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Abstract: Olefin metathesis is the catalytic transformation of olefinic substrates, finding a wide range
of applications in organic synthesis. The mesoporous molecular sieve Santa Barbara Amorphous
(SBA-15) has proven to be an excellent support for metathesis catalysts thanks to its regular mesoporous
structure, high BET area, and large pore volume. A survey of catalysts consisting of (i) molybdenum
and tungsten oxides on SBA-15, and (ii) molybdenum and ruthenium organometallic complexes
(Schrock and Grubbs-type carbenes) on SBA-15 is provided together with their characterization and
catalytic performance in various metathesis reactions. The comparison with catalysts based on other
supports demonstrates the high quality of the mesoporous molecular sieve SBA-15 as an advanced
catalyst support.
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1. Introduction: Olefin Metathesis and the Basic Properties of Santa Barbara Amorphous (SBA-15)

Olefin metathesis is the catalytic transformation of olefinic substrates. In this process, C=C double
bond splitting is followed by the combination of alkylidene molecular fragments. This general reaction
involves aliphatic alkenes, cycloalkenes, dienes, and polyenes, with or without functional groups
(Scheme 1).
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Scheme 1. Alkene metathesis reaction.

Various names are often used for specific types of olefin metathesis depending on the substrate
involved in the reaction: (1) cross-metathesis (CM) for reactions between two or more different olefinic
substrates, (2) ring-closing metathesis (RCM) for reactions involving dienes that lead to ring formation,
(3) acyclic diene metathesis (ADMET) for reactions that lead to linear polyenes, and (4) ring-opening
metathesis polymerization (ROMP) for transformations of cycloalkenes into polymers with unsaturated
main chains. Because of its general character, olefin metathesis has a wide range of applications in
organic synthesis, ranging from the production of fine chemicals (e.g., natural products, biologically
active compounds, pharmaceuticals), to large-scale industrial processes (petrochemistry, polymer
synthesis). In 2005, Chauvin, Grubbs, and Schrock were awarded the Nobel Prize “for the development
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of the metathesis method in organic synthesis”. Many important aspects of olefin metathesis and its
applications have already been discussed in detail in several monographs [1–4].

Olefin metathesis catalysts are exclusively based on the following transition metals: Ti, Ta, Mo,
W, Re, and Ru, however, the importance of Ti and Ta is very limited [5,6]. In addition, carbenes of
these transition metals have been shown to act as active catalytic species, which exchange alkylidene
molecular fragments through metallacyclobutane intermediates [7] (Scheme 2).
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Most metathesis catalysts are water and oxygen sensitive, thus, the metathesis reaction is usually
performed under inert conditions. Traditionally, metathesis catalysts are divided into two categories:
(a) ill-defined and (b) well-defined catalysts [8]. Ill-defined catalysts (historically older) include catalytic
systems in which metallocarbenes are formed “in situ” in a reaction between components of the catalytic
system and often the substrate itself. For example, in the formerly popular system WCl6 + tetraalkyltin,
tungsten carbenes are formed “in situ” in a reaction between these two components. Similarly, in
industrially used systems based on Mo, W, and Re oxides on silica or alumina supports, active
metallocarbenes are formed during the activation process involving substrate molecules [9]. In turn, the
group of well-defined catalysts (developed later) includes stable (isolable and storable) metal carbene
complexes that can be directly used as catalysts (Schrock W, Mo alkylidene complexes [10], Grubbs
Ru carbenes [11]). Typical Schrock and Grubbs carbenes are depicted in Figures 1 and 2, respectively.
They are used in organic solvents (usually dried and degassed) as homogeneous catalysts. The first
attempts to immobilize these complexes on silica surfaces started soon after their discovery [12,13].

Initially, microporous silica or silica-alumina were used as supports for molybdenum and tungsten
oxide catalysts. However, the advantage of mesoporous supports was soon recognized. Ookoshi
and Onaka [14] studied 1-octene metathesis over MoO3 supported either on commercially available
silica (Brunauer-Emmett-Teller (BET) area 619 m2/g) or on laboratory prepared hexagonal mesoporous
silicas (HMS) (d100 spacing ≥3 nm, BET areas between 1230 and 1450 m2/g). The differences in both
reaction rates and yields of the reactions were enormous. Over low-surface silica, metathesis products
were formed in negligible amounts, whereas HMS provided yields up to 45%. In the same reaction,
Topka et al. [15] similarly observed that the activity of MoO3 supported on the mesoporous molecular
sieves MCM-41, MCM-48, and Santa Barbara Amorphous (SBA-15) was higher than that of MoO3 on
conventional silica. This enhanced activity was ascribed to better MoO3 dispersion on supports with
larger surface areas.
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The immobilization of Schrock and Grubbs complexes on solid supports aimed (i) to increase
catalyst stability (especially by preventing bimolecular decomposition reactions), (ii) to improve catalyst
separation from the reaction mixture, and (iii) to reuse the catalyst. The mesoporous character of the
supports makes it possible to introduce rather bulky complexes into the pores and facilitates the access
of substrate molecules to the catalytic centers. The confinement of catalysts in pores of different sizes



Catalysts 2019, 9, 743 4 of 18

and shapes was also predicted to generate corresponding changes in catalyst selectivity. Therefore,
various mesoporous sieves were used as supports to immobilize Schrock and Grubbs catalysts with
varying degrees of success [16,17].

Santa Barbara Amorphous (SBA-15) [18] is a mesoporous silica with unique properties that
allow its application as an advanced support for metathesis catalysts: uniform, hexagonally-ordered
cylindrical mesopores (p6mm symmetry group), thick amorphous walls (3–6 nm [19]), hydrothermal
stability, large BET areas (SBET = 500–900 m2/g), and large pore volume (up to 1.0 cm3/g) [20]. The
external surface area is usually 10% or less of the total surface [15,20]. Therefore, most of the area
available for catalyst accommodation is in the mesopores.

The mesopore diameter depends on the preparation method and typically ranges from 6 to 10
nm, although large-pore SBA-15 with a pore diameter up to 18 nm have been prepared using special
swelling agents [19,21]. Such pores facilitate the placement of metathesis catalysts on the inner surface
of SBA-15: for example, Hoveyda–Grubbs 2nd-generation catalyst 4.4 (see Figure 2) has a molecular size
of 1.76 × 1.35 × 1.05 nm [22], and substrate diffusion to the catalytic centers cause no serious hindrance
to the reaction. Nevertheless, the existence of U-shaped mesopores was proven by Transition Electron
Microscopy (TEM) [23] in large SBA-15 particles, which may have a negative effect on diffusion in
the pores. Moreover, in many SBA-15 particles, micropores were observed in the walls, the amount,
however, can be affected by template composition and by the calcination procedure [19].

The attachment of transition metal carbenes or their precursors on the surface can proceed in two
ways: (1) by direct reaction with surface OH groups and (2) by functionalization of the surface with
linkers, that is, special molecules designed for binding the support surface and the metal carbene (or its
precursor). In both ways, the character and amount of surface OH groups are essential. In all-siliceous
SBA-15, OH groups are weakly acidic (pKa about 4 [24]), and their amount depends on the preparation
protocol and on the temperature treatment. For SBA-15 calcined at 550 ◦C, the number of silanol
groups accessible to pyridine molecules (determined by NMR) initially reported was 3.7 groups per
nm2 [24]. Later, van der Voort et al. [25] reported a total amount of OH groups in SBA-15 determined
by IR of 3.5 mmol/g. However, a considerable part of these groups is buried in walls and inaccessible
to reagents. The reported amount of OH groups capable of being grafted with trimethylsilyl groups is
1.8 mmol/g, which gives 1.7 OH group per nm2, with a slightly lower value (1.2 OH group per nm2)
for the often used hexagonal MCM-41 and cubic MCM-48 particles with narrower pore sizes (2.9 and
2.8 nm of diameter, respectively). At high temperatures, when partial dehydroxylation occurs, the
amounts of OH groups decrease. Thus, 1.56 mmol of accessible silanols per gram was reported for
SBA-15 partially dehydroxylated at 500 ◦C in vacuo [26], and the amount of available OH groups
dropped to 1.07 mmol/g for SBA-15 dehydroxylated at 700 ◦C [27]. In this case, entirely isolated OH
groups occur on the surface, and they can be used to prepare “single-site catalysts” via methods of
surface organometallic chemistry [28].

2. Well-Defined Heterogeneous Olefin Metathesis Catalysts Prepared by Immobilization of Mo
and Ru Organometallic Complexes on SBA-15

These catalysts combining inorganic support and organometallic catalysts are also known as
hybrid catalysts. Well-defined olefin metathesis catalysts, i.e., Schrock and Grubbs-type carbenes
were immobilized on various types of silica or silica-alumina supports ranging from high-surface
microporous silica through mesoporous molecular sieves to micro- or mesoporous zeolites. Microporous
silica was the most common type at first, but advances in the development of organized mesoporous
silica (especially mesoporous molecular sieves MCM-41, MCM-48, and SBA-15) led to the increased
number of applications of these materials as advanced supports. Recently, new types of zeolites
(mesoporous, two-dimensional [29–31]) have been shown to be interesting supports for new metathesis
heterogeneous catalysts (vide infra). Several review articles and book chapters have been devoted to
this topic [16,17,32–36] and therefore we have exclusively focused on catalysts with a SBA-15 support
and on their state-of-the-art features.
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Generally, transition metal carbene complexes can be attached to silica supports by a) covalent
bonds and b) non-covalent interactions. The following strategies have been developed for this
immobilization: (1) direct grafting of the complex on the support through a reaction of ligands of the
carbene complex with silanol groups, (2) attachment of the complex through linkers, i.e., molecules
with a trialkoxysilyl group that is able to react with silanol groups of the support on one side and with
a reactive group that is able to coordinate a metal in the complex (e.g., amino, phosphino, carboxylate)
on the opposite site –although this method is more material and time consuming than the others, it
ensures some distance between the complex and the channel wall (proximity to the surface may affect
the catalytic activity of the immobilized carbene complex [37]), and (3) attachment via non-covalent
interactions (ionic, hydrogen bond) – this approach has become particularly important in connection
with specific Grubbs-type complexes (vide infra).

Stability is the key characteristic of every catalyst. In the case of hybrid catalysts, this means
not only is high Turnover number (TON) achievable but there is also catalyst reusability and no
leaching of metal (or other catalyst residues) into the reaction medium. A good catalyst should be
reusable many times with no decrease in its catalytic activity, and transition metal leaching must be
negligible (no additional purification of products from metal or other catalyst residues is needed,
especially for pharmaceutical compounds). Such a good catalyst can also be applicable in flow systems.
Unfortunately, the application of well-defined heterogeneous catalysts in flow reactors is still rather
rare, and data on leaching and reusing are unavailable for many catalysts reported in literature.

Schrock carbene complexes 3.1 and 3.3 Mo(= CHCMe2Ph)(=N-2,6-i-Pr2C6H3)(OR)2 (R = CMe3,
CMe(CF3)2) were grafted on dehydrated mesoporous molecular sieves MCM-41, MCM-48, and SBA-15
via exchange of alkoxy ligands with surface hydroxyls (Scheme 3) [38]. Hybrid catalysts with 1
wt% Mo have been prepared. The resulting alcohols were detected by gas chromatography (GC),
albeit without determining their quantity, so the complexes could be bound to the surface by one or
two Mo-O-Si-bond(s). In metathesis of neat 1-heptene, the hybrid catalysts exhibited good activity,
slightly increasing in the following order: MCM-48 < MCM-41 < SBA- 15 (batch reactor, TON ranging
from 1300 to 1700) with negligible Mo leaching. In comparison, the same complexes immobilized on
dehydroxylated silica [39] gave monosiloxy surface complexes with a well-determined structure and
with high activity in propene metathesis (flow reactor, TON about 188,000) and in a metathesis of
methyl oleate (batch reactor, equilibrium after 24 h and TON = 2000).
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Ru carbenes (Grubbs- and Hoveyda–Grubbs-type) have been immobilized on mesoporous
molecular sieves (and especially on SBA-15) more frequently than Schrock-type alkylidenes. A possible
reason is that Ru carbenes are not as oxygen- and moisture-sensitive as Schrock alkylidenes and
therefore their protection by inert atmosphere during immobilization need not be so rigorous. Some
of these catalysts operate even in a water environment, so they can be applied in the metathesis of
water-soluble substrates. The main strategies for the immobilization of Ru carbenes on inorganic
supports are summarized in References [40,41]. Table 1 outlines Ru carbenes immobilized on SBA-15.
Their immobilization approach is indicated together with their main characteristics.
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Table 1. Survey of Ru carbenes immobilized on Santa Barbara Amorphous (SBA-15)

Number Carbene
Complex Immobilization Mode Loading,

in wt % Ru Activity Leaching
in % of Starting Amount of Ru Reusing Reference

1 4.4
4.5

By the linker
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2 4.3
4.6

By the linkers

Catalysts 2019, 9, x FOR PEER REVIEW 6 of 20 

 

Table 1. Survey of Ru carbenes immobilized on Santa Barbara Amorphous (SBA-15) 

Number 
Carbene 

complex 
Immobilization Mode 

Loading,  

in wt % 

Ru 

Activity 

Leaching 

in % of Starting 

Amount of Ru 

Reusing Reference 

1 
4.4 

4.5 

By the linker 

Si Ag

 

0.85%  

0.65% 

TON in RCM = 

2900 
2.3% 3 times [42] 

2 
4.3 

4.6 

By the linkers 

 

0.3–1.0% 
TON in RCM = 

2000 
0.18–7.7% 6 times [43] 

3 4.7 

By the linker 

Si

 

0.27% 
TON in RCM = 

2100 
2.7% 5 times [44] 

4 4.8 

By the linker 

 

1.07% RCM, ROMP 0.1–0.38% 6 times [45] 

5 4.8 

By the linker 

 

0.3% 

Metathesis 

and cross-

metathesis of 

cardanol, TON 

up to 330 

0.5% 

5 times 

cummulative 

TON = 1125 

[46] 

0.3–1.0% TON in RCM = 2000 0.18–7.7% 6 times [43]

3 4.7

By the linker

Catalysts 2019, 9, x FOR PEER REVIEW 6 of 20 

 

Table 1. Survey of Ru carbenes immobilized on Santa Barbara Amorphous (SBA-15) 

Number 
Carbene 

complex 
Immobilization Mode 

Loading,  

in wt % 

Ru 

Activity 

Leaching 

in % of Starting 

Amount of Ru 

Reusing Reference 

1 
4.4 

4.5 

By the linker 

Si Ag

 

0.85%  

0.65% 

TON in RCM = 

2900 
2.3% 3 times [42] 

2 
4.3 

4.6 

By the linkers 

 

0.3–1.0% 
TON in RCM = 

2000 
0.18–7.7% 6 times [43] 

3 4.7 

By the linker 

Si

 

0.27% 
TON in RCM = 

2100 
2.7% 5 times [44] 

4 4.8 

By the linker 

 

1.07% RCM, ROMP 0.1–0.38% 6 times [45] 

5 4.8 

By the linker 

 

0.3% 

Metathesis 

and cross-

metathesis of 

cardanol, TON 

up to 330 

0.5% 

5 times 

cummulative 

TON = 1125 

[46] 

0.27% TON in RCM = 2100 2.7% 5 times [44]

4 4.8

By the linker

Catalysts 2019, 9, x FOR PEER REVIEW 6 of 20 

 

Table 1. Survey of Ru carbenes immobilized on Santa Barbara Amorphous (SBA-15) 

Number 
Carbene 

complex 
Immobilization Mode 

Loading,  

in wt % 

Ru 

Activity 

Leaching 

in % of Starting 

Amount of Ru 

Reusing Reference 

1 
4.4 

4.5 

By the linker 

Si Ag

 

0.85%  

0.65% 

TON in RCM = 

2900 
2.3% 3 times [42] 

2 
4.3 

4.6 

By the linkers 

 

0.3–1.0% 
TON in RCM = 

2000 
0.18–7.7% 6 times [43] 

3 4.7 

By the linker 

Si

 

0.27% 
TON in RCM = 

2100 
2.7% 5 times [44] 

4 4.8 

By the linker 

 

1.07% RCM, ROMP 0.1–0.38% 6 times [45] 

5 4.8 

By the linker 

 

0.3% 

Metathesis 

and cross-

metathesis of 

cardanol, TON 

up to 330 

0.5% 

5 times 

cummulative 

TON = 1125 

[46] 

1.07% RCM, ROMP 0.1–0.38% 6 times [45]

5 4.8

By the linker

Catalysts 2019, 9, x FOR PEER REVIEW 6 of 20 

 

Table 1. Survey of Ru carbenes immobilized on Santa Barbara Amorphous (SBA-15) 

Number 
Carbene 

complex 
Immobilization Mode 

Loading,  

in wt % 

Ru 

Activity 

Leaching 

in % of Starting 

Amount of Ru 

Reusing Reference 

1 
4.4 

4.5 

By the linker 

Si Ag

 

0.85%  

0.65% 

TON in RCM = 

2900 
2.3% 3 times [42] 

2 
4.3 

4.6 

By the linkers 

 

0.3–1.0% 
TON in RCM = 

2000 
0.18–7.7% 6 times [43] 

3 4.7 

By the linker 

Si

 

0.27% 
TON in RCM = 

2100 
2.7% 5 times [44] 

4 4.8 

By the linker 

 

1.07% RCM, ROMP 0.1–0.38% 6 times [45] 

5 4.8 

By the linker 

 

0.3% 

Metathesis 

and cross-

metathesis of 

cardanol, TON 

up to 330 

0.5% 

5 times 

cummulative 

TON = 1125 

[46] 

0.3% Metathesis and cross-metathesis of
cardanol, TON up to 330 0.5% 5 timescummulative

TON = 1125 [46]

6 4.2
4.4

Catalysts 2019, 9, x FOR PEER REVIEW 7 of 20 

 

6 
4.2 

4.4 

 

0.5–1.7% 
RCM TON = 

20 in 1 cycle 

6–30% 

according to 

pore size 

8 times [47] 

7 4.1 
C4H9  

- 
RCM TON = 

20 in 1 cycle. 

below detection 

limit 
5 times [48] 

8 
4.4 

4.5 
Linker free 0.29–1.0% 

TON up to 600 

batch reactor 

0.04% in C6H12, 

14% in DCM 

Flow 

conditions 

possible 

 

[49–53] 

 

9 4.4 
By means of Al modification of 

the surface 
1.5% 

Cumulative 

TON about 

3000 (propene 

metathesis) 

 

Catalyst leaches 

in polar 

medium 

- [54] 

10 4.9a Linker free 1.2%  

TON up to 

3300 in RCM 

 

About 1% in 

DCM and 

EtOAc 

5 times 

 
[55] 

11 4.9b Linker free 0.1–1% 

TON up to 

35000 in RCM, 

TON = 1600 in 

cardanol 

metathesis 

About 1% 

More than 10 

times 

suitable for 

flow 

condition 

[56,57] 

 

RCM= ring closing metathesis, ROMP= ring-opening metathesis polymerization, TON= turnover number, DCM= dichloromethane, EtOAc= ethyl acetate. 

0.5–1.7% RCM TON = 20 in 1 cycle 6–30% according to pore size 8 times [47]

7 4.1

Catalysts 2019, 9, x FOR PEER REVIEW 7 of 20 

 

6 
4.2 

4.4 

 

0.5–1.7% 
RCM TON = 

20 in 1 cycle 

6–30% 

according to 

pore size 

8 times [47] 

7 4.1 
C4H9  

- 
RCM TON = 

20 in 1 cycle. 

below detection 

limit 
5 times [48] 

8 
4.4 

4.5 
Linker free 0.29–1.0% 

TON up to 600 

batch reactor 

0.04% in C6H12, 

14% in DCM 

Flow 

conditions 

possible 

 

[49–53] 

 

9 4.4 
By means of Al modification of 

the surface 
1.5% 

Cumulative 

TON about 

3000 (propene 

metathesis) 

 

Catalyst leaches 

in polar 

medium 

- [54] 

10 4.9a Linker free 1.2%  

TON up to 

3300 in RCM 

 

About 1% in 

DCM and 

EtOAc 

5 times 

 
[55] 

11 4.9b Linker free 0.1–1% 

TON up to 

35000 in RCM, 

TON = 1600 in 

cardanol 

metathesis 

About 1% 

More than 10 

times 

suitable for 

flow 

condition 

[56,57] 

 

RCM= ring closing metathesis, ROMP= ring-opening metathesis polymerization, TON= turnover number, DCM= dichloromethane, EtOAc= ethyl acetate. 

- RCM TON = 20 in 1 cycle. below detection limit 5 times [48]

8 4.4
4.5 Linker free 0.29–1.0% TON up to 600

batch reactor 0.04% in C6H12, 14% in DCM Flow conditions possible [49–53]

9 4.4 By means of Al modification
of the surface 1.5% Cumulative TON about 3000

(propene metathesis) Catalyst leaches in polar medium - [54]

10 4.9a Linker free 1.2% TON up to 3300 in RCM About 1% in DCM and EtOAc 5 times [55]

11 4.9b Linker free 0.1–1% TON up to 35000 in RCM, TON =
1600 in cardanol metathesis About 1% More than 10 times

suitable for flow condition [56,57]

RCM = ring closing metathesis, ROMP = ring-opening metathesis polymerization, TON = turnover number, DCM = dichloromethane, EtOAc = ethyl acetate.



Catalysts 2019, 9, 743 7 of 18

Immobilization usually proceeded by mixing (or refluxing) the suspension of a support
(dehydrated, and/or surface-modified) with the solution of a carbene complex in an inert atmosphere.
After a given time, the solid catalyst was isolated (by decantation, filtration, centrifugation), washed,
and dried. The support architecture and main texture characteristics were preserved. Only a decrease
in SBET area was found in almost all cases. As examples, the N2 adsorption isotherms of SBA-15, 4.4
and 4.5 carbenes immobilized on SBA-15 using hexafluorocarboxylate linker–Table 1, entry 1 (denoted
as 4.4/SBA-15 and 4.5/SBA-15) are displayed in Figure 3. The SBET areas (m2/g), void volumes (cm3/g),
and pore diameter (nm) were 829, 1.18, and 6.6 for the parent SBA-15, 585, 0.98, and 6.5 for 4.4/SBA-15,
and 591, 0.97, and 6.5 for 4.5/SBA-15. Similarly, 4.1 immobilization on SBA-15 using an N-heterocyclic
carbene (NHC ) linker (Table 1, entry 7) led to a decrease in SBET from 734 to 233 m2/g and in pore
size from 7.4 to 5.2 nm, thus highlighting that the mesoporous character was preserved [48]. The
preservation of the SBA-15 structure in the corresponding hybrid catalysts was also clearly shown by
TEM [47,48].
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(Standard Temperature and Pressure) was added to the isotherms of 4.5/SBA-15 and SBA-15, respectively.
Taken from Reference [42]-© Springer. Reproduced with the permission of Springer.

In some cases, OH groups remaining on the surface after its functionalization by linkers were
covered with Me3Si groups usually using trimethylchlorosilane or hexamethyldisilazane. This
prevents these OH groups from reacting with Ru complexes, and/or with the substrate and increases
the hydrophobicity of the surface [42]. Selective capping of OH groups on the external surface (before
linker and/or Ru complex application) [48,58] was used to introduce catalytically active Ru species
exclusively into the support channels.

The bond between the NHC linker and the Ru atom (Table 1, entry 7) is very stable. Therefore,
the hybrid catalyst is reusable, and Ru leaching into liquid phase is negligible. Similarly, carboxylate
linkage (Table 1, entries 1 and 3) is sufficiently firm. However, in both cases, several step synthesis
procedures are necessary for linker preparation. On the other hand, pyridine and phosphine linkers
are commercially available, and the preparation of hybrid catalysts with them is easy (Table 1, entries 2,
4, 5). Nevertheless, the catalytic reaction starts with pyridine or phosphine ligand dissociation, thereby
vacating a place for substrate coordination. This suggests that the catalytically active Ru species
are not bound to the surface during the whole catalytic circle. The reusability of the corresponding
hybrid catalysts, low Ru leaching, and split (filtration) tests, which have confirmed the reaction
heterogeneity [59], have been explained based on the notion that catalytically active Ru species are
captured by free linkers during their movement in the channels and that this dissociation-re-capturing
process is repeated many times during the reaction [43]. The immobilization of Hoveyda–Grubbs
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carbenes using an isopropoxystyrene linker (Table 1, entry 6) is associated with a similar problem: in
the first metathesis step, this isopropoxy styrene ligand must be replaced by an alkylidene from a
substrate according to the general mechanism of metathesis (see Scheme 2) and therefore the catalytic
centres will lose their bond with the surface. This explains the relatively high catalyst leaching, which
increases with the pore size [47].

“Linker free” immobilization of Hoveyda–Grubbs 2nd-generation carbenes on silica materials
including SBA-15 (Table 1, entry 8) is a very advantageous method for the preparation of hybrid
metathesis catalysts based on a simple mixing of a carbene solution and a silica support. This method
was first described by Sels et al. [49], and the catalysts prepared using this approach turned out to be
very active in all types of metathesis reactions. When used in a non-polar medium (e.g., cyclohexane),
they behaved as true heterogeneous catalysts: they were reusable with very low Ru leaching and
applicable in flow reactors as well. Hoveyda–Grubbs 2nd-generation carbenes with ionic tags (4.9a, b)
provide hybrid catalysts that also work in polar solvents such as dichloromethane or ethyl acetate and
that are highly active in the metathesis of various substrates (Table 1, entries 10, 11). Considering their
stability, activity, and selectivity, these catalysts are among the best hybrid metathesis catalysts. An
in-depth understanding of non-covalent interactions between the carbene complex and the support
in these catalysts remains elusive. Although originally described as physisorption, the strength of
this bond suggests that stronger interactions, similar to hydrogen bonds, must come into play. In
this context, the immobilization of Hoveyda–Grubbs 2nd-generation carbene on SBA-15 with an
Al-modified surface (Table 1, entry 9) with the proposed Al-Cl-Ru bond is inspiring.

3. Application of SBA-15-Based Hybrid Catalysts in Metathesis Polymerization Reactions

Metathesis polymerization reactions (ADMET polymerization and ROMP) are still a domain of
homogeneous catalysts. Nevertheless, several successful attempts to use hybrid metathesis catalysts
in ROMP are noteworthy. The Schrock Mo-alkylidene complex 3.3 grafted on SBA-15 (3.3/SBA-15)
has been used in a ROMP of cyclooctene (COE) and norbornene (NBE) (Scheme 4) and delivered a
poly(COE) of Mw = 210,000 in 87% yield and a poly(NBE) of Mw = 1,800,000 in 60% yield [38]. During
polymerization, the resulting polymers were continuously released into the liquid phase due to chain
transfer by the polymer. The molecular weight of the polymer could be effectively reduced by adding
1-heptene as a chain transfer agent. The content of Mo in the isolated polymer was 6 ppm [60].
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Scheme 4. Ring-opening metathesis polymerization (ROMP) of cyclooctene and norbornene.

The Ru carbene precursors (RuCl2(p-cymene))2 and RuCl2(p-cymene)(PCy3), where Cy =

cyclohexane, immobilized on SBA-15 provided high-molecular weight poly(NBE) in high yields
(in the former, after activation with (trimethylsilyl)diazomethane) [61,62]. Ru carbene 4.5 immobilized
on SBA-15 via carboxylate linker produced a poly(COE) of Mw = 230,000 and a poly(NBE) of Mw =

2,200,000. The Ru content of the polymer was 16 ppm [42]. The same carbene complex 4.5 immobilized
in “linker-free“ mode was applied in ROMP of COE, yielding a polymer of Mw = 330,000 [51].
Large-pore supports were necessary for high polymer yields (Figure 4): the highest yield was obtained
over a hybrid catalyst using an SBA-15 with a pore size of 11.1 nm. Conversely, the premature end
of this polymerization over a catalyst on ordinary silica particles suggests that the narrow pores are
blocked by growing polymer chains.
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Figure 4. ROMP of cyclooctene over 4.5/SiO2 (stars), 4.5/MCM-41(squares), 4.5/SBA-15 d = 6.3 nm
(circles), 4.5/SBA-15 d = 11.1 nm (diamonds). Cyclohexane, T = 13 ◦C, molar ratio cyclooctene/Ru = 500,
c0

cyclooctene = 0.6 mol/L, numbers at individual experimental points give Mw of polymer in thousands.
Taken from Reference [51]©Elsevier. Reproduced with the permission of Elsevier.

In all cases, polymerization over hybrid catalysts provided polymers with a high polydispersity
index (Mw/Mn > 2), which is most likely associated with the slow reaction initiation and with the
intensive chain transfer. The main advantage of applying a hybrid catalyst was the easy separation of
polymers from catalysts and the preparation of polymers with a very low content of catalyst residues
without requiring additional purification. The catalysts, however, were not reused.

4. Heterogeneous Olefin Metathesis Catalysts Consisting of Mo and W Oxides on SBA-15

MoO3 and WO3 deposited on silica or silica–alumina supports are some of the earliest metathesis
catalysts. These relatively inexpensive catalysts are widely used, especially in large-scale petrochemical
processes. With the discovery of new advanced supports, such as zeolites and mesoporous molecular
sieves, molybdenum and tungsten oxides particularly attracted the attention of many research groups
in their efforts to increase the effectiveness of commercially important catalysts [9,63]. Several
studies showed that various mesoporous siliceous materials (MCM-41 [15,64,65], KIT-6 [66]), or
MWW-zeolites [65,67], and MFI-zeolites [65,67,68] were substantially more active than ordinary silica
or silica-alumina. However, the most commonly used support was SBA-15 for its large pores and high
BET areas. Table 2 outlines catalysts based on molybdenum and tungsten oxides supported on SBA-15.

Table 2. Survey of Mo and W oxide catalysts supported on SBA-15.

Number WOx,MoOx Species Source Method of Catalyst
Preparation

W, Mo Loading
Wt % Substrate Activity Reference

1 MoO3 thermal spreading 4–12 1-octene
TOF = 0.003
mol/molMo.s

at 40 ◦C
[15]

2 ammonium heptamolybdate
(NH4)6Mo7O24.4H2O ion exchange 10.1 - - [69]

3 ammonium heptamolybdate
(NH4)6Mo7O24.4H2O ion exchange 9.7 propene

TOF = 2.06
mmol/molMo.s

at 50 ◦C
[70]

4 ammonium heptamolybdate
(NH4)6Mo7O24.4H2O wet impregnation 3 1-butene 60% conversion

at 450 ◦C [71]

5 MoO2(acac)2
MoO2(gly)2

thermal spreading, wet
impregnation 4–12

1-octene,
1-dodecene,

1-tetradecene

TOF = 0.008
mol1-oct/molMo.s

at 40 ◦C
[72]

6 MoO3, MoO2(acac)2 thermal spreading 6 2-pentene 40% conversion
at 500 ◦C [65]
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Table 2. Cont.

Number WOx,MoOx Species Source Method of Catalyst
Preparation

W, Mo Loading
Wt % Substrate Activity Reference

7 ammonium heptamolybdate
(NH4)6Mo7O24.4H2O direct co- condensation 1.3–10.8 1-butene 65% conversion

at 450 ◦C [71]

8 ammonium heptamolybdate
(NH4)6Mo7O24.4H2O

wet impregnation on
alumina- modified

surface
ca. 6 1-butene 65% conversion

at 90 ◦C [73]

9 ammonium metatungstate
(NH4)6H2W12O40·xH2O wet impregnation 10 wt% of WO3

(8% of W) 2-butene 75% conversion
at 550 ◦C [64]

10 Sodium tungstate
NaWO4·2H2O direct co- condensation 5% and 9% of

WO3
2-butene 87% conversion

at 550 ◦C [64,74]

11 ammonium metatungstate
(NH4)6H2W12O40·xH2O wet impregnation 6 2-pentene

56.5%
conversion at

550 ◦C
[65]

12 Sodium tungstate
NaWO4·2H2O

direct co-
condensation Si/W=35 1-butene 92% conversion

at 350 ◦C [75,76]

acac = acetylacetonate, gly = glycolate, TOF = turnover frequency.

In principal, the catalysts were prepared using the following approaches: (a) thermal spreading,
(b) wet impregnation, (c) ion exchange, and (d) hydrothermal direct co-condensation. (a) Thermal
spreading is a very simple method consisting of heating a physical mixture of SBA-15 and the source
of Mo to 500 ◦C for several hours in air (Table 2, entries 1, 5, 6). (b) SBA-15 impregnation with an
appropriate amount of a water solution of Mo or W compound followed by drying and calcination is a
commonly used method for wet impregnation (Table 2, entries 4, 5, 8, 9, 11). (c) In the ion exchange
method (Table 2, entries 2, 3), SBA-15 is modified by a reaction with trimethoxysilylpropylamine
and then with HCl, followed by anion exchange with ammonium heptamolybdate in water. During
calcination, the organic parts are removed, and MoOx species remain on the supports. According to
the authors, this method provides a better control of the dispersion of Mo species on the surface than
wet impregnation [77]. In all previous catalysts given in (a), (b), and (c), the mesoporous structure
of the SBA-15 support was preserved. (d) The direct co-condensation method was used for the
synthesis of Mo- and W-containing silica materials by adding a metal oxide source to the mixture for
the hydrothermal preparation of SBA-15. Characterization using current physico-chemical methods
showed that the resulting materials had hexagonal channels and textural parameters similar to SBA-15
and Mo- or W-oxide species dispersed in the silica framework (Table 2, entries 7, 10, 12).

All these systems are typical “ill-defined” catalysts. The real catalytically active centres are surface
carbenes, which are formed “in situ” from their closest precursors on the surface and from substrate
molecules. The number of surface carbenes was estimated as 2% of the original metal content [70]. The
formation of the closest precursors of surface carbenes proceeds during the activation process (heating
the catalyst to approximately 500 ◦C, usually in an inert atmosphere). Under the same conditions,
catalysts are often regenerated. Isolated (-O-)2M(=O)2 species are usually considered the closest
precursors of surface carbenes and therefore perfect dispersion of the metal oxide along the surface is
an essential condition for catalyst activity [9,70,78]. In this regard, the high BET area of SBA-15 is an
important advantage.

The experimental work in this field was accompanied by a computational approach to the study
with the aim to describe the surface process on a molecular level and to help in understanding the role
of support [79]. In computational studies of Mo oxide species on silica surface DFT methods were
usually used and silica support was approximated by a structure similar to β-cristobalite [80–82].

Catalytic activity depends on the (a) characteristics of the support (its texture parameters and
acidity), (b) method of metal deposition and metal loading, (c) parameters of the activation process, (d)
quality of the substrate, and (e) reaction conditions. This high number of variables complicates any
comparison between activity data from different sources. Nevertheless, some general remarks can be
made. (i) The acidity of the supports presumably increases the activity of the catalyst. The beneficial
effect of Al modification of the SBA-15 (Table 2, entry 8) was ascribed to the formation of Brønsted
acid sites, which improve Mo dispersion. Conversely, acidity induces double bond isomerization
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and alkene oligomerization [67]. (ii) The dependence of activity on metal loading has a maximum:
at high metal concentrations, the dispersion is imperfect, and a part of the metal forms metal oxide
microcrystals, which do not contribute to the catalytic activity. The optimal metal loading usually
ranges from 4 wt% to 8 wt% of the metal [72]. (iii) Mo catalysts usually operate at lower temperatures
than W catalysts. In some cases (Table 2, entries 1, 3, 5, 8), Mo catalysts were active at temperatures
below 100 ◦C. (iv) In most cases, Mo and W oxide catalysts were used in the metathesis of light olefins.
Nevertheless, these catalysts were also active in the metathesis of longer chain alkenes C8–C14 (Table 2,
entries 1 and 5).

5. Comparison of SBA-Based Olefin Metathesis Catalyst with Catalysts using other Advanced
Supports (Mesoporous Molecular Sieves and Zeolites)

Systematic studies comparing the activity of catalysts based on SBA-15 with that of catalysts using
other mesoporous molecular sieves and/or zeolites under the same conditions are rather rare. Most
existing reports focus on Ru hybrid catalysts. Using phosphine linkers, Hoveyda–Grubbs-type carbene
4.8 was immobilized on several all-siliceous mesoporous molecular sieves differing in architecture
and pore size: (i) hexagonal channel-like MCM-41 (SBET = 972 m2/g, d = 4.0 nm), (ii) SBA-15
(SBET = 766 m2/g, d = 6.2 nm), (iii) cubic three-dimensional (3D) pore-like MCM-48 (SBET = 756
m2/g, d = 6.0 nm), and (iv) cubic cage-like SBA-16 (SBET = 796 m2/g, dentrance = 4.7 nm). In RCM
of N,N-diallyl-2,2,2-trifluoroacetamide (DAF) (Scheme 5), the initial reaction rate and/or conversion
achieved increased with the pore size of the catalyst support in the following order: MCM-41< SBA-16
< MCM-48 < SBA-15 (Figure 5). This suggests that the increased diffusion in the pores positively affects
the reaction rate [45]. Nevertheless, the reaction rate of the catalyst on SBA-15 is still significantly
lower than that of 4.8 used as a homogeneous catalyst. Thus, the advantages of hybrid catalysts are
limited to easy product separation and catalyst reusability.
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Figure 5. RCM of N,N-diallyl-2,2,2-trifluoroacetamide (DAF) with catalysts 4.8 (�), 4.8/SBA-15
( ), 4.8/MCM-48 (N), 4.8/SBA-16 (H), and 4.8/MCM-41 (�). 30 ◦C, Ru/DAF = 1:100, toluene, c0

(DAF) = 0.15 mol/L. Taken from Reference [45]©Elsevier. Reproduced with the permission of Elsevier.



Catalysts 2019, 9, 743 12 of 18

Similar effects of support pore size on the reaction rate were observed in metathesis of methyl
oleate (Scheme 6) over 4.6 immobilized by phosphine linkers on MCM-41 (d = 4.0), and two SBA-15
supports with different pore diameters (d = 6.9 and d = 11.1 ): the reaction rates (at inflexion points of
conversion curves) increased with the pore size (Figure 6) [43].
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Figure 7. Self-metathesis of methyl oleate over 4.9a /SBA-15 (■), 4.9a /MCM-22 (▲), 4.9a /MCM-56 

(▼), and 4.9a /MCM-36 (●). Toluene, 60 °C, molar ratio oleate/Ru = 250, cMeOl =0.15 mol/L. Taken from 

Reference [83]. 
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selectivity of the catalyst. In ADMET of 1,9-decadiene (Scheme 7) over 4.5 on MCM-41 (d = 4.0 nm), 

SBA-15 (d = 6.9), and SBA-15LP (d = 11.1 nm) [51], the composition of oligomeric products 

significantly varied with the catalyst support used. When increasing the pore diameter, the selectivity 

to dimer decreased, and the selectivity to higher oligomer increased. In ring-opening/ring-closing 

metathesis of cyclooctene (Scheme 8) over 4.4 linker-free immobilized on various supports, the 

catalysts on SBA-15 and MCM-41were the most active. However, they strongly differed in selectivity. 

Figure 6. Effect of catalyst pore size on conversion in the metathesis of methyl oleate. Toluene, 60 ◦C,
Ru/MeOl = 1:250, c0

MeOl = 0.15 mol/L, catalysts 4.6/SBA-15 (d = 6.9 nm) (H), 4.6/SBA-15LP (d = 11.1
nm) ( ), 4.6/MCM-41(4.0 nm) (�). Taken from Reference [43] © American Chemical Society (ACS).
Reproduced with the permission of ACS Publications.

Similar trends were also reported for linker-free immobilized Hoveyda–Grubbs carbene 4.5. In
RCM of (−)-β-citronellene and metathesis of 1-decene, the initial reaction rates increased with the pore
diameter in the following order: 4.5/MCM-41 (d = 4.0 nm) < 4.5/MCM-48 (d = 6.0 nm) < 4.5/SBA-15
(d = 6.9 nm) < 4.5/SBA-15LP (d =11.1 nm) [51]. The comparison between SBA-15 particles with the
zeolites MCM-22, MCM-36, and MCM-56 as supports for ammonium-tagged carbene 4.9a is given in
Reference [83] for metathesis of methyl oleate (Figure 7). The initial reaction rate of the catalyst based
on SBA-15 was higher than that of catalysts based on zeolitic supports.
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Figure 7. Self-metathesis of methyl oleate over 4.9a /SBA-15 (�), 4.9a /MCM-22 (N), 4.9a /MCM-56 (H),
and 4.9a /MCM-36 (�). Toluene, 60 ◦C, molar ratio oleate/Ru = 250, cMeOl =0.15 mol/L. Taken from
Reference [83].

The characteristics of the support significantly affected not only the activity but also the selectivity
of the catalyst. In ADMET of 1,9-decadiene (Scheme 7) over 4.5 on MCM-41 (d = 4.0 nm), SBA-15
(d = 6.9), and SBA-15LP (d = 11.1 nm) [51], the composition of oligomeric products significantly
varied with the catalyst support used. When increasing the pore diameter, the selectivity to dimer
decreased, and the selectivity to higher oligomer increased. In ring-opening/ring-closing metathesis of
cyclooctene (Scheme 8) over 4.4 linker-free immobilized on various supports, the catalysts on SBA-15
and MCM-41were the most active. However, they strongly differed in selectivity. In the case of SBA-15,
the polymer was formed with 45% selectivity. In turn, in the case of MCM-41, no polymer was formed,
and higher oligomers (from 6 to 20 monomeric units) prevailed with 65% selectivity [52].
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6. Conclusions and Perspectives 

SBA-15 is an excellent support for metathesis catalysts thanks to its thermal and chemical 

stability, well-defined structure, and large pores. Especially in hybrid catalysts prepared by 

immobilization of well-defined Mo and Ru carbenes, these properties have proved particularly useful. 

Although some Ru carbenes have also been immobilized on other materials such as Metal-Organic 

Framework MOF [84], graphene [85,86], glass, wool, and paper [87], the data reported so far show 

that SBA-15 is the most promising support for effective, stable, and widely applicable catalysts. 

In our review, we focused on olefin metathesis catalysts using SBA-15 as a support. New 

metathesis catalysts have been rapidly developed in recent years, and several modern Mo and Ru 

carbenes are currently available. However, these carbenes were not immobilized at all or were 

immobilized on current silica only. This remains a great challenge, especially the immobilization of 

new carbenes with high stereoselectivity [88] and even enantioselectivity [89] as homogeneous 
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enyne metathesis. For example, Buchmeiser has recently developed silica-supported NHC Mo 

alkylidyne complexes used in the metathesis of various 2-alkynes [90]. For development of these new 

hybrid catalysts highly effective in metathesis of a variety of substrates, SBA-15 can be a good choice. 
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In contrast to hybrid Ru catalysts, in which SBA-15 proved its superiority, in oxidic catalysts, i.e.,
supported MoO3 and WO3, MCM-41 usually gave rise to more active catalysts than SBA-15. An early
study on 1-octene metathesis over MoO3 on mesoporous molecular sieves [15] showed that the activity
of MoO3/MCM-41 was higher than that of MoO3/SBA-15, at least at loadings from 4 wt% to 8 wt% Mo.
In 2-pentene metathesis over both Mo and W oxides supported on MCM-41, higher conversions were
reached at 500 ◦C than over catalysts based on SBA-15 despite the larger pore diameter of SBA-15 [65].
Similarly to 2-butene metathesis, the conversion achieved with WO3/MCM-41 (8 wt% of W) was higher
than that with WO3/SBA-15 at all temperatures from 450 to 550 ◦C [64]. Such results were usually
explained as a consequence of the increased specific area and improved oxide dispersion on the surface
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of MCM-41. In turn, the metathesis of long chain alkenes (C12, C14) showed better results when using
catalysts on SBA-15 [72]. In this case, the advantage of a large pore size prevailed.

6. Conclusions and Perspectives

SBA-15 is an excellent support for metathesis catalysts thanks to its thermal and chemical stability,
well-defined structure, and large pores. Especially in hybrid catalysts prepared by immobilization of
well-defined Mo and Ru carbenes, these properties have proved particularly useful. Although some Ru
carbenes have also been immobilized on other materials such as Metal-Organic Framework MOF [84],
graphene [85,86], glass, wool, and paper [87], the data reported so far show that SBA-15 is the most
promising support for effective, stable, and widely applicable catalysts.

In our review, we focused on olefin metathesis catalysts using SBA-15 as a support. New metathesis
catalysts have been rapidly developed in recent years, and several modern Mo and Ru carbenes are
currently available. However, these carbenes were not immobilized at all or were immobilized on
current silica only. This remains a great challenge, especially the immobilization of new carbenes
with high stereoselectivity [88] and even enantioselectivity [89] as homogeneous catalysts. Another
major challenge is the development of heterogeneous catalysts for alkyne and enyne metathesis. For
example, Buchmeiser has recently developed silica-supported NHC Mo alkylidyne complexes used
in the metathesis of various 2-alkynes [90]. For development of these new hybrid catalysts highly
effective in metathesis of a variety of substrates, SBA-15 can be a good choice.

Author Contributions: Conceptualization H.B. and J.C., original draft preparation H.B., review and editing J.C.

Funding: JC acknowledges the Czech Science Foundation (Project ExPro 19-27551X) and OP VVV “Excellent
Research Teams”, project No. CZ.02.1.01/0.0/0.0/15_003/0000417 –CUCAM.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ivin, K.J.; Mol, J.C. Olefin Metathesis and Metathesis Polymerization; Academic Press: London, UK, 1997.
2. Grubbs, R.H.; Wenzel, A.G.; O´Leary, D.J.; Khosravi, E. (Eds.) Handbook of Metathesis; Wiley-VCH: Weinheim,

Germany, 2015.
3. Grela, K. (Ed.) Olefin metathesis: Theory and Practice; Wiley: Hoboken, NJ, USA, 2014.
4. Cossy, J.; Arseniyadis, S.; Meyer, C. Metathesis in Natural Product Synthesis; Wiley-VCH: Weinheim, Germany,

2010.
5. Grubbs, R.H. The role of the “Tebbe complex” in olefin metathesis. In Handbook of Metathesis; Grubbs, R.H.,

Ed.; Wiley-VCH: Weinheim, Germany, 2003; pp. 4–7.
6. Wallace, K.C.; Liu, A.H.; Dewan, J.C.; Schrock, R.R. Preparation and reactions of tantalum alkylidene

complexes containing bulky phenoxide or thiolate ligands. Controlling ring-opening metathesis
polymerization activity and mechanism through choice of anionic ligand. J. Am. Chem. Soc. 1988,
110, 4964–4977. [CrossRef]

7. Hérisson, P.J.; Chauvin, Y. Catalyse de transformation des oléfines par les complexes du tungstène. II.
Télomérisation des oléfines cycliques en présence d’oléfines acycliques. Die Makromol. Chem. 1971, 141,
161–176. [CrossRef]

8. Copéret, C.; Lefebvre, F.; Basset, J.-M. From ill-defined to well-defined W alkylidene complexes. In Handbook
of Metathesis; Grubbs, R.H., Ed.; Wiley-VCH: Weinheim, Germany, 2003; pp. 33–46.

9. Lwin, S.; Wachs, I.E. Olefin Metathesis by Supported Metal Oxide Catalysts. ACS Catal. 2014, 4, 2505–2520.
[CrossRef]

10. Schrock, R.R.; Hoveyda, A.H. Molybdenum and Tungsten Imido Alkylidene Complexes as Efficient
Olefin-Metathesis Catalysts. Angew. Chem. Int. Ed. 2003, 42, 4592–4633. [CrossRef]

11. Trnka, T.M.; Grubbs, R.H. The Development of L2X2RuCHR Olefin Metathesis Catalysts: An Organometallic
Success Story. Acc. Chem. Res. 2001, 34, 18–29. [CrossRef]

12. Melis, K.; De Vos, D.; Jacobs, P.; Verpoort, F. ROMP and RCM catalysed by (R3P)2Cl2Ru=CHPh immobilised
on a mesoporous support. J. Mol. Catal. A Chem. 2001, 169, 47–56. [CrossRef]

http://dx.doi.org/10.1021/ja00223a014
http://dx.doi.org/10.1002/macp.1971.021410112
http://dx.doi.org/10.1021/cs500528h
http://dx.doi.org/10.1002/anie.200300576
http://dx.doi.org/10.1021/ar000114f
http://dx.doi.org/10.1016/S1381-1169(00)00563-X


Catalysts 2019, 9, 743 15 of 18
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