

Supplementary Materials: Enzyme-Catalyzed Glycosylation of Curcumin and Its Analogues by Glycosyltransferases from *Bacillus subtilis* ATCC 6633

Yatian Cheng ^{1'} ⁺, Jian Zhang ^{2, +}, Yan Shao ², Yixiang Xu ², Haixia Ge ³, Boyang Yu ¹ and Weiwei Wang ^{1'} ^{*}

Figure S1. HPLC-QTOF-MS analysis of curcumin biotransformed by *B. subtilis* ATCC 6633 (The bold number is molecular ion peak [M-H]⁻ of curcumin metabolite).

Figure S2. Biotransformation of curcumin **1** (a) and its two analogues **2** (b) and **3** (c) by the purified *BsGT1*. The 10 μ g of purified *BsGT1* was incubated with 50 mM of Tris-HCl pH 8.0, 1.37 mM of UDP-Glc and 2 μ L substrates solution (10 mg of substrates dissolved in 500 μ L of DMSO, respectively) and maintained at 37 °C for 3 h. After the reaction, the mixtures were analyzed with high-performance liquid chromatography (HPLC). The abscissa aix represents Retention time in these figures. The HPLC operation conditions are described in Materials and Methods.

Figure S3. Biotransformation of curcumin **1** (a) and its two analogues **2** (b) and **3** (c) by the purified *BsGT2*. The 10 μ g of purified *BsGT2* was incubated with 50 mM of Tris-HCl pH 8.0, 1.37 mM of UDP-Glc and 2 μ L substrates solution (10 mg dissolved respectively in 500 μ L of DMSO) and maintained at 37 °C for 3 h. After the reaction, the mixtures were analyzed with HPLC. The abscissa aix represents Retention time in these figures. The HPLC operation conditions are described in Materials and Methods.

Compound	Curcumin 4'-O-β-D-glucoside		Compound 2a		Compound 3a	
Position	δc	$\Delta u (Lin Hz)$	δc	- Su (Lin Hz)	δc	- δu (Lip Hz)
	UC .	он () шт нz)	UC	OH (J III 11Z)	UC	ОН () ШТТЕ)
Aglycones molety						
1	141.10	7.63, d	136.55	7.59, s	143.57	7.66, d
2	124.33	6.79, d (15.8)	148.80		123.47	7.14, d
3	185.54		188.72		188.55	
4	102.24	6.00, s	148.06		123.86	7.12, d
5	184.23		136.55	7.58, s	142.57	7.65, d
6	123.93	6.76, d (15.8)	28.08	2.92,		
7	130.95	7.59, d	28.01	t, 4H		
8			22.66	1.76-1.73, q, 2H		
1′	130.95		135.50		129.18	
1″	128.48		133.53		126.77	
2′	112.68	7.36-7.35, d,2H	115.02	7.17-7.16, d, 2H	111.98	7.42-7.37, d,2H
2''	111.90		114.94		111.98	
3′	149.18		147.59		149.62	
3′′	142.10		147.30		148.42	
4'	151.28		124.44		149.98	
4''	150.50		124.44		149.08	
5′	117.51	6.89-6.88, d, 2H	115.70	6.87-6.86, d,2H	116.17	7.25, dd,2H
5″	116.62		115.12		115.53	
6'	123.43	6.74-6.71, dd, 2H	123.57	7.10-7.04, d 2H	124.69	6.83-6.84, d, 2H
6''	122.67		123.57		123.13	
MeO-3'	56.82	3.92, s, 6H	55.88	3.82, s, 6H	56.29	3.85, s,6H
MeO-3"	56.68		55.81		56.23	
Glucose moiety						
1	102.15	5.04, d (7.3)	99.95	5.26, d (4.1)	100.12	5.26, d (4.8)
2	78.42		77.24		77.58	
3	78.31		76.99		77.33	
4	75.04	3.52 - 4.50	73.29	3.28-5.08,	73.63	3.17-5.07,
5	71.61	6H, m	69.77	6H, m	70.11	6H, m
6	62.98		60.78		61.12	

Table S1. NMR spectroscopic data for Curcumin 4'-O-β-D-glucoside **1a**, Compound **2a** and **3a** (**1a** in acetone-*d6*, **2a** and **3a** in DMSO-*d6*; 500 MHz or 600 MHz).

Figure S4.¹³C NMR (**a**) and ¹H NMR (**b**) analysis of Curcumin 4'-O- β -D-glucoside **1a**. ¹H NMR and ¹³C NMR spectra were obtained on Bruker AV-600 spectrometer with acetone-*d*6 as the solvent and TMS as the internal standard.

Figure S5. ¹³C NMR (**a**) and ¹H NMR (**b**) analysis of monoglucoside **2a**. ¹H NMR and ¹³C NMR spectra were obtained on Bruker AV-600 spectrometer with DMSO-*d*6 as the solvent and TMS as the internal standard.

Figure S6. ¹³C NMR (**a**) and ¹H NMR (**b**) analysis of monoglucoside **3a**. ¹H NMR and ¹³C NMR spectra were obtained on Bruker AV-600 spectrometer with DMSO-*d*6 as the solvent and TMS as the internal standard.

Figure S7. Steady state kinetic analysis of *BsGT1*-catalyzed (**a**) and *BsGT2*-catalyzed (**b**) reactions towards curcumin. Kinetic parameters of *BsGT1* and *BsGT2* toward curcumin in varying concentrations (36 to 360 μ M) was conducted with purified *BsGT1* and *BsGT2*, 50 mM of Tris-HCl pH 8.0, 1.37 mM of UDP-Glc and 2 μ L substrate solution and reactions were maintained for 2 min, 4 min, 6 min, 8 min and 10 min. The samples were analysed by HPLC. The kinetic parameters were calculated by Michaelis–Menten equation using GraphPad Prism 5.01. The standard deviations are represented by error bars.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).