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Abstract: Photocatalytic CO2 reduction is emerging as an affordable route for abating its ever increasing
concentration. For commercial scale applications, many constraints are still required to be addressed.
A variety of research areas are explored, such as development of photocatalysts and photoreactors, reaction
parameters and conditions, to resolve these bottlenecks. In general, the photocatalyst performance is
mostly adjudged in terms of its ability to only produce hydrocarbon products, and other vital parameters
such as light source, reaction parameters, and type of photoreactors used are not normally given
appropriate attention. This makes a comprehensive comparison of photocatalytic performance quite
unrealistic. Hence, probing the photocatalytic performance in terms of apparent quantum yield (AQY)
with the consideration of certain process and experimental parameters is a more reasonable and prudent
approach. The present brief review portrays the importance and impact of aforementioned parameters in
the field of gas phase photocatalytic CO2 reduction.
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1. Introduction

Photocatalytic products, as a consequence of CO2 photoreduction, are industrially desirable with
the additional benefit of normalizing anthropogenic CO2 [1]. It is inevitable to develop and design
efficient photoreactors and optimize the photoreaction conditions in order to scale up the photocatalytic
process, all in congruence with synthesis of robust photocatalysts [2]. Although there have been
many studies pertaining to the synthesis of stable and efficient photocatalysts, only few studies are
dedicated upon reaction engineering so as to ascertain the optimum reaction conditions and photo
reactor design [3]. Both of these factors have significant influence on photocatalytic yield. For instance,
product yield will be different for photoreactors with batch and continuous flow operation under
different conditions of reaction parameters, feed type and concentration ratio, photocatalyst loadings,
and sources of irradiation [4,5]. In particular, irradiation sources and its mode of irradiation over the
photocatalyst have vital importance. As most of the frequently used photocatalysts are Ultraviolet
(UV) light active, irradiation from UV source as compared to solar light will significantly enhance
the product yield [6–8]. Further, solar concentrator technology with utilization of Fresnel lens for
photocatalyst irradiation leads to enhanced light intensity and photon flux, which in turn renders
a significant enhancement in yield of hydrocarbon products [8,9]. Although, most of the photocatalytic
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reactions are carried out at room temperature, concentrating solar light will increase the temperature
of the system, which will induce the thermal effect that alters the yield [6,7].

Another decisive factor is the exposed area of the photocatalyst to interact with the light
irradiations. Even for the different types of photocatalysts, when tested under similar conditions
and with yields reported per gram of photocatalyst, a comparison can be misleading because the
exposure area, per gram of the photocatalyst, to light will be different for powder catalysts and thin
films [10,11]. Moreover, irrespective of photoreaction under standard conditions, yields have been
reported in different customary units i.e., ppm cm−2 h−1, µmol g−1 h−1 and µmol cm−2 h−1 which
further complicates the comparison [12–15]. Thus, photocatalysts that are tested under such different
conditions and reporting consequent yield in different units lead to ambiguity for fair performance
comparison. It is inappropriate to compare the activities of the photocatalysts on the basis of their
intrinsic performance without considering effects of optimum conditions and reactor geometries
because of these implications.

The aforementioned bottlenecks strongly advocate the necessity for standardized protocols in
order to compare the results for photocatalytic CO2 reduction on equal grounds. Therefore, reporting
yields on the basis of photonic efficiency, which incorporates the radiation source and exposure area of
the photocatalyst, is an appealing approach [16]. This review specifically focuses on the parameters
that influence the actual yield of the photocatalytic CO2 reduction reactions and outlines the standard
testing practices for comparison and evaluation of performance. Moreover, we have calculated the
apparent quantum yield (AQY) of different research works, on the basis of data available, for comparing
the efficiencies of the photocatalysts.

2. Role of Organic Contaminations

Photocatalysts synthesis predominately involves organic materials as reaction reagents. The residues
of such organic materials are not easily removed, even with calcination at higher temperatures.
Photocatalytic CO2 reduction products mainly hydrocarbons, using such catalysts, originate concomitantly
from these organic residues and CO2 as well [1–3]. Thus, yields from such photocatalysts are overestimated
when compared to the actual yield originating from photocatalytic CO2 reduction. However, isotopic
labelling by 13CO2 is carried out to rule out the possible involvement of these organics in overall
photocatalytic yield. To understand the effects of organic contamination, Yang et al. performed Fourier
Transform Infrared Spectroscopy (FTIR) investigations for photocatalytic CO2 reduction over Cu(I)/TiO2

photocatalyst synthesized by two different ways: one with polyethylene glycol (PEG) and another
without PEG. The FTIR results showed that Cu(I)/TiO2 with PEG produces more CO (photocatalytic
reduction product) as compared to Cu(I)/TiO2 without PEG as shown in Figure 1. This CO originates
from organic contaminants even without the introduction of CO2. The possible mechanism of formation
of CO is represented by Equations (1) and (2),

CO2 + C→ 2CO (1)

H2O + C→ CO + H2 (2)

Calcination at high temperature and illumination under dry He/Ar is incapable of completely
wiping out these contaminants [4,5]. However, UV treatment in the presence of H2O vapors is propitious
in removing these contaminants [4]. Furthermore, they extended this study to elucidate the effects of
prolonged and repeated pretreatment, for four cycles (7 h each) under He/H2O, for abolishing organic
contaminants. In another study involving the synthesis of Ti-SBA-15 while using P123 (Pluronic acid) and
TEOS (Tetraethylorthosilicate) by calcining at 550 ◦C for 6 h, they revealed the generation of significant
amounts of hydrocarbon products (CH4, C2H6, C2H4) under He/H2O environment. However, the yield
of such photocatalytic products was significantly decreased after the first cycle but not diminished
completely as shown in Figure 2a–d [5]. Moreover, the control experiments for photocatalytic reduction
of CO with H2O exhibited transition in enhanced selectivity from C1 to C2. Thus, CO produced as
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a consequence of organic contamination, as shown in Equations (1) and (2) has profound effects over
yield and selectivity of photocatalytic CO2 reduction [5].
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(without catalyst). After every cycle reactor was evacuated with He/H2O, reproduced with permission 
from reference [5]. Copyright Elsevier, 2011.  

Figure 1. Fourier Transform Infrared Spectroscopy FTIR spectra of Cu(I)/TiO2 preloaded with 13CO2

after 80-min illumination. (a) fresh Cu(I)/TiO2 (synthesized with PEG), (b) Cu(I)/TiO2 cleaned by
illumination in humid air for 14 h, and (c) reference Cu(I)/TiO2 (synthesized without polyethylene glycol
(PEG)), reproduced with permission from reference [4]. Copyright American Chemical Society, 2010.
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Figure 2. (a–c) production of CH4, C2H6, and C2H4 over Ti-SBA-15 for four cycles, and (d) blank test
(without catalyst). After every cycle reactor was evacuated with He/H2O, reproduced with permission
from reference [5]. Copyright Elsevier, 2011.

In a similar study by Busser et al., they reported the adsorption of CO2 over the surface of the
photocatalyst during photodeposition of Cu/Cr upon Ga2O3 in the presence of CH3OH [1]. Their study
confirmed that the CO2 originates from photooxidation of methanol as shown in Equation (3).

Cu2+ + CH3OH + H2O→ Cu0 + CO2 + 6H+ (3)
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Thus, the assessment of possible contribution of these organic contaminations is indispensable for
gauging the actual yield.

3. Flow versus Batch Reactors

Photocatalysts that were tested under different reaction parameters and/or in different reactor
geometries can have variability in reaction rate, yield and selectivity [6,7]. Literature suggests variety
of reaction conditions and set-ups for photocatalytic CO2 reduction. Of these conditions, two type
of reaction modes are extensively applied in photocatalytic CO2 reduction: (i) flow reaction system
and (ii) batch reaction system [5,9–12]. However, the largely reported use of batch reactors obtains
smaller yields of the photocatalytic products. Thus, the activity of the photocatalysts, tested under
these different conditions, is imprecise to compare [2,10,13–17].

For batch reactors, it is difficult to understand and control the reaction mechanism and also
product composition as well. This is because the products generated in the photocatalytic reaction may
get re-adsorb over the surface of the photocatalysts or they can participate in side reactions to yield
different products [9,18]. The key limitations of the batch reactor system include an accumulation of
the products inside the reactor for a certain defined time which can lead to changes in the concentration
of reactants by photocatalytic reactions itself, re-adsorption of the intermediate species or products,
and the initiation of side reactions such as hydrogenation or re-oxidation to CO2. For instance, O2 that
is produced during photocatalytic reduction when adsorbed on the surface of the photocatalyst might
compete with CO2 for electron intake. Thus, batch reactors for CO2 photoreduction under various
experimental conditions make it very difficult to compare the photocatalytic performance and they are
not a suitable option for extended time and for industrial scale applications [12]. To resolve such issues,
Pipelzadeh et al. designed a pressure swing reactor for facilitated product (CO mainly) desorption.
In their configuration, the products were continuously recycled, thus periodic injection/evacuation of
gases generated turbulence, which enhanced the CO production yield to 30–80%, depending upon
flow rates as shown in Figure 3. Thus the continuous desorption of products is imperative which may
surmount mass transfer limitations and the deactivation problems of the photocatalysts [19].
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(PS, 5–3 bar) at flow rates of 50 and 100 mL min−1, reproduced with permission from reference [19].
Copyright Elsevier, 2017.

Contrary to batch reactors the re-adsorption of products and other aforementioned issues can
be curtailed in continuous flow reactor system [9]. Despite that, the yield reported is still inadequate
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since these types of systems only allow for short residence time of reactants i.e., restricting reactants to
make proper contact with photocatalysts. However, better performance can be obtained by optimizing
the reaction conditions and using robust photocatalysts [20,21]. In another study, a twin reactor,
as shown in Figure 4, was designed to avoid the possible re-oxidation of the photocatalytic products.
The photocatalytic CO2 reduction results revealed that the production of hydrogen and oxygen in
separate compartments and then use of as produced hydrogen in CO2 reduction increased the yield of
the products [22].
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As evident from Table 1, studies by In et al. clearly vindicate the efficacy of transition from batch to
continuous flow reactor along with the use of robust photocatalysts. Their well-designed flow reaction
system, as shown in Figure 5 consists of a mass flow controller (50 standard cm3, 20 ◦C, 1 atm) that
regulates the flow of gases, a water bubbler (diameter = 3 cm, length = 15 cm) to maintain the desired
humidity, a vacuum pump (pumping speed = 100 L min−1) to obtain high purity conditions by degassing
the ultra-sealed photoreactor under a vacuum of 3.5 × 10−3 torr, and a gas chromatography unit for
an automatic product intake and analysis (Shimadzu GC-2014, Restek Rt-Q Bond column, internal
diameter = 0.53 mm, length = 30 m). Moreover, they used a ceramic porous disc (pore size = 1~1.6 µm)
to support the catalyst and a quartz glass (diameter = 5 cm, thickness = 2 mm) to ensure efficient light
transfer and the sealing of the reactor. Their research group also optimized the photoreactor dimensions
to further improve the reaction process, (as shown in Figure 6a–c).
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Table 1. Summary of operating parameters and yields reported by In et al. for photocatalytic CO2 reduction.

Photocatalyst Synthesis
Method

Pre-Treatment
of Reactor Light Source Reducing

Agent Reaction Parameters Reactor Main Product AQY (%)

Degussa P25
standard titania

[23]
store-bought

purged with
high purity CO2
gas, at least five

times

UVP, UVGL-58
lamp with
λ = 365 nm;

1200 µW cm−2

H2O

50 mg catalyst on a 30 mm diam.
glass disk; 15.4 cm3 reactor; CO2
flowrate @ 10 cm3 min−1; 500 µL

sample gas extracted; ambient
temperature and pressure;

1 h irradiation

Batch reactor CH4 @ 0.021
µmol g−1 h−1 0.0021

CZTS−TiO2
hybrid

mesoporous
[24]

hot injection
and annealing

purged with
CO2 gas (1000

ppm in He) and
vacuum

100 W Xe solar
simulator with
an AM 1.5 filter;
100 mW cm−2

H2O

50 mg catalyst on a 30 mm diam.
glass disk; 15.4 cm3 reactor; CO2
flowrate @ 10 cm3 min−1; 500 µL

sample gas extracted; ambient
temperature and pressure;

1 h irradiation

Batch reactor CH4 @ 118.75
ppm g−1 h−1 0.0057

CZTS-ZnO
nanoparticles

[14]

hydrothermal
treatment

three times
purged with

CO2 gas (1000
ppm in He) and

vacuum

100 W Xe solar
simulator with
an AM 1.5 filter;
100 mW cm−2

H2O

50 mg catalyst on a 30 mm diam.
glass disk; 15.4 cm3 reactor; CO2
flowrate @ 10 cm3 min−1; 500 µL
sample gas extracted every 1 h;

ambient temperature and pressure;
1 h irradiation

Batch reactor CH4 @ 0.0954
µmol g−1 h−1 0.0128

CuxO−TiO2
mesoporous

p-type/n-type
heterojunction

material
[25]

thermal
decomposition
then calcination

purged with
CO2 gas (1000

ppm in He) and
vacuum

100 W Xe solar
simulator with
an AM 1.5 filter;
100 mW cm−2

H2O

50 mg catalyst on a 30 mm diam.
glass disk; 15.4 cm3 reactor; CO2
flowrate @ 10 cm3 min−1; 500 µL

sample gas extracted; ambient
temperature and pressure;

1 h irradiation

Batch reactor CH4 @ 221.63
ppm g−1 h−1 0.0177

Pt-x-RT
nanoparticles

[15]

magnesio-thermic
reduction

five times
purged with

CO2 gas (1000
ppm in He) and

vacuum

100 W Xe solar
simulator with
an AM 1.5 filter;
100 mW cm−2

H2O

70 mg catalyst on a 30 mm diam.
glass disk; 15.4 cm3 reactor; CO2
flowrate @ 10 cm3 min−1; 500 µL

sample gas extracted; ambient
temperature and pressure;

1 h irradiation

Batch reactor CH4 @ 1.13
µmol g−1 h−1 0.1234
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Table 1. Cont.

Photocatalyst Synthesis
Method

Pre-Treatment
of Reactor Light Source Reducing

Agent Reaction Parameters Reactor Main Product AQY (%)

C,N-TNT06
nanotubes

[26]

alkaline
hydrothermal
technique then

calcination

purged with
CO2 gas (1000

ppm in He) and
vacuum

100 W Xe solar
simulator with
an AM 1.5 filter;
100 mW cm−2

H2O

100 mg catalyst on a 30 mm diam.
glass disk; 15.4 cm3 reactor; CO2
flowrate @ 10 cm3 min−1; 500 µL

sample gas extracted; ambient
temperature and pressure;

1 h irradiation

Batch reactor CH4 @ 9.75
µmol g−1 h−1 1.0532

Pt-XG/RBT
nanoparticles

[8]

facile vacuum
treatment and

photodeposition

1 h purging with
moist CO2 gas @

40 mL min−1

100 W Xe solar
simulator with
an AM 1.5 filter;
100 mW cm−2

H2O

40 mg catalyst on a 4.9 cm2 porous
disk; 26.57 cm3 reactor; CO2 flowrate
@ 1 mL min−1; sample gas analyzed
every 30 min; ambient temperature

and pressure;
7 h irradiation

Continuous
flow reactor

CH4 @ 37.0
µmol g−1 h−1

(AQYCH4 = 5.248)
C2H6 @ 11.0
µmol g−1 h−1

(AQYC2H6 = 2.73)

7.978

Pt-BT-X
nanoparticles

[11]

facile
low-temperature

synthesis,
annealing and

photodeposition

1 h purging with
moist CO2 gas @

40 mL min−1

100 W Xe solar
simulator with
an AM 1.5 filter;
100 mW cm−2

H2O

40 mg catalyst on a 4.9 cm2 porous
disk; 26.57 cm3 reactor; CO2 flowrate
@ 1 mL min−1; sample gas analyzed
every 30 min; ambient temperature

and pressure;
6 h irradiation

Continuous
flow reactor

CH4 @ 80.35
µmol g−1 h−1 12.357

Cux%–Pty%–BT
nanoparticles

[27]

facile
low-temperature

synthesis,
annealing and

photodeposition

1 h purging with
moist CO2 gas @

40 cc min−1

100 W Xe solar
simulator with
an AM 1.5 filter;
100 mW cm−2

H2O

40 mg catalyst on a 2.5 cm diam.
porous disk; 26.57 cm3 reactor; CO2
flowrate @ 1 mL min−1; sample gas

analyzed every 30 min; ambient
temperature and pressure;

6 h irradiation

Continuous
flow reactor

CH4 @ 3.0
mmol g−1

(AQYCH4 = 79.14)
C2H6 @ 0.15

mmol g−1

(AQYC2H6 = 6.92)

86
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4. Reactor Geometry and Catalyst Support

Even the distribution of light over the surface of the photocatalyst is essential in reaping its full
potential. In most of the reactor geometries where light impinges over the surface of the photocatalyst,
from center or side, a shadow is casted on the opposite side. Consequently, a major portion of
the photocatalyst is not activated. The contact of the light and photocatalyst might be enhanced
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by fabricating effective reactor geometries to achieve a uniform distribution of light and better
photocatalyst dispersion [6,28,29]. Higher dispersion of the photocatalyst results in enhanced contact
with reactants, better mass transfer and guarantees the maximum utilization of the light which all
eventually translate to higher quantum yield [30]. To achieve this, a variety of approaches are reported
in literature including the utilization of different reactor geometries and catalyst supports, as discussed
in detail below.

4.1. Monolith Reactor

Tahir et al. studied the effect of photocatalyst dispersion by comparing performance of TiO2

coated micro channel monolith and cell type support (dispersed as single layer over stainless steel cell).
Their study revealed a significant enhancement in CO production by TiO2 coated monolith as shown
in Figure 7. This increment was mainly attributed to a broader exposed photocatalyst surface available
for photocatalytic reaction [6]. In their study with gold-indium TiO2 dispersed over monolith, higher
yields were reported particularly formation of C2 and C3 products. This enhancement was linked
to effective utilization of photons owing to larger illuminated area of monolith [31]. A similar result
of enhancement in CO2 reduction to CH4 was reported for montmorillonite modified TiO2 that was
loaded over monolith as compared to the bare one [32].However, their performance is still restricted
by limited light penetration despite the high flow rates, minimal pressure drop, and large surface
area [33–35].
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4.2. Fiber Optic Reactor

Fiber optic reactors are advantageous when compared to packed bed reactors owing to a better
dispersion of photocatalyst and the spreading of light on large surface area [36]. Nguyen et al. compared
the yield of the photocatalytic CO2 reduction carried over the photocatalyst coated on optical fiber and
glass plate. Their study demonstrated ~15.2 time enhancement in CH4 and 11.6 times in C2H4 yield,
for same amount of photocatalysts. This may be attributed to the synergistic effects of catalyst dispersion
and effective light utilization [29]. Wang et al. also carried out CO2 photoreduction while using fiber
optic reactor and they attributed the enhancement in yield to the gradual and uniform distribution of
light upon irradiation [37]. Although optical fibers accompany the features of catalyst support and
effective light distribution, they are saddled with the constraints of limited utilization of reactor volume
and the shorter transportation distance of light from the tip of incidence. They occupy 20–30% of reactor
volume, but a limited catalyst coated area restricts the effective use of incident light [33,35,37,38].
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4.3. Monolith Fiber Optic Combined Reactor

Ola et al. combined the mutual effects of higher surface area of monolith and effective light
distribution of fiber optics to fabricate internally illuminated monolith reactor, and compared the CO2

reduction performance of this system with slurry reactor. It was found that internal illumination,
by optical fibers, of the monolith reactor enhanced quantum efficiency to 23 times owing to the higher
surface area of monolith and even the distribution of light by optical fibers [39]. Liou et al. inserted carved
polymethylmethacrylate (PMMA) made optical fibers into NiO/InTaO4 coated monolith (honey comb
structure) as shown in Figure 8. This reactor when applied for photocatalytic CO2 reduction enhanced
the yield of products (methanol and acetaldehyde). An enhancement in the yield can be attributed to
increased surface area, higher photocatalyst loading and effective utilization of the light [35].
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5. Light Irradiations

Light intensity and the type of irradiations are the most influential parameters for photocatalytic
CO2 reduction [40]. Thus, to spur the solar chemical/fuel yielding reactions an effective contact,
particularly at the microscopic level, between light and catalyst is imperative. As reported in the
literature, a majority of the photocatalysts work efficiently in the UV range thus they are capable of
only harnessing a limited range of solar spectrum [41]. To resolve this bottleneck, the modification
of semiconductor is carried out for harvesting a wide range of solar spectrum. Other than that, light
can be concentrated and channeled to obtain higher photon flux of irradiations [42]. Higher photon
flux is not only conducive in propelling apparent quantum efficiency (AQE) but it also shores up
the selectivity of multi-electron photoreactions to yield ethane and other long chain solar products.
These claims were further vindicated by a study by Nagpal et al. while using TiO2 and CuInS (copper
indium sulfide) nanocrystals as the photocatalyst. An enhanced AQY of 4.3% with a higher ethane
selectivity of 70% was observed under concentrated sunlight owing to availability of a higher number
of electrons [43]. Han et al. performed CO2 photoreduction by concentrating light over TiO2 and
Pt/TiO2. The authors performed CO2 photoreduction experiments with different concentrating ratio
(CR), which is defined as the ratio of concentrated light flux (amount of energy per unit time per unit
area) on the photocatalyst surface to the ambient flux (under non-concentrated conditions). The light
irradiation is concentrated and varied by changing the distance between the Fresnel lens (placed in
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between light source and photocatalyst) and photocatalyst surface, resulting in different light intensities
with different light concentrated focal areas. Their study confirmed that the optimum concentration
ratio (CR) significantly increased the AQY by 4.0 and 3.17 times for TiO2 and Pt/TiO2 respectively [42].
Similar results were reported by Li et al. where photocatalytic CH4 yield was improved by 29.5 and
6.2 times under optimum CR for untreated and pre-treated samples, respectively [44]. In their other
study, they reported that CH4 yield, for photocatalytic CO2 reduction, over g-C3N4 at CR10 (10 times
concentrating the light) was enhanced by factors of ~11.9 and ~16.0 for untreated and pre-treated
samples respectively [45]. Tan et al. also reported enhanced AQY up to optimum light intensity but
beyond that, it decreases as the number of photons exceeds the requirement for photocatalytic reaction.
They also reported that reaction yields were significantly higher for AM 1.5 filter as compared to the
UV cut-off filter which could be attributed to higher photon energy for UV leading to the generation of
more photogenerated charges [46]. Based on these studies it can be gauged that better contact of light
with photocatalyst under optimally concentrated light may lead to an exceptional yield increase.

6. Temperature

Concentrating solar light also increases the temperature depending upon the CR, due to long
wavelength irradiations [42,47,48]. Photocatalytic CO2 reduction at an elevated temperatures is
promising as it overcomes the thermal barriers that lead to slow reaction rate and marginal yields [48].
The efficacy of temperature rise for photoreaction can be underscored on the basis of enhanced effective
collisions among photogenerated charges and reactants that directly relate to the reaction rate [30,46].
Furthermore, elevated temperature also facilitates the desorption of the products providing the way for
the adsorption of the CO2 on vacant sites leading to increased reaction rate [49,50]. Wang et al. found
that production rate almost doubled when the temperature was increased from 25 ◦C to 75 ◦C [37].
Desorption of methanol from the photocatalyst surface increases due to increase in temperature, thus
providing more active sites for CO2 photoreduction. The AQY in turn also increased due to more
efficient utilization of the incident light and enhanced CO2 adsorption as result of methanol desorption.
However, the reaction temperature should not increase too much as it might also desorb the CO2

thus decelerating the photoreduction process. Similarly, Guan et al. attained a temperature up to
590 K for photocatalytic reduction of CO2 and they found temperature rise to be an effective factor for
enhancing the yield of solar products [47]. They suggested that such an enhancement was due to the
increased collision frequency of photons and diffusion rate of CO2 towards the surface active sites.
Hence the thermal energy along with light irradiation can significantly improve the solar products
yield by efficiently overcoming the kinetic barrier for CO2 photoreduction reactions. In another study
Alxneit et al. revealed the rate of CH4 formation via photocatalytic CO2 reduction increase when the
temperature was increased from 25 to 200 ◦C. Upon further increasing the temperature, the reaction
rate decreased due to desorption of the reactants. However, with the aforementioned temperature
range, the reaction rate increases with increasing temperature which indicates the importance of
thermal step tending to decrease the surface coverage from intermediate species and products. These
results clearly suggest that temperature dependence is one of the pivotal factors that influences the
photocatalytic reaction rate and thereof the product yield [48]. In another study, Tahir et al. also
confirmed the efficacy of temperature rise in photocatalytic CO2 reduction for enhanced CO production
over In/TiO2 as shown in the Figure 9 [6]. Such an observation was again explained on the basis of
adsorption-desorption phenomenon. Upon increasing the reaction temperature, the mass transfer of
CO2 on the active sites is increased, which leads to increased CO2 adsorption, resulting in increased
reaction rates. They also observed the raising temperature also transformed the product selectivity
towards longer chain hydrocarbons. Similarly Zhang et al. reported, when temperature increased
from 323 K to 343 K, the yield of the photocatalytic reaction became twice [50]. They also suggested
that enhancement in the product yield is due to desorption of products on the photocatalyst surface,
providing more chances of collisions between the excited states and adsorbed reactants. Although
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raising temperature is an effective strategy to obtain higher yields, different studies suggest that there
is always an optimum temperature range to get the best AQY [42].Catalysts 2019, 9, x FOR PEER REVIEW 12 of 27 
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7. Effect of H2O/CO2 Feed Ratio

An established mixture of water vapors and CO2 gas (H2O/CO2) is considered to be a cost effective
and invulnerable feed for photocatalytic reduction into chemicals/fuels. The feed ratio is another
crucial factor with a profound impact over reaction rate and product yield. In addition, the affinity of
the photocatalyst for H2O/CO2 may also lead to well tuning of the product selectivity. Yamashita et al.
found highly selective methanol formation over the surface of hydrophilic Ti-Beta(OH) zeolites when
compared to conventional Ti-Beta(F) zeolites [51]. Tahir et al. studied the effect of varying H2O/CO2

ratio by manipulating the CO2 flow rates. In their study they reported that at lower concentration of
CO2, water could adsorb over the photocatalyst to react efficiently and give better yields. However,
at higher CO2 concentrations, H2O has to compete for adsorption which may influence the yield.
The same authors also studied the variation in H2O/CO2 ratio and its influence on the yield [6].
Zhang et al. also reported similar results mentioning enhancement in yield with increasing H2O/CO2

ratio [50]. In another study by Tahir et al., which reports enhancement in CH4 yield with increasing
H2O/CO2 ratio. This is attributed to adsorption of excess water molecules over the photocatalyst and
resulting in incremented ability to reduce CO2. Further increase in CO2 decelerated the yield, shown in
Figure 10, due to competition between water and CO2 molecules on the photocatalyst active sites [30].
As the H2O/CO2 feed ratio is increased more water molecules will cover the photocatalyst surface
due to hydrophilic nature of the material, which competes with the CO2 molecules to get adsorb
on the photocatalyst active sites during the photoreduction process. Therefore, an optimum feed
ratio is required for moderate adsorption of both water and CO2 molecules which in turn lead to the
maximum CH4 yield. The importance of optimum H2O/CO2 ratio was further vindicated by Wu et al.
in which they reported optimum H2O/CO2 ratio is essential for enhanced yield of methanol [52].
The investigation of Tan et al. also stressed the need for adsorption of optimum number of molecules
of CO2 and H2O over the catalyst surface to obtain enhanced yields. Moreover it is important to note
that, enhanced adsorption of any reactant will certainly hinder the adsorption of others [46]. Thus,
a tradeoff should exist between CO2 and H2O to mitigate their competitive adsorption over the surface



Catalysts 2019, 9, 727 13 of 26

of the photocatalyst. Thus, due to rivalry in adsorption, an optimum feed ratio is indispensable to get
improved yield.Catalysts 2019, 9, x FOR PEER REVIEW 13 of 27 
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8. Other Factors

In addition to the above mentioned parameters, there exists several other parameters which
also alters the photocatalytic yield. A reported work investigated the performance of photocatalyst
in cell type and monolith photoreactor which revealed that broader exposed area of photocatalyst,
as for monolith catalyst support, improves the yield (shown in Figure 11). This can be related to
enhancement in the illumination area of photocatalyst i.e., exposure of same weight of the catalyst
in a larger area [29,30,39,42,53]. In addition to the conditions of high purity, ultra-high vacuum also
ensures the absence of external impurities [9]. Moreover, by improving the surface properties like CO2

adsorption capability, photocatalytic yield can also be improved [44,45,54–58].

Catalysts 2019, 9, x FOR PEER REVIEW 13 of 27 

 

 
Figure 10. Effect of H2O/CO2 ratio over CH4 yield, reproduced with permission from reference [30]. 
Copyright Elsevier, 2013. 

8. Other Factors 

In addition to the above mentioned parameters, there exists several other parameters which also 
alters the photocatalytic yield. A reported work investigated the performance of photocatalyst in cell 
type and monolith photoreactor which revealed that broader exposed area of photocatalyst, as for 
monolith catalyst support, improves the yield (shown in Figure 11). This can be related to 
enhancement in the illumination area of photocatalyst i.e., exposure of same weight of the catalyst in 
a larger area [29,30,39,42,53]. In addition to the conditions of high purity, ultra-high vacuum also 
ensures the absence of external impurities [9]. Moreover, by improving the surface properties like 
CO2 adsorption capability, photocatalytic yield can also be improved [44,45,54–58]. 

 
Figure 11. Performance evaluation of cell type and monolith batch/continuous photoreactor for CO2 
photoreduction, reproduced with permission from reference [53]. Copyright Elsevier, 2015. 

  

Figure 11. Performance evaluation of cell type and monolith batch/continuous photoreactor for CO2

photoreduction, reproduced with permission from reference [53]. Copyright Elsevier, 2015.



Catalysts 2019, 9, 727 14 of 26

9. Benchmarking for Performance Evaluation

Based on the above discussion it can be well acknowledged that reactor geometries, reaction
parameters, light intensity and wavelength are important parameters that play a pivotal role to
control the product yields and selectivity. Thus photocatalysts that were tested under different
conditions cannot be compared on equal grounds [42]. Like, Tan et al. reported that a maximum
yield of 3.14 µmol g−1 was obtained at a light intensity of 177.2 mW cm−2 but in terms of AQY, the
performance is better at 81 mW cm−2, as shown in Figure 12, for a given amount of photocatalyst [46].
This clearly reveals that although the photocatalyst is producing maximum yield at 177.2 mW cm−2

it still underperforms in capitalizing photogenerated charges. Thus, reporting performance of the
photocatalytic reaction only on the basis of intrinsic capability of photocatalyst to yield the products
is not a rationalized approach. On the contrary, evaluating the performance of the photocatalyst in
terms of AQY, which incorporates reactor area, incident and harvested light, can be a more adequate
approach [59]. For meaningful performance comparison, AQYs of the different photocatalysts are
calculated and presented in Tables 1–3, using Equations (4)–(8) [11,59].

AQY (%) =
number of reacted electrons

effective number of incident photons
× 100%, (4)

number of reacted electrons =

[
mole of product

produced in time, t

]
×


number of electrons
required to produce

1 mol of product

× NA, (5)

effective number of incident photons =
light absorbed by the photocatalyst

average photon energy
× t, (6)

light absorbed by the photocatalyst = H × A, (7)

average photon energy =
hc
λ

, (8)

where H is the apparent light input (W m−2), A is the geometric irradiation area (m2), h is Planck’s
constant (6.626 × 10−34 J·s), c is speed of light (3 × 108 m s−1), λ is the average wavelength of light
source (nm) and NA is Avogadro’s number (6.022× 1023 atoms mol−1).
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Table 2. Summary of operating parameters and yields used by other research works for photocatalytic CO2 reduction using Batch reactor.

Photocatalyst Synthesis
Method Pre-Treatment of Reactor Light Source Reducing Agent Reaction Parameters Reactor Main Product AQY (%)

Bi2WO6/Au/CdS
Z-scheme

[61]

bath deposition
method

vacuum-treated several times,
and then filled with high purity

CO2 gas

300 W Xe lamp
(λ > 400 nm) 0.4 mL of DI water

100 mg catalyst; 230 mL
reactor; 1 mL sample gas;

ambient pressure;
8 h irradiation

Batch reactor CH4 @ ~0.75
µmol g−1 h−1 0.012 b

rGO-CuO
hybrid structure

[62]

covalent
grafting

purged with nitrogen gas for
15 min then purged with CO2
for 30 min under continuous

stirring

20 W white cold LED
flood light

(200 < λ < 700 nm); 85
W m−2

mixture of DMF
(45 mL) and H2O

(5 mL)

100 mg catalyst; 100 mL
reactor; 20 µL total sample

gas analyzed;
24 h irradiation

Batch reactor CH3OH @ 1282
µmol g−1 0.013 b,c

Cd1−xZnxS
solid solution

[63]

two-step
self-templated

synthesis

purged with argon for 1 h, then
2 mL of deionized water was

injected, and purged with
ultra-pure CO2 for 30 min

100 W LED plate with
collimating lens; visible
light (λ = 450 nm); 285

mW cm−2

2 mL of DI water

45 mg catalyst; 130 cm3

reactor; 250 µL sample gas
extracted every 1 h;

1 atm; 25 ◦C;
5 h irradiation

Batch reactor

CO @ 2.90
µmol g−1 h−1

(AQYCO = 0.016)
CH4 @ 0.22 µmol g−1 h−1

(AQYCH4 = 0.005)

0.02 a

Co-ZIF-9/TiO2
nanostructure

[64]

in situ growth
method

purged with high-purity CO2
gas

300 W Xe lamp (200 < λ

< 900 nm); 494 mW
cm−2

3 mL DI water

50 mg catalyst; 390 mL
reactor; 0.5 mL sample gas

extracted; 70 kPa;
10 h irradiation

Batch reactor
with gas

circulation
system

CO @ 17.58
µmol g−1 h−1 0.053 a

Pt/TiO2
mesoporous

structure
[65]

soft-template
method

purged with high purity CO2
bubbled through DI water for

more than 1 h

350 W Xe-lamp with
420 nm cutoff filter;

UV light @
34.8 mW cm−2

H2O

100 mg catalyst; 159 mL
tubular reactor (length: 28
cm, Ø: 3 cm); 60 ± 2 ◦C; 2 h

irradiation

Batch reactor CH4 @ 5.7
µmol g−1 0.064 a

In2O3–C3N4
hybrid structure

[66]

simple
solvothermal

method

purged with high-purity CO2
gas

500 W
Xenon lamp;

1200 mW cm−2

0.1 mL ultrapure
H2O

20 mg catalyst; 90 mL reactor;
4 h irradiation Batch reactor CH4 @ 159.2 ppm 0.082 a

Pd/(10 wt.%
LDH/C3N4)

hybrid structure
[67]

electrostatic
interaction

introduction of 200 torr CO2
into the system

500 W Hg (Xe) lamp
without filter 100 mL H2O

200 mg catalyst; 200 µL
sample gas extracted; AQY @
λ = 420 nm; 200 torr; 72 h

irradiation

Batch reactor CH4 @ 6.5 µmol 0.093 b

In/TiO2-monolith
[6]

sol–gel single
step method

continuous passing of CO2, He
and H2O mixture through the

reactor for about 1 h

200 W Hg lamp for UV
irradiations

(λ < 252 nm);
150 mW cm−2

H2O

50 mg catalyst; 150 cm3

reactor; 1000 µL sample gas
extracted; PCO2 = 0.20 bar;

PH2O = 0.074 bar;
10 h irradiation

Batch reactor CO @ 962
µmol g−1 h−1 0.10 b

TiO2−x/CoOxhybrid
structure

[68]
(own method) blown with CO2 for 20 min 150 W UV lamp;

20 mW cm−2 2 mL of DI water

50 mg catalyst;
100 mL reactor; 1.01 bar;

room temperature;
4 h irradiation

Batch reactor

CO @ 1.247
µmol g−1 h−1

(AQYCO = 0.0817)
CH4 @ 0.0903
µmol g−1 h−1

(AQYCH4 = 0.0237)

0.105 a
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Table 2. Cont.

Photocatalyst Synthesis
Method Pre-Treatment of Reactor Light Source Reducing Agent Reaction Parameters Reactor Main Product AQY (%)

Ag-Au/TiO2
nanowires

[69]

facile
hydrothermal

synthesis

compressed CO2 and H2 were
continuously passed through

the reactor

35 W HID Xe lamp;
20 mW cm−2 H2

10 mg catalyst; 108 cm3

reactor; 0.20 bar;
4 h irradiation

Batch reactor CO @ 1813
µmol g−1 h−1 0.1108 b

LaPO4–Pt
nanorods

[70]

hydrothermal
method and

photo
deposition

reactor was evacuated and
filled with CO2 for 1 h with

stirring

125 W high-pressure
Hg lamp

(λ < 365 nm)
70 mL H2O

50 mg catalyst; 200 mL
reactor; 1 atm; 20 ◦C;

4 h irradiation
Batch reactor CH4 @ 0.62 µmol g−1 0.15 b

Zn2GeO4
micro/mesoporous

[71]

simple ion
exchange

vacuum-pumped and washed
with high purity CO2 gas

300 W Xe arc lamp
(λ = 251 ± 16 nm) 0.5 mL DI water

200 mg catalyst; 360 mL
reactor; 0.5 mL sample gas

extracted; ambient pressure;
12 h irradiation

Batch reactor CH4 @ 9.5 ppm g−1 h−1 0.20 b

ZnIn2S4
one-unit-cell
atomic layers

[72]

(own method)
vacuum-treated three times,

then pumped with high-purity
CO2

PLS-SXE300/
300 UV Xe lamp;

100 mW cm−2
2 mL DI water

100 mg catalyst;
atmospheric pressure; 298 ±

0.2 K; 1 h irradiation
Batch reactor CO @ 33.2

µmol g−1 h−1 0.23 b

Cu2O/x% RGO
composites

[73]

microwave-assisted
hydrothermal

reaction
CO2 purged 150 W Xe lamp;

540 µW cm−2 3 mL DI water

500 mg catalyst; 120 mL
reactor; sample gas extracted

every 30 min;
20 h irradiation

Batch reactor CO @ 50
ppm g−1 h−1 0.34 b

Pt/MgAl-LDO/TiO2
hybrid structure

[74]

in-situ
deposition,

calcination and
photo

deposition

degassed for 30 min, and then
bubbled with CO2 till the

pressure reaches 1 atm

300 W Xe lamp;
1.1 mW cm2 H2O

20 mg catalyst; AQY @
λ = 365 nm; 1 atm; 20 ◦C; 8 h

irradiation
Batch reactor CH4 @

0.11 µmol 0.35 b,c

LDH/RGO/CN
hybrid structure

[75]

hydrothermal
synthesis and in

situ loading

vacuum-treated several times,
and then flowed with high

purity CO2 gas

300 W
Xe arc lamp;
1.8 mW cm−2

4 mL DI water

50 mg catalyst; 420 mL
reactor; 1 mL sample gas

extracted; AQY @ λ = 385 nm;
ambient pressure; 5 h

irradiation

Batch reactor CO @ 10.11
µmol g−1 h−1 0.45 b

Cu2O/WO3
nanosheets

[76]

modified
method

vacuum treated, and then
purged several times with high

purity CO2 gas

300 W Xenon arc lamp
with a UV cutoff filter

(λ > 400 nm)
H2O 85 mg catalyst;

18 h irradiation Batch reactor CO @ 0.56
µmol g−1 h−1 0.503 b

TiO2
microsphere

[77]

sol−gel
approach

introduction of pressurized
CO2

@ (50 psi)

40 W Hg UV lamp
(λ = 254 nm);
20 mW cm−2

100 µL H2O

200 mg catalyst; 39 mm
diameter and 9 mm depth
reactor; 10 mL sample gas

extracted; 50 psi;
24 h irradiation

Batch reactor

CO @ 0.56
µmol g−1 h−1

(AQYCO = 0.204)
CH4 @ 0.94
µmol g−1 h−1

(AQYCH4 = 0.34)

0.54 b,c
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Table 2. Cont.

Photocatalyst Synthesis
Method Pre-Treatment of Reactor Light Source Reducing Agent Reaction Parameters Reactor Main Product AQY (%)

RGO-CdS
nanorod

composites
[78]

microwave
hydrothermal

route

degassed with nitrogen for 30
min

300 W Xe arc lamp with
a UV-cutoff filter (λ ≥

420 nm);
150 mW cm−2

10 mL distilled
water

100 mg catalyst; 200 mL
reactor; 1 mL sample gas

extracted every 1 h;
atmospheric pressure and

ambient temperature;
3 h irradiation

Batch reactor CH4 @ 2.51
µmol g−1 h−1 0.80 b

HCP-TiO2-FG
composite

[79]
in situ growth -

300 W Xe lamp
(λ ≥ 420 nm);
433 mW cm−2

H2O
20 mg catalyst; standard

atmospheric pressure;
5 h irradiation

Batch reactor

CH4 @ 27.62
µmol g−1 h−1

(AQYCH4 = 1.14)
CO @ 21.63
µmol g−1 h−1

(AQYCO = 0.2227)

1.36 a

Co/Palheterostructure
[80]

in situ
electrostatic
adsorption
deposition

process

filled with high purity CO2 gas 300 W Xe lamp
5 mL

acetonitrile/H2O
(4:1)

9 mg photosensitizer + 1 mg
co-catalyst + 1 mL TEOA; 80
mL reactor; AQY @ λ = 420

nm; 1 atm; 25 ◦C; 6 h
irradiation

Batch reactor CO @ ~86 µmol 1.38 b

CuO−TiO2
hollow

microspheres
[81]

one-pot
template-free

synthesis

introduction of pressurized
CO2

@ (50 psi)

40 W Hg UV lamp(λ =
254 nm);

20 mW cm−2
200 µL H2O

10 mg catalyst; reactor
diameter of 39 mm and a

depth of 9 mm; 50 psi;
24 h irradiation

Batch reactor

CO @ 14.5
µmol g−1 h−1

(AQYCO = 1.285)
CH4 @ 2.1

µmol g−1 h−1

(AQYCH4 = 0.747)

2.03 b

Pt-TiO2
spheres

[77]

microwave-assisted
solvothermal

method

introduction of pressurized
CO2

@ (50 psi)

40 W Hg UV lamp
(λ = 254 nm);
20 mW cm−2

100 µL H2O

200 mg catalyst;
39 mm diameter and 9 mm

depth reactor; 10 mL sample
gas extracted; 50 psi; 24 h

irradiation

Batch reactor

CO @ 18.9
µmol g−1 h−1

(AQYCO = 1.632)
CH4 @ 3.6

µmol g−1 h−1

(AQYCH4 = 1.315)

2.95 b,c

PdxCu1-TiO2
hybrid structures

[82]
in situ growth filled with

0.2 MPa CO2 for 60 min

300 W Xe lamp
(λ < 400 nm);
2 mW cm−2

H2O

5 mg of TiO2 + 0.01 mmol of
metal atoms for catalyst; 100

mL reactor; 0.2 MPa;
2 h irradiation

Batch reactor CH4 @ 19.6
µmol g−1 h−1 12.53 a

In/TiO2
nanoparticles

[60]

sol–gel single
step method

purged with CO2 and He for
an hour

500 W mercury flash
lamp

(λ = 365 nm);
40 mW cm−2

H2O

0.25 mg catalyst; 106 cm3

reactor; 1000 µL sample gas
extracted; 0.20 bars, 373 K; 8

h irradiation

Batch reactor

CH4 @ 244
µmol g−1 h−1

(AQYCH4 = 42.39)
CO @ 81

µmol g−1 h−1

(AQYCO = 3.52)

45.91 a
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Table 2. Cont.

Photocatalyst Synthesis
Method Pre-Treatment of Reactor Light Source Reducing Agent Reaction Parameters Reactor Main Product AQY (%)

ZnV2O4
microspheres

[83]

one-step
hydrothermal

process

purged with CO2 gas carrying
H2O for 30 min

35 W HID
Xe lamp;

20 mW cm−2
H2O

100 mg catalyst; CO2
flowrate @ 20 mL min−1; 108
cm3 reactor; 0.20 bar; 100 ◦C;

4 h irradiation

Batch reactor

CO @ 485
µmol g−1 h−1

(AQYCO = 31.92)
CH3OH @ 100
µmol g−1 h−1

(AQYCH3OH = 19.75)

51.67 a

NiO/InTaO4
monolith coated

structure
[35]

impregnation
method and

sol-gel method

purged overnight using a flow
of He then switched to pure
CO2 with saturated water

vapor for 1 h

300 W Xe arc lamp with
AM 1.5 filter;
100 mW cm−2

H2O
88.7 mg catalyst; 216 cm3

reactor; 1 bar; 70 ◦C;
2 h irradiation

-

CH3OH @ 0.16
µmol g−1 h−1

(AQYCH3OH = 0.012)
CH3CHO @ 0.3
µmol g−1 h−1

(AQYCH3CHO = 0.058)

0.07 b

MAT
nanofibers

[84]
(own method) blown with nitrogen for 30 min 300 W simulated solar

Xe arc lamp H2O

200 mL reactor; 1 mL sample
gas extracted every 1 h;

atmospheric pressure and
ambient temperature;

3 h irradiation

- CH4 @ 0.86
µmol g−1 h−1 0.091 b

BiOI
few-layered
nanosheets

[85]

(own method) thoroughly vacuum-treated 300 W high pressure Xe
lamp

5 mL H2SO4 &
1.712 g NaHCO3

150 mg catalyst; 500 mL
reactor; 0.15 mL sample gas

extracted; 20 ◦C
AQY @ λ = 420 nm;

4 h irradiation

- CO @ 0.615 µmol h−1

CH4 @ 0.063 µmol h−1 0.140 b

CdS–WO3
heterostructure

[86]

simple
precipitation

method
blown with nitrogen for 30 min

300 W Xe arc lamp with
a UV-cutoff filter (λ ≥

420 nm);
6.0 mW cm−2

H2O

100 mg catalyst +10 mL of
distilled water to form films;
200 mL reactor; 1 mL sample

gas extracted every 1 h;
AQY @ λ = 420 nm;

atmospheric pressure and
ambient temperature

- CH4 @ 1.02
µmol g−1 h−1 0.40 b

CeOx-S/ZnIn2S4
hybrid structure

[87]

one-pot
hydrothermal

method

introduction of high purity
CO2 gas into the reactor for

3 min

9.0 W
(455 nm LEDs) 0.5 mL H2O

10 mg catalyst; 6.98 mL
reactor; 1 bar; below 42 ◦C; 10

h irradiation
- CO @ 0.18

mmol g−1 h−1 1.34 b

Pt/TiO2
[42]

vacuum
impregnation

reactor was cleaned with
nitrogen for half an hour then
it was replaced and saturated

with CO2 gas for at least 30 min

300 W UV light;
10 mW cm−2 2 mL H2O

100 mL reactor; sample gas
analyzed every 1 h; 0.1 MPa;

7 h irradiation
- CH4 @ 20.55

µmol g−1 10.03 b

a = AQY computed; b = AQY was computed by authors of the reference paper; c = AQY was computed by authors of the reference paper multiplying it with mass of photocatalyst.
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Table 3. Summary of operating parameters used by other research works for photocatalytic CO2 reduction using Continuous flow reactor.

Photocatalyst Synthesis
Method Pre-Treatment of Reactor Light Source Reducing Agent Reaction Parameters Reactor Main Product AQY (%)

TiO2/NRGO-300
nanocomposites

[88]

one-step
urea-assisted
hydrothermal

method

purged with CO2 at 16 mL
min−1

for 40 min

400 W Xe
lamp (250 < λ < 400

nm);
11.5 mW cm−2

H2O

10 mg catalyst; CO2 flowrate
@ 3 mL min−1;

sample gas extracted every 1
h; 8 h irradiation

Continuous
flow reactor CO @ 356.5 µmol g−1 0.0072 b,c

5GO–OTiO2
(UV light)

hybrid
heterostructure

[46]

facile wet
chemical

impregnation
technique

purged with wet CO2 at 30
mL min−1 for 30 min

500 W Xe arc lamp with
a UV filter (λ > 400 nm);

81.0 mW cm−2
H2O

CO2 flowrate @ 5 mL min−1;
Quartz column reactor (ID =
9 mm, OD = 11 mm, length =

250 mm); sample gas
extracted every 0.5 h; 1 bar;

25 ± 5 ◦C; 8 h irradiation

Continuous
flow reactor

CH4 @ 2.7
µmol g−1 0.0103 b

TiO2
nanofibers

[89]

sol-gel method
and

electrospinning
technique

firstly, degassed under
vacuum and then purged

with Ar for 1 h, then fed with
CO2/H2O mixture in dark for

1 h, then reactor was
pressurized and kept at a
reaction flow rate of 2 mL

min−1 for another 1 h.

four 6 W UV lamps
(λmax = 365 nm) H2O

100 mg catalyst; 190 mL
reactor; 7.25 CO2:H2O molar
ratio; sample gas analyzed
every 22 min; 2 bars; 50 ◦C;

20 h irradiation

Continuous
flow reactor

CO @ 203.91
µmol gcat

−1 0.04 b

Cu/GO-2
hybrid structure

[90]

one-pot
microwave

process

purged with nitrogen gas for
1 h then followed by pure

CO2 for another 1 h

300 W halogen lamp;
100 mW cm−2 H2O

100 mg catalyst; 300 mL
reactor; CO2 flowrate @

4 µL/min; 25.0 ± 0.5 ◦C; 2 h
irradiation

Continuous
flow reactor

CH3OH @ 2.94µmol g−1

h−1 (AQYCH3OH = 0.0296)
CH3CHO @ 3.88
µmol g−1 h−1

(AQYCH3CHO = 0.065)

0.095 a

G/TiO2-001/101
nanocomposites

[91]

one-pot
solvothermal

method

purged with the CO2 + H2O
mixture at 200 mL min−1 for
1 h and then reduced to 5 mL

min−1 for 30 min

300W Xe arc lamp (300
< λ < 400 nm);
20.5 mW cm−2

5 mL DI water

10 mg catalyst;
85 mL reactor; sample gas

analyzed every 30 min;
atmospheric pressure; 120 ◦C;

4 h irradiation

Continuous
flow reactor

CO @ 70.8
µmol g−1 h−1 0.0864 b,c

BWO-OV/BiOI
binanosheets

[92]

simple
self-assembly

approach

purged with the CO2/H2O
gas mixture at 50 mL min−1

for 30 min

500 W Xenon arc lamp
with UV cut-off filter

(to remove λ < 400 nm)
H2O

CO2 flowrate @ 5 mL min−1;
sample gas analyzed every 1
h; atmospheric pressure and

ambient temperature;
8 h irradiation

Continuous
flow reactor

CO @ 320.19 µmol g−1

CH4 @ 18.32 µmol g−1 0.432 b

Pt2+–Pt0/TiO2
nanoparticles

[93]
sol–gel method

purged with CO2 + H2O
mixture at 200 mL min−1 for
1 h and then at 3 mL min−1

for another 30 min.

300 W Xe arc lamp UV
light irradiation

(320 < λ < 420 nm);
32.5 mW cm−2

H2O

200 mg catalyst; 85 mL
reactor; sample gas extracted

every 40 min; 50 ◦C;
7 h irradiation

Continuous
flow reactor

CH4 @ 264.5 µmol g−1

(AQYCH4 = 1.35)
CO

(AQYCO = 0.07)

1.42 b

(Pt/TiO2) @rGO
core-shell-structured

[94]

hydrothermal
method

vacuum-treated, then purged
with CO2 gas @ 50 cm3 min−1

for 30 min

300 W Xe lamp (320 < λ

< 780 nm);
80 mW cm−2

2.0 mL H2O
100 mg catalyst; sample gas
extracted every 1 h; 0.1 MPa;

4 ◦C; 8 h irradiation

Continuous
flow reactor CH4 @ 41.3 µmol g−1 h−1 1.93 b,c
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Table 3. Cont.

Photocatalyst Synthesis
Method Pre-Treatment of Reactor Light Source Reducing Agent Reaction Parameters Reactor Main Product AQY (%)

NiO/Ni-GR
nanoparticles

[95]

pyrolysis and
incipient
wetness

impregnation

photoreactor was heated at
different temperatures

300 W Xe lamp;
2236 W m−2 H2

40 mg catalyst; 51 mL reactor;
1.3 bar; 200 ◦C;
2 h irradiation

Continuous
flow reactor

CH4 @ 642 µmol gNi
−1

h−1 1.98 b

Pt-TiO2
nanostructured

films
[96]

aerosol chemical
vapor

deposition

purged with CO2 and water
vapor at 100 mL min−1 for 1

h, and then reduced and
maintained at 3 mL min−1

400 W Xe lamp
(250 < λ < 388 nm);

19.6 mW cm−2
H2O

0.7 mg catalyst; atmospheric
pressure and room

temperature;
5 h irradiation

Continuous
flow reactor

CH4 @ 1361 µmol g−1 h−1

(AQYCH4 = 2.33)
CO @ 179.34 µmol g−1

h−1

(AQYCO = 0.077)

2.41 b,c

a = AQY computed; b = AQY was computed by authors of the reference paper; c = AQY was computed by authors of the reference paper multiplying it with mass of photocatalyst.
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Values for the calculations of AQYs included in this review are given in detail in Supplementary
Tables S1 and S2. Moreover, prior to photocatalytic testing under CO2, repeated photocatalytic
reduction tests with H2O and inert gas can rule out the possible role of organic contamination. Further
confirmation of the carbon source of photocatalytic products can be ascertained by an isotopic labeling
test while using 13CO2. Additionally, optimization of the reaction parameters, condition of high
purity and effective photocatalyst and light contact can provide an even better judgment of the
performance [1,4,9,60].

10. Conclusions

Photocatalytic CO2 reduction is a fascinating approach owing to its two-fold benefits of CO2

abatement and its subsequent conversion to renewable fuels/chemicals. However, optimizing this
process has been a challenge for researchers as a variety of process parameters and reaction conditions
indistinctly influence the product yield. One parameter is the reaction temperature which by increasing
overcomes the kinetic barrier; but on the contrary, excessive temperature might also lead to decomposition.
The reactants feed ratio also affects the product yield: at an optimum value, it synergizes the product
yield and selectivity but beyond which, the non-stoichiometric ratios of H2O/CO2 are competing to get
adsorbed on the photocatalyst, resulting in decreased productivity. In addition, optimal light intensity is
imperative to produce stoichiometric amount of photogenerated charges for efficient transformation of
adsorbed H2O/CO2 to solar fuel/chemicals; surplus of these charges, produced at higher light intensities,
will recombine and eventually reduce the AQY. Moreover, productivity enhancement also depends on
the choice of reactor type: continuous flow reactors have shown potential in overcoming the low yield,
re-adsorption, and decomposition of photocatalytic products accustomed to batch reactors. Additionally,
the reactor geometry with better light and photocatalyst contact notably affects the production yield.
Knowing how these parameters affect the product yield, performance of the photocatalysts tested under
different conditions are inappropriate to compare in frequently used customary units i.e., µmol g−1

or ppm cm−2. Hence, with the consideration of various process parameters and reaction conditions
i.e., reaction temperature, feed ratio, irradiation source, reactor type and geometry, reporting yield of
the photocatalysts in terms of AQYs rather than production rate is a more appropriate and pragmatic
approach. Additionally, the removal of organic contamination, isotopic labelling, and photocatalytic CO2

reduction under inert and ultra-sealed condition can provide more realistic assessment of performance.
The overall aim of the present review article is to highlight the influence of key process and

reaction parameters on CO2 photoreduction process to be used for benchmarking. While considering
all the aforementioned parameters, a continuous and ultra-sealed gas phase reactor purged under high
vacuum with an optimum blend of temperature, feed ratio, and offering larger contact between light and
photocatalyst can be an effective approach for achieving maximum yield with the effective utilization
of incident photons. Moreover, in order to compare the photocatalytic system performance, a unified
parameter should be recognized; reporting yield in terms of AQY standardizes the photocatalytic
performance analysis by normalizing the effect of the most influential parameters. Our aforementioned
photoreaction setup and studies, well matching with the concluded benchmarking criteria, can be
followed for future studies in the field of gas phase CO2 photoreduction.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/9/727/s1.
Table S1: Computation of AQY performance of photocatalysts by In et al., Table S2: Computation of AQY
performance of photocatalysts from other research works.
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