inert gases,
such as nitrogen, have also been co-fed to the FT reactor. The effects of co-feeding nitrogen (N2) in the
FTS in a fixed bed reactor over a Co/TiO2 catalyst was investigated by Muleja et al. (2016) to elucidate
the effect on the catalytic activity, selectivity, and the implication on the FTS kinetics [41]. Nitrogen-rich
syngas was used to gain an understanding of its behavior in thermochemical catalytic conversion to
gasoline range hydrocarbon [42]. As such, researchers [43] have recently proposed that when operating
a cobalt-based FTS process, the olefin and paraffin formation rates should be considered separately.
The reason being that the rates before, during, and after deactivation during FTS are comparatively
inconclusive, for instance, in the studies by [41,43] the olefin formation rate was fairly constant over
time, and in some cases even increased, while the paraffin formation rate dropped, indicating that
the deactivation mainly affects the paraffin formation rate. This review is undertaken to summarize
and consolidate the co-feeding work done so far and to try explaining findings in terms of controlling
the catalytic activity, the selectivity of desired products, products distributions, understanding the
mechanism, kinetics, and/or thermodynamics of the Fischer–Tropsch (FT) processes.

2. Co-Feeding in Fischer–Tropsch Synthesis

Syngas is a mixture of carbon monoxide (CO) and hydrogen(H2) often used as the feed to the FT
process. As the feed in FTS is central to the process, a plethora of studies has been conducted on the
feed composition and co-feeding of different molecules with the syngas for the FT reactions [39,44,45].
In terms of co-feeding, extensive investigations have been conducted, and some of the molecules
that have been co-fed include water [1,11,45–48] additives, such as CO2 [28,30,31,36,49,50], and
hydrocarbons, such as olefins [51–56]. Although researchers [32–34,57] have published findings on
nitrogen-containing compounds including ammonia, inorganic compounds, such as nitrogen gas, have
not been reported on intensively. But to show the importance of co-feeding in FT reaction, already in
the 1950s, scientists had investigated FT processes with both inorganic and organic compounds, to be
exact CO2, CH4, and N2, and they have shown that the addition of these diluents poses a negative
effect on FT reaction rate [58]. Some major co-feeding effect studies are summarized in Table 1.

The co-feeding of molecules to the syngas during FTS is important. However, each of these
molecules has advantages and inconveniences. As such, the choice of one molecule over another
additive is dictated by the aim of the study. For example, water is an inherently oxygen-containing
by-product in the FTS. Oxygen atoms furnished by the CO in the feed are mainly removed as water in FT
reactions. The water may negatively affect syngas conversion as it contributes to catalyst deactivation
by oxidation. In addition, the products selectivity product distribution, and secondary reactions and
catalyst longevity is also affected. [46]. It is, therefore, necessary to identify the aspect of the FT process
that requires improvement to devise an appropriate experiment for the co-feeding of water into the
syngas for FT reactions.

In FTS, high methane selectivities are generally not preferred as it is comparatively a low-value
product than higher olefins and paraffins. Recycling the formed methane back to syngas would be
complex and uneconomical, therefore, suppressing its formation would be key [46]. Most studies should,
therefore, focus on reducing the production of methane while increasing heavy hydrocarbons formation.

The literature findings indicate that the effect of the co-feeds, whether organic or inorganic, are
almost the same regardless of the operating condition or the catalyst used (See Table 1).

Inorganic co-feeds are often incorporated in FTS to enhance selectivity to higher hydrocarbons.
In the case of N2, however, peer-reviewed publications indicate negative effects of the addition, as in
the case of H2O and CO2. The inorganic feed H2O source affected catalyst durability; however, overall
co-feed type differences in effects were significantly different with the likelihood of affecting the FTS
performance upon feeding.
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Table 1. Summary of some effects of the co-feeds used in Fischer–Tropsch synthesis (FTS). The Co-feeds are grouped as organic or inorganic.

Nature of Co-Feed Co-Feed Catalyst Used Reaction Conditions Effect in FTS Amount Used Ref

Inorganic Co-feeds

Water Pt
(0.5%)-15%Co/A12O3

2.93 MPa, and H2/CO was
2.0.

Decreased CO conversion, permanent deactivation of
the catalyst. 3–25 vol% [6]

Water 0.27%Ru-25%Co/Al2O3
25%Co/γ-Al2O3

205−230 ◦C, 1.4−2.5 MPa,
H2/CO = 1.0−2.5, and 3−16

Reduction in the CH4 rate by 12% catalyst deactivation
observed during the addition of water. 10 vol% [10]

CO2 Co/γ-Al2O3
(H2/CO = 2), fixed-bed

reactor; 220 ◦C, 20 bar, and
SV (L/kg cat/h) = 2000.

Decrease in CO conversion and C5+ selectivity partial
oxidation of surface cobalt metal 20 vol% [30]

Nitrogen Co/TiO2

220 ◦C; 60 (NTP)mL/min to
75 (NTP) mL/min; 20.85 bar

abs 25.85 bar abs

Reduced selectivity to the undesired light
hydrocarbons (mainly CH4) 28% N2 [41]

Ammonia 100Fe/5.1Si/2.0Cu/3.0K
220–270 ◦C and 1.3 MPa
using a 1-L slurry phase

reactor.

Rapidly deactivation of catalyst simultaneously
changed the product selectivities. 0.1–400 ppm [32]

Ammonia iron-catalyst
250 ◦C, 75 mL NTP/min,

H2:CO = 2 and 5 bar,
respectively.

The selectivities toward nitrogen-containing
compounds enhanced with increasing NH3 content.

Rates of formation of alcohols, aldehydes, and organic
acids decreased

0–10 vol% [59]

Organic co-feeds

Ethene
62 wt% cobalt oxide
and was supported

on kieselguhr
473 K and 110 kPa pressure. The selectivity of the higher hydrocarbons was

improved. 1% to 2% [16]

Ethanol addition 10% Co/TiO2 catalyst T = 220 ◦C, P = 8 bar,
H2/CO = 2)

The selectivity to light products increased, as well as
the olefin to paraffin ratio. A significant decrease in the

catalyst activity.

2 vol% and 6
vol%) [19]

Small oxygenates
Iron catalysts. gas
with a mol ratio

H2:C0 = 0.5

2.0 MPa; 543 K flow (VHSV
= 1000)

Aldehydes suppress and entirely change normal
synthesis behavior.

10 mol%
dimethyl ether
(DME). Diethyl
ether (DEE) is

3.3 mol%.
Acetaldehyde is

3 mol%

[44]

1-olefins as
additives

Co/ZrO2–SiO2
bimodal catalyst

513 K, 1.0 MPa, W/F Syngas
= 10 g − cat h/mol.

Resulted in an anti-Anderson–Schulz–Flory (anti-ASF)
product distribution.

1-decene and 1-tetradecene mixed with the volume
ratio of 1:1, showed the highest selectivity to

jet-fuel-like hydrocarbons. Formation rates of CH4 and
CO2, as well as light hydrocarbons (C2–C4), suppressed

20 mol% [60]
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3. Water Co-Feeding in FTS

Water is of particular interest because the FTS produces a significant volume of water [61].
Conventional and green processes rely on accurate accounts of products and by-products [62].
An account of all large quantities of produced material should be thoroughly conducted to ensure the
integration of various scenarios happening at different levels [63]. This is crucial not only for the FT
reaction but also for downstream processes [64–66]. Okoye-Chine et al. [67] recently proposed that
phase of H2O impacts FT reaction in their report about the effect of water co-feeding on a cobalt-based
FT catalyst. They have also proposed that the relationship between water affinity and/or resistance
behavior of the supported catalyst affect the activity and selectivity, which could assist the explanation
of the kinetic influence of H2O in FT reactions. Fratalocchi et al. [3] found that added water reduced
the selectivity to CH4 and alcohol and increased C25+ hydrocarbon, olefin, and CO2 selectivities, which
they ascribed to the suppression of hydrogenation reactions by water. The decrease of the selectivity to
methane was also observed with in situ experiments designed for laboratory X-ray diffractometers in
the laboratory [68]. The ability to influence FT selectivity could be useful in the design of intensified
processes, such as FT reactive distillation (RD) systems [69], which would enable streams to be directed
to particular trays in an RD to achieve the desired product specification on that tray.

Iglesia et al. [70] have reported that water influences chain growth, selectivity, and depending
on the catalyst, the co-feeding of water also affects the rate of the initial CO hydrogenation reaction.
When the pressures of the reactants or the reactants conversions are low, the addition of water improves
the FTS reaction productivity (rates and selectivity) of olefins and C5+ hydrocarbons. Furthermore,
at low CO conversion, the effects of water co-feeding in FTS are influenced by the type of supports
and lead to support effects. The pressure is one of the most critical operating conditions of the FT
process. The feed partial pressure is equally important. The effect of water co-feeding stands to
affect the performance of catalysts. Scientists [1] have studied the effect of water while changing the
conversion and thereby, raising the partial pressure of water. They have also investigated the influence
with the co-feeding of water to the feed gas. Upon increasing the water partial pressures, a shift
from the ASF distribution was observed with the FTS total product distribution, the olefin reinsertion
caused typical deviations, to a much narrower distribution. The sole C1-wise chain growth process
cannot be explained by such mechanisms. As such, another product formation route which takes into
consideration the combination of adjacent alkyl chains leading to paraffin (“reverse hydrogenolysis”),
has, therefore, been suggested [2]. Certain features (physico–chemical properties) of the catalysts affect
the catalytic activity behavior in an FT reactor. The reduction in the reaction rates was found when the
water was co-fed with an inlet partial pressure ratio (PH2O/PH2 = 0.4) for the narrow-pore catalysts.
Whereas, the reaction rates increased for the larger pores catalysts with the same water pressure.
Overall, when the quantity of water added was equal to PH2O/PH2 = 0.7 at the reactor inlet, the reaction
rates were suppressed, resulting in permanent deactivation. Furthermore, the addition of water
improved the selectivity to C5+ and decreased the selectivity to CH4 selectivity for all type of catalysts.
Hence, the pore characteristics appear to define the impact of water on the rates [23]. Bertole et al. [47]
added water at partial pressures amounting to 8 bar to an FT functioning unsupported cobalt catalyst
and managed to increase the reactivity of CO which was adsorbed on the surface without affecting
the reactivity of the active surface of carbon intermediate. An increase in surface concentration was
obtained for the monomeric carbon precursors leading to hydrocarbon formation [47]. The interaction
of water with the catalysts differs in many ways. The effect of water with Co particle sizes, adsorbed
species on the catalyst surface, in terms of secondary reactions, and diffusion in liquid-filled is reported
in the literature [1]. The complexity of the effect of water on the product distribution has also been
reported [3]. It has been revealed that water has both irreversible and reversible effects. The former
becomes evident upon raising the concentration of co-fed water, and the latter is clearly visible, starting
from small concentrations of co-fed water. These two effects result in the decline of the selectivity to
the undesired CH4 and alcohol while the selectivity to C25+ hydrocarbon, olefin, and those for CO2

increase. The authors concluded that these findings can be described by an assumption that water
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suppresses hydrogenation reactions [3]. Another negative effect of co-feeding water to syngas is the
deactivation of the catalysts. At high partial pressures, the presence of water deactivates unsupported
cobalt catalysts. The deactivation of the catalyst is noticeable through the reduction of site activity of
the catalyst and/or lower CO surface inventory. The treatment of the catalyst with hydrogen generally
recovers site activity, and it does not affect surface inventory. The latter observation indicates that
cobalt surface loss is due to sintering. This sintering process is prominently facilitated by high water
partial pressure, such as >4 bar [47]. Claeys and van Steen [8] reported a noticeable increase in the
formation rates of the product and significant changes in the selectivity to the FT product, in particular,
lower methane selectivity and enhanced chain growth ensuing from the effect of water. The flow
rate of the main reactants (CO and H2) is another FT operating process parameter that affects the
performance of the FT processes. Li et al. [71,72] investigated the effects of adding water to the feed
gas by changing the values of the space velocity. They found that the addition of water did not affect
the CO conversion significantly at higher syngas space velocity values. At lower space velocity, the
water co-feeding decreased the CO conversion; yet, the negative effect was reversible with the catalyst
quickly recovering the activity obtained before the feeding of water. When the space velocity is low, the
CO conversion is high, and researchers have found that the addition of water permanently deactivates
the catalyst [71,72]. The quantity of water added to the syngas feed also plays a role in the catalytic
activity. For example, it was found that co-feeding of small amounts of water slightly affects the
CO conversion, but interestingly the effect was reversible. However, a large amount of added water
which could equal the partial pressures PH2O/PCO ∼ 1 in the feed permanently deactivated the catalyst.
When the selectivity to CO2 is higher, it indicated that cobalt oxide or another catalytic form of cobalt,
such as cobalt aluminate, was formed in the presence of higher water partial pressure [11]. Dalai
and Davis [46] reviewed the influence of water on the performances of numerous cobalt catalysts
for FTS and confirmed that the effect of co-feeding water into an FT reactor is quite complicated.
They found that the influence of water addition depends on various aspects, including the catalyst
support and its nature, the Co metal loading, the promoters used with noble metals, and also the
preparation procedure.

It is, therefore, generally accepted by researchers [1,9,11,45–48] that the effects of water on FTS are
quite complex. Dalai and Davis [46] summarised the effects of water in FTS with three scenarios:

(i) An oxidation process for the cobalt supported catalyst with the extent of oxidation being a
function of features of the cobalt namely the crystallite size but also the ratio values of the reactor
partial pressures of hydrogen and water (PH2O/PH2).

(ii) The average support pore diameter influences the water-co-feeding.
(iii) The effects could be kinetic in particular the CO dissociation by direct interaction with co-adsorbed

CO can be lowered with water co-feeding while the secondary hydrogenation of olefin products
can be inhibited as a result of competitive adsorption of water [46].

On the other hand, Yan et al. used Fe-Pd/ZSM-5 catalyst (a bi-functional catalyst) which yielded
relatively high activity and selectivity in producing liquid hydrocarbons when the FT reaction was
carried out with nitrogen-rich syngas [73]. Conversely, Visconti and Mascellaro [74] co-fed nitrogen to
the reactor, increasing the nitrogen content (23.5% to 45.1%) and kept the total pressure unchanged and
found that the CO conversion dropped. It is most likely that the CO conversion decreased because the
reactant partial pressures values declined when adjustment was made to maintain the total pressure
while increasing the nitrogen content. Nevertheless, researchers who investigated the effect FTS with
nitrogen-rich syngas have reported that such FT process is feasible because it could potentially be
cost-effective [39,75–78]. The addition to the FTS of molecules, namely olefins, alcohols, carbon dioxide,
water, and isotope markers, has contributed to a better understanding of the reaction mechanism.
These same molecules were also used by researchers who were studying the deviations observed from
the ASF distribution [12].



Catalysts 2019, 9, 746 7 of 15

4. Organic Co-Feeds

Small hydrocarbons are an important organic additive in FTS. The most commonly used co-feeds
include acetylene (C2H2), ethylene (C2H4), ethane (C2H6), propyne (C3H4), propene (C3H6), and
propane (C3H8). These hydrocarbons are needed for elucidating reaction mechanisms. These molecules
exist in the gas-phase during the reaction and through a series of temperatures used in FTS.

For instance, the influence of low molecular weight olefins on FTS has been examined with the
aim of either understanding the mechanism of chain growth or influencing the distribution of products
formed [14]. Experiments conducted with co-feeding of ethene, 1-alkenes, and diazomethane as a source
of surface methylene have been undertaken to strongly support the hypothesis of two independent
mechanisms during FTS with the methylene insertion mechanism as one of them [13]. Furthermore,
FT experiments with 1-alkene and ethane co-feeding in a reactor loaded with cobalt catalysts and iron
catalysts were carried out to study the product distributions, chain growth probabilities, and different
chain growth mechanisms [16,79,80]. In brief, olefins, alcohols or CO2 additives have all been co-fed to
investigate the chain growth and mechanism during FTS [12,14,18,81], the ASF distribution [13], and
the role of secondary reactions of olefins [15,17]. Specifically, olefins have been used as co-feeds in
FT which resulted in enhancing the selectivity to hydrocarbons (C8–C16), while at the same time, the
formation of light hydrocarbons, such as CH4 and CO2 was suppressed [60].

On the other hand, when additives, such as small 1-alkenes, alcohols, or CO2, were co-fed into
the FT reactor, they acted as chain initiators for the FTS. The probe-initiated and conventional FTS
progress concurrently, with their separate products overlapping. It has been shown, overwhelmingly,
that co-feeding additives do not contribute to chain growth, although when olefins and alcohols
were added, their incorporation into FTS products was evident usually through chain initiation [12].
However, up to now, the effects and influences of the additives reported [12] on the overall FT product
distributions and on the FT catalysts activity are yet to convince the majority of researchers universally.
However, Sage and Burke [12] reported in their review that olefins adsorb on the catalyst surface
influenced the overall FTS product distribution. As such, it could be assumed that co-feeding olefins
might be useful for FTS to modify the catalyst surface. For example, the catalyst surface modification
could be achieved by selectively binding to and/or inhibiting certain active sites favorable to chain
growth of higher hydrocarbons, or reactions, such as secondary hydrogenation, to improve the overall
FT efficiency and selectivity of the process [12].

Alkane, such as n-hexane, has also been co-fed into the FT reaction. The addition of this molecule
to the FTS feed under realistic conditions will not result in supercritical FT conditions. However, such
an addition will change the composition of the liquid phase in the FT reactor leading in a higher
liquid flow rate and a greater diffusivity of reactants (H2 and CO). Therefore, the effectiveness of the
process was increased if the FTS is conducted under internal mass transport limiting conditions [82].
Patzlaff et al. [79] conducted experiments with 1-alkene and ethane co-feeding using cobalt and iron
catalysts and revealed superimposed distributions with different chain growth probabilities resulted
from different chain growth mechanisms. When alcohols were co-fed, the results showed reliance
on the ratio of the two distributions on the reactant pressures while the promoter effect on iron
catalysts also supported the hypothesis of the two mechanisms. They also suggested the CO insertion
mechanism as the second approach that is exhibited by the higher growth probability of the resulting
ASF distribution [13].

It is known that the FT synthesis is highly exothermic, which makes the heat removal and control
of the reaction temperature critical steps since the damage of the catalyst at high temperatures decreases
the conversion rate. Product selectivity also shifts with increasing temperature towards the production
of more unwanted short-chain hydrocarbons, including methane [75]. FT processes are also categorized
based on the temperature at which the operation is being carried out, and the products obtained
differ. For example, the syncrude produced during high temperature (300–350 ◦C) Fischer–Tropsch
(HTFT) synthesis has more light hydrocarbons, hence, is gaseous at reaction conditions; more than
one product phase is formed on cooling. Low temperature (200–260 ◦C) Fischer–Tropsch (LTFT)
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syncrude is acknowledged to be a two-phase mixture at reaction conditions, but at ambient conditions,
the syncrude from LTFT synthesis consists of four different product phases: gaseous, organic liquid,
organic solid (wax), and aqueous [83]. Medium temperature Fischer–Tropsch (MTFT) ranges from
270 to 300 ◦C, the product phases are similar to those of LTFT. Although FTS products are useful, it is
usually more profitable to obtain fewer light hydrocarbons, such as methane and oxygenate products,
which are often unwanted. It has been reported that the commercialization of the FT technology suffers
from two of major limitations. These are limited selectivity for the main products since it produces
a broad spectrum of products and catalyst deactivation, which leads to frequent replacement of the
catalyst [39]. Cobalt-based catalysts are only used in LTFT processes as at the higher temperatures
excess CH4 is produced [84].

5. Effect of Nitrogen as a Co-Feed

In addition to the contribution of cost reduction during syngas preparation, the presence of
nitrogen in the syngas is significant for safety purpose, mass balance determination, and controlling
the heat in the FT system. Jess and co-workers [77] suggested a process with nitrogen co-feeding to the
syngas. They reported that the proposed process with syngas co-fed does not utilize a recycle loop,
hence, skipping any build-up of nitrogen in the system. This configuration is probably cost-effective
because a recycle compressor is not required. The presence of the syngas with nitrogen plays a
significant role which removes substantial amounts of heat generated during the FT reaction [85].
Furthermore, researchers have reported that α-olefins formation was enhanced by the two processes
between FTS and N2 purging. The improved result was achieved, when the liquid filled in pores
of the catalyst purged with nitrogen, prompting the release of olefins from liquid to gas phase and
minimizing its secondary reaction [86]. On the other hand, Jess et al. [75,77] and Xu et al. [78] separately
conducted studies on the effect of nitrogen co-feeding in FT reactor and found that nitrogen only
dilutes syngas. The presence of nitrogen in the reactor has little influence on the kinetics if the reactants
(carbon monoxide and hydrogen) partial pressures are kept constant. However, Lu et al. [42] used feed
composed of nitrogen-rich syngas in FTS and obtained more C10 hydrocarbons and smaller amounts of
C8 hydrocarbons which were more when compared to FTS carried out with pure syngas. These results
are different from the findings of Jess et al. [75] and Xu et al. [78]. Lu et al. [42] findings are partially in
agreement with conclusions from Muleja et al. [41] studies. Muleja et al. [41] investigated the effect of
nitrogen co-feeding to an FT reactor while maintaining the partial pressures of reactants and concluded
that the selectivity to all light hydrocarbons decreased while the selectivity to C5+ in mainly C5–C19

fraction is enhanced. They [41], therefore, suggested such findings could not be explained by kinetics
alone but compared the vapour–liquid equilibrium (VLE) and boiling effect and drew attention to the
boiling phenomenon during FTS which is depicted in Figure 2.



Catalysts 2019, 9, 746 9 of 15Catalysts 2019, 9, x FOR PEER REVIEW 9 of 15 

Figure 2. A schematic diagram for the comparison between the pressure in vapour–liquid equilibrium 

and boiling [41]. PTotal is the total pressure of the system, PInerts are the total partial pressures of all the 

virtually insoluble gases, and PSolubles is the total partial pressure of the soluble gases. 

However, it is relatively agreed that FTS is a polymerization process leading to a distribution of 

mainly olefins and paraffins, although the mechanism by which this occurs on catalysts is still a 

Figure 3. Schematic representation of Fischer–Tropsch synthesis (FTS) (chain propagation, 

hydrogenation to n-paraffins, and desorption to 1-olefins) and 1-olefin secondary reaction 

(hydrogenation, isomerization, and readsorption) [87]. 

On the other hand, van Steen and Schulz [88] have simplified the scheme representing (Figure 

4) the formation of chain initiators and insertion into the developing chains. This is what is used to

show the growth of rate equations using the polymerization principle.

Figure 2. A schematic diagram for the comparison between the pressure in vapour–liquid equilibrium
and boiling [41]. PTotal is the total pressure of the system, PInerts are the total partial pressures of all the
virtually insoluble gases, and PSolubles is the total partial pressure of the soluble gases.

However, it is relatively agreed that FTS is a polymerization process leading to a distribution of
mainly olefins and paraffins, although the mechanism by which this occurs on catalysts is still a subject
of much debate. Todic et al. [87] reported well detailed schematic reactional representation of the FTS
process as depicted in Figure 3.
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On the other hand, van Steen and Schulz [88] have simplified the scheme representing (Figure 4)
the formation of chain initiators and insertion into the developing chains. This is what is used to show
the growth of rate equations using the polymerization principle.
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Furthermore, Muleja et al. [89] attempted to explain the effect of nitrogen co-feeding into the
FT reactor with a reactive distillation mapping leading to the suggestion that further to kinetics,
thermodynamic equilibrium and VLE should potentially be considered for FT processes modeling.

6. Concluding Remarks and Recommendations

Maximizing the yield of high-value product is a critical factor for the commercialization and
successful implementation of the FT process. Coal or biomass gasification and natural gas reforming
generally produce syngas that contains some short-chain hydrocarbons and impurities [90]. Some
feed streams have contaminants that affect the FT reactor in various ways. The ability to integrate
some contaminants, such as CO2, into the process design might be crucial to the success of a new
design. Taking advantage of N2 that is inherent in air could save capital installation costs in eliminating
the need for cryogenic air separation units. The by-product water could be used to absorb the heat
of reaction upon vaporization in an intensified unit, such as an FT reactive distillation system [91].
Since olefin readsorption has been demonstrated in an FT reactor [17,92–94], the light gas stream
could be recycled to various trays in a reactive distillation column to influence product selectivity [95].
Insights gained from FT co-feeding studies are not only applicable to FTS but could also be extended
to methanol-to-hydrocarbons synthesis and other hydrocarbons processing systems [96]. There are
some ongoing ethylene co-feeding studies to try to understand the impact on olefin selectivity over
Co-based catalysts [97]. Thus, insight from co-feeding studies leads to process synthesis and integration
opportunities that were not envisaged by the researchers probing various phenomena.
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