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Abstract: Enzyme-based biocatalysis exhibits multiple advantages over inorganic catalysts, including
the biocompatibility and the unchallenged specificity of enzymes towards their substrate. The recovery
and repeated use of enzymes is essential for any realistic application in biotechnology, but is not
easily achieved with current strategies. For this purpose, enzymes are often immobilized on inorganic
scaffolds, which could entail a reduction of the enzymes’ activity. Here, we show that immobilization
to a nano-scaled biological scaffold, a nanonetwork of end-to-end cross-linked M13 bacteriophages,
ensures high enzymatic activity and at the same time allows for the simple recovery of the enzymes.
The bacteriophages have been genetically engineered to express AviTags at their ends, which permit
biotinylation and their specific end-to-end self-assembly while allowing space on the major coat
protein for enzyme coupling. We demonstrate that the phages form nanonetwork structures and that
these so-called nanonets remain highly active even after re-using the nanonets multiple times in a
flow-through reactor.

Keywords: nanonets; biocatalysis; enzyme recovery; M13 bacteriophage; AviTag; enzyme
immobilization

1. Introduction

An advantage of the use of enzymes in catalysis is their unchallenged specificity when compared
to inorganic or other human-made catalysts. However, the use of enzymes in catalysis is often hindered
by the difficulty in recovering the enzymes after the desired reaction has taken place. Separating the
catalysts from the product solution after catalysis is essential in multiple-use reactors and particularly
important if the catalyst in question is precious, hard to synthesize or extract, as is the case for many
enzymes. For this purpose, the enzymes can be coupled to a scaffold or surface. The growing library
of immobilization templates useful for the binding of enzymes includes many inorganic carriers,
cross-linked enzyme aggregates and viruses, which can simplify the handling and recovery of enzymes.

Cross-linking enzymes to form aggregates is a straightforward and economical means to obtain
larger structures from enzymes [1–7]. Furthermore, cross-linked enzyme aggregates (CLEAs) can
include multiple enzymes or an additional functionality such as a magnetic property [1,7]. One major
advantage offered by CLEAs is the ease of the crosslinking reactions, which in some cases only require
the addition of one or two crosslinkers to obtain the final aggregate [4]. Often glutaraldehyde is
chosen as a linker for these reactions. However, care must be taken when using this crosslinking
strategy, as the use of glutaraldehyde might in some cases lead to a decrease in overall activity of some
enzyme varieties as Sheldon [8] and Lozano et al. [4] have previously reported. To our knowledge,
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there is therefore no singular CLEA platform that would work in a generally applicable manner with
any enzyme.

Immobilization of an enzyme monolayer on a surface is another viable solution for recovery [9,10].
The carrier can be removed after catalysis, enabling simple separation of product solution and enzymes.
While the immobilization of enzymes on inorganic surfaces is possible [11,12], it is well-known that this
might lead to an activity decrease due to conformational changes or lower substrate availability [13].
It is therefore interesting to investigate immobilization of enzymes on proteinaceous environments, like
viruses or virus-like particles (VLP), which can serve as scaffolds [14–21]. An attractive feature is that
the viral coat-proteins are chemically addressable [16,17], allowing for the immobilization of enzymes
on these naturally occurring protein-constructs. A randomly cross-linked virus nanonetwork (nanonet
for short) has been demonstrated by Cuenca et. al. [14] as an enzyme scaffold using turnip mosaic
viruses (TuMV) and Candida antarctica lipase B. The immobilization on this virus “nanonet” even
led to an increase in specific enzyme activity when compared to the free enzyme, which the authors
attributed to the proteinaceous environment of the virus. Nevertheless, this particular crosslinking
mechanism is not specific and uses the same binding site for cross-linking and enzyme binding, which
potentially reduces the available locations for catalysis.

Here, we show that nanonets can be formed using genetically modified M13 bacteriophages by
linking the viruses end-to-end via an AviTag, a biotinylatable 15 amino acid (GLNDIFEAQKIEWHE)
protein tag expressed as a fusion to the p3 and p7 coat proteins of the M13 bacteriophage. AviTag
phages are first biotinylated by biotin ligase and the phages are subsequently cross-linked with
streptavidin forming the end-to-end virus nanonets. Enzymes can be immobilized on the nanonets via
the phage major coat protein p8. We show that the bacteriophage nanonets form a promising platform
for heterogeneous enzyme biocatalysis. The nanonet-coupled enzymes exhibit high activity while
allowing for enzyme recovery and reuse.

2. Results and Discussion

M13 bacteriophages, like other viruses, can be chemically [22,23] or genetically [24–27] addressed
and modified. M13 phages are versatile, and are useful for applications including biotemplating, phage
display [28–32], and even tissue regeneration, as bacteriophages are innocuous to mammalian cells [33].
Phages are highly stable in a wide range of pH and temperature conditions [34]. M13 phages are
filamentous viruses, with a capsid approximately 900 nm long, and with a diameter of 6 nm. The capsid
is made of five coat proteins. The main structure is formed by ~2700 copies of the major coat protein
p8, which connect in a helical structure along the long axis of the virus. The coat proteins p3 and p6
form one “end” while the proteins p7 and p9 reside at the other end of the viral particle. The proteins
are individually genetically modifiable and form favorable scaffolds for enzyme immobilization, as
was demonstrated in our previous study of enzyme immobilization on genetically modified M13
filamentous bacteriophages [35]. Furthermore, an increase in enzymatic activity when coupled to a
proteinaceous substrate was demonstrated in that study as well as by others [14,35,36]. Here, we show
that a phage nanonetwork can be obtained using genetically modified M13 bacteriophages designed to
specifically self-assemble end-to-end. We then demonstrate that the nanonet is an easily modifiable
platform for enzyme immobilization and repeated enzyme recovery.

2.1. Biotinylation and Characterization of M13 Bacteriophages

The general scheme to prepare the nanonets is shown in Figure 1. The sequencing data shows
that the genetic modification of M13 bacteriophages for the expression of the AviTag fusion protein
was successful (Supplementary Materials). We produced viruses with the AviTag proteins fused to the
p3 and p7 proteins (p3p7 AviTag phages), as well as phages modified either with AviTags only at p3
proteins (p3 AviTag phages) or only at the p7 proteins (p7 AviTag phages). The p3p7 AviTag phages
were biotinylated (Figure 1a) as previously reported [14,24–27] using a modification of the method
described by Litvinov et al. [26]. Briefly, p3p7 AviTag phages were incubated with biotin ligase, biotin,
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ATP, bicine and magnesium acetate. After a PEG/NaCl cleanup, a sample of the now biotinylated
bacteriophages (p3p7 B phages) was obtained. After biotinylation, the phage concentration in the
solution was ~1015 pfu/mL, as determined by UV-Vis absorption spectroscopy. At this point, it is
worth mentioning that the absorption of biotin at 269 nm in the UV-Vis, shown in Figure S1a, was
negligible. To determine the yield and confirm the biotinylation of p3p7 B phages, a small volume
fraction of the solution was diluted and incubated with an excess of streptavidin-coated magnetic
colloids. Only 20% of p3p7 B phages remained in solution, suggesting that 80% of p3p7 B phages
bound to the streptavidin-colloids and successfully presented biotin. For comparison, only 7% of
un-biotinylated p3p7 AviTag phages and 26% of wild type phages without any AviTags were found
to bind to the streptavidin beads (Figure S1b). We also quantified the biotinylation yield of p3 B
phages and p7 B phages using the streptavidin-colloids. On average, phages with a modified p3
exhibited a higher binding yield (89%) than those in which the modification was on the p7 protein
(63%). The remaining 11% and 37%, respectively, had therefore either not been biotinylated by the
biotin ligase or the biotin was not accessible to the streptavidin-colloids. We speculate that the higher
affinity of the p3 B phages to the streptavidin-colloids, when compared to the p7 B phages, might thus
be due to higher accessibility of either the fused AviTag peptide during biotinylation or of the biotin in
p3 position after biotinylation and is consistent with results previously seen in the literature [27].
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Figure 1. Illustrations of (a) fabrication of M13 bacteriophages biotinylated on the p3 and p7 coat
proteins (p3p7 B phages) and (b) fabrication of urease–bacteriophage nanonet. (c) Illustration of the
use of nanonet as a low cost, small flow-through reactor using a syringe filter.

2.2. Nanonet Synthesis and Characterization

After determining the concentration and yield of p3p7 B phages by UV-Vis, a two-fold excess
of streptavidin (STV) was added to the phages and after incubation, a viscous liquid was obtained.
We assume that the “mesh size” of a network of end-to-end coupled phages (nanonets) is relatively
large since the solution is still fairly liquid and not gelatinous. In order to visualize the formation of
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network structures, p3p7 B phages were functionalized with an ALEXA 488 NHS-ester (see Materials
and Methods section) and diluted to 1011 pfu/mL to facilitate imaging with fluorescence microscopy
(see Supporting Video 1). When these diluted ALEXA 488-labelled p3p7B M13 were incubated with
a two-fold excess of streptavidin, agglomerates with a diameter of up to 25 µm were clearly visible,
suggesting that phage constructs formed. When adding streptavidin to un-biotinylated p3p7 AviTag
phages or wild type M13, agglomeration was not observed.

The nanonets were then functionalized with urease, an enzyme whose activity and stability is
readily tracked by a colorimetric activity assay. After coupling urease to the cross-linked phages via
the bifunctional linker sulfo-SIAB the stability of the urease–sulfo-SIAB nanonets, further referred to
as enzyme-nanonets, increased and agglomerates with a diameter of up to 2 mm formed (Figure 2a,
Supporting Video 2). The macroscopic enzyme-nanonets are mechanically stable and can be picked
up with a spatula (see Supporting Video 3). Electron micrographs and analysis of the dried nanonets
showed dense agglomerates made of p3p7 B phages (Figure S2).
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Figure 2. (a) Macroscopic urease-sulfo-SIAB-streptavidin-nanonet (enzyme-nanonets). (b) Urease
activity test showing ammonia production over 5 minutes as a function of repeated recovery (via
centrifugation) of free urease (yellow), enzyme-nanonets (red), as well as urease cross-linked to p3p7
AviTag phages using (i) Sulfo-SIAB (green); and (ii) glutaraldehyde (blue). (c,d) Comparison of long
term stability of enzymatic activity over 2 months of storage at 4 ◦C for different enzyme-nanonets.
Error bars for all graphs were obtained through a minimum of three repetitions.

2.3. Enzyme Activity Assays of Nanonets

To determine whether the immobilized enzymes retained their activity, a variant of the Berthelot
colorimetric assay, introduced by Verdouw et al. [37], was utilized. The method permits quantification
of substrate conversion by observing the amount of blue-green indophenol derivate that is produced
in the reaction (Figure S3). We tracked the peak shift in the absorption spectrum to calculate activities.
Our measurements showed high urease activity for the enzyme-nanonets. Figure 2b shows the urease
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activity by tracking the decomposition of urea to ammonia. After the reaction, the enzyme-nanonets
could easily be recovered by centrifugation for 5 min at 14,500 g and thus repeatedly used. We observed
a conversion rate of 2.8 ± 0.1 µmol/min ammonia over 5 min for the enzyme-nanonets in the first
reaction solution. A drop in activity after the first use was exhibited by all samples. This is most likely
caused by the loss of unspecifically or weakly bound enzymes and phages. Importantly, no significant
decrease in the amount of substrate turnover was measured for the enzyme-nanonets following further
recovery steps resulting in a residual activity of 2.3 ± 0.2 µmol/min after eight cycles, i.e., 82% of
activity being retained. In contrast, the free enzymes and the urease coupled to non-cross-linked
p3p7 AviTag phages exhibited a steady decrease in activity every time the enzymes were reused
(Figure 2b, Figure S4). Here, after eight cycles, the remaining activity was 0.10 ± 0.06 µmol/min,
corresponding to about one-thirtieth of the initial activity for free enzymes (and 0.10 ± 0.01 µmol/min
for urease coupled to non-cross-linked p3p7 AviTag phages). The colorimetric assays pictured in
Figure S4 further illustrate the stability of the nanonets when compared with unbound enzymes,
non-cross-linked p3p7 AviTag phages and unspecifically cross-linked nanonets using glutaraldehyde
(Supporting Information 6). As observed in UV-Vis, the two former control samples show a very
strong decrease in activity over the first two cycles, most likely due to loss of enzymes and or phages
from one step to the next. The sample with glutaraldehyde as cross-linker exhibits a lowered activity
from the start. We also studied the activity of our nanonets after long-term storage, to show that the
proteinaceous environment, on which the enzymes are immobilized, is favorable for the enzymes.
The nanonets retained half of their initial activity over the course of two weeks and one eighth after
2 months (Figure 2c) when stored at 4 ◦C.

2.4. Syringe Filter Nanonet Reactor

A key advantage of the nanonets is that they can be reused by being transferred from one reaction
container to the next (without the need for centrifugation), as can be seen in Supporting Video 3, and
thus reduce the amount of enzymes required for repeated catalysis. Nevertheless, the enzyme-nanonets
are mechanically fragile which prevents their repeated use without loss of material. However, loss of
material can easily be avoided if a 100 nm syringe filter is used as support for the enzyme-nanonets, as
illustrated in Figure 1c. The filter holds the enzyme-nanonet back while allowing the substrate solution
to pass through. Retention of the enzyme-nanonet is easily achieved with the use of a commercial
100 nm filter (Figure S5a). To determine the activity of the nanonets on the filter, the urea solution
was passed through the filter. After regular intervals, the activity was measured by a colorimetric
assay. No measurable decrease in the nanonet enzymatic activity could be observed, as reported in
Figure 3a,b. Free enzyme on the other hand showed a drastic decline in the amount of ammonia
produced as the fluid is flushed through the filter, which suggests that the enzymes must either become
less active on the filter or pass through the filter themselves.

In fact, we determined that 40% of the free enzymes pass through the filter after filtering a
solution of urease (Figure S5a). The nanonets thus perform an essential function, as the free enzyme
or non-cross-linked p3p7 AviTag phages easily pass through the filter. On the other hand, for the
enzyme-nanonets, the retention dramatically increases to 96%. We speculate that the remaining 4%
that pass through the filter are smaller units of uncoupled phages and enzymes. Macroscopic nanonets
like the ones pictured in Figure 2a were found to be retained by 100 nm syringe filters (Figure S5b,c).
Even though 60% of urease should be retained by the filter, the enzymes nevertheless are seen to lose
activity. This might be due to loss of conformation of the enzymes in contact with the filter material.
For the urease immobilized on the nanonet, on the other hand, the enzymatic activity remains stable
on the syringe filter (Figure 3a.b), which further illustrates that the nanonet and with it the enzymes
can be successfully recovered without significant loss in activity due to the immobilization. The urease
coupled to the enzyme-nanonet, in contrast to the free enzyme, can thus be reused when utilizing this
inexpensive flow-through “nanoreactor”.
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3. Materials and Methods

3.1. Materials

The genetic modification to obtain AviTag M13 bacteriophages is described in the Supplementary
Materials. Bicine buffer (1 M) was purchased from Jena Bioscience, Germany. ALEXA Fluor 488
NHS Ester, Dynabeads MyOne Streptavidin C1, Gibco PBS tablets (pH 7.4), and sulfosuccinimidyl
(4-iodoacetyl) aminobenzoate (Sulfo-SIAB) were purchased from Thermo Fisher Scientific, Schwerte
Germany. Sodium chloride was purchased from Carl Roth, Karlsruhe, Germany. Sodium hypochlorite
solution (10%) was purchased from Fluka Analytical, Munich, Germany. Magnesium acetate
tetrahydrate was purchased from Santa Cruz Biotechnology. Disodium adenosine 5‘-triphosphate (ATP,
99%), biotin ligase (BirA, recombinant, ≥65%), carbamide, D-biotin (≥99% lyophilized powder), bovine
serum albumin (≥96%, lyophilized powder), 25% glutaraldehyde, poly(ethylene glycol) methyl ether
(PEG, 5000 Da), sodium hydroxide, sodium nitroprusside dihydrate, sodium salicylate, streptavidin
(recombinant, lyophilized powder), urease (from Canavalia ensiformis (Jack bean) Type C-3, 120 ± 10 mg
of urease per 1 g powder [35]) were purchased from Sigma-Aldrich, Munich, Germany. All chemicals
were used as purchased unless otherwise specified.

3.2. M13 Bacteriophage Biotinylation

AviTag phages were stored in 1 x TBS (50 mM Tris-Cl, pH 7.6; 150 mM NaCl) buffer at 4 ◦C and
were used at concentrations of 1015 pfu/mL unless stated otherwise. Four microliters of 500 mM biotin,
4 µL ATP solution (100 mM ATP, 500 mM biotin, and 100 mM magnesium acetate) and 4 µL 0.5 M
bicine were mixed with 100 µL of a p3p7 AviTag phage stock solution. Then, 20 µL of 2 mg/mL biotin
ligase was thoroughly mixed in and the solution was allowed to react in a shaker (600 rpm) for at least
48 h at 30 ◦C. To recover the phages from the reaction solution, 30.5 µL of a 2.5 M sodium chloride in
20% poly (ethylene glycol) solution were added and the solution was cooled for 20 min in an ice bath
followed by centrifugation at 16,200 g for 20 min at 4 ◦C. The supernatant was removed and the pellet
containing the phages was re-suspended in 100 µL 1x PBS, pH 7.4. This PBS buffer was used in all
subsequent steps.
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3.3. Characterization of Biotinylation Yield of M13 Bacteriophage

Two microliters of p3p7 biotinylated M13 bacteriophages were diluted in 278 µL PBS buffer.
The concentration of the M13 phage solution was determined by using 140 µL of the stock solution to
measure the UV-Vis absorption at 269 nm and at 320 nm as described by Smith [38]. The phages of the
remaining solution were immobilized on magnetic streptavidin beads (Dynabeads MyOne Streptavidin
C1, Invitrogen) [39]. Briefly, 100 µL of MyOne C1 Dynabeads solution was placed on a small lab magnet
for 2 min to concentrate the beads at the bottom of a reaction tube. The supernatant was discarded
and 300 µL PBS buffer was added. This washing step was repeated three times. The Dynabeads
were then pulled to the bottom of the reaction tube once more with the magnet and, after removing
the supernatant, the phage solution (140 µL) was added and incubated at room temperature for at
least 1 h on a shaker at 600 rpm. After immobilization, the supernatant was removed and the UV-Vis
absorbance of the supernatant was measured to calculate concentration of the unbound phages.

3.4. M13 Bacteriophage Nanonet

The equivalent of two streptavidin (STV) moieties per phage was added to 100 µL of p3p7
biotinylated M13 phages as a 1 mg/mL STV solution. The resulting viscous solution was used without
further purification.

3.5. Sulfo-SIAB Cross-Linked Urease Nanonet (Enzyme-Nanonets)

Ten microliters of the M13 bacteriophage nanonet was suspended in 1 mL PBS buffer and incubated
on a shaker at 600 rpm with 300 µL of a sulfo-SIAB solution (3 mg/mL in PBS) for 1.5 h at room
temperature. The solution was then centrifuged in a benchtop microcentrifuge at 14,000 g for 5 min.
After discarding the supernatant, 500 µL of a fresh 5 mg/mL urease solution was added to the pellet.
The pellet was then carefully re-suspended and incubated at room temperature in the dark for 2 h
while shaking at 600 rpm. The nanonets were stored at 4 ◦C overnight before use.

3.6. Glutaraldehyde Cross-Linked Urease Nanonet

The crosslinking procedure has been modified based on Cuenca et al. [14]. In particular, 500 µL
of a 5 mg/mL urease solution was incubated with 1% glutaraldehyde (GA) for 1 h. The excess
glutaraldehyde was cleared with the help of a centrifugal 10 kDa MWCO filter (Merck Millipore,
Darmstadt, Germany). 1 mL of 1013 pfu/mL M13 bacteriophages solution was then added to the
GA-activated urease solution and incubated overnight on a shaker at 600 rpm.

3.7. Fluorescence Imaging

For fluorescence imaging of the biotinylated bacteriophages, 10 µL of a 1013 pfu/mL solution
was incubated with 10 µL 4 mM ALEXA 488 for 1 h at room temperature (stirring at 700 rpm). After
incubation, 780 µL PBS buffer was added and the solution was dialyzed in PBS (Spectrum Labs,
Float-A-Lyzer G2 300 kDa) with four buffer exchanges. Ten microliters of the dialyzed phage solution
was incubated 2:1 with streptavidin. The phages were imaged in a Zeiss Axiovert inverted microscope
with a 100× oil immersion objective on bovine serum albumin-coated glass cover slides.

3.8. Urease Activity Assays

The nanonets were centrifuged at 14,500 g for 5 min, the supernatant discarded, and 100 µL of a
500 mM urea solution (in PBS buffer at pH 7.4) was added. The reaction mixture was centrifuged for
another 5 min. The supernatant was removed and 550 µL of a 5 mM solution of sodium nitroprusside,
60 mM sodium salicylate and 400 µL of a 400 mM sodium hydroxide, 10 mM sodium hypochlorite
solution were added to it. The resultant mixture was incubated until no further color change could
be observed (<30 min). For re-cycling the nanonets, the nanonets were pelleted and re-suspended as
described above.
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3.9. Syringe Filter Reactor

The enzyme-nanonets were synthesized as described and re-suspended in 1 mL PBS buffer.
The dispersion was drawn into a 1 mL syringe (NORM-JECT Luer Lock, VWR, Darmstadt, Germany)
and passed through a commercial 100 nm syringe filter (PES 0.1 µm Sartorius, Göttingen, Germany).
To determine the enzymatic activity, 500 mM urea suspended in PBS buffer was run through the filter,
200 µL samples were collected after, respectively, 1, 2, 5, 10, 15, and 20 mL have passed the filter.
The activity assay was then performed on these samples as described above. To determine how many
phages passed through the filter, nanonets were placed on the filter surface and 20 mL PBS was flushed
through the filter. Fractions of the solution after filtration were then collected after every 2 mL and the
concentration of the remaining phages determined via UV-Vis as described above.

4. Conclusions

In summary, we have shown that genetically engineered M13 bacteriophages can be used
to construct catalytically active enzyme–virus nanonets. The phages offer a proteinaceous
template onto which enzymes can readily be coupled and on which enzymes retain their activity.
The enzyme-decorated nanonets presented here not only outperformed analogous methods of creating
viral nanonets in terms of activity but also allow for simple recovery of the enzymes after use. Enzyme
recovery in biocatalysis is generally challenging, but we show that centrifugation for 5 minutes or the
use of a syringe filter are sufficient methods to recover the enzyme-nanonets, and hence the enzymes.
When compared to solutions with unbound enzymes, it becomes clear that the enzyme-nanonets
can easily be used several times. We were able to show, that the enzyme-nanonets remained active
for at least 2 months when stored at 4 ◦C. Using the enzyme-nanonets, we have successfully built a
continuous flow-through “nanoreactor” for enzyme catalysis. The phages and the coupling scheme
are versatile and so the method we demonstrate can also be expanded to be used with other enzymes.
Even multiple enzymes can potentially be immobilized, which may be of interest in cascade reactions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/9/723/s1,
Figure S1: UV-vis spectra and biotinylation yield, Figure S2: Macroscopic nanonet, Figure S3: Colorimetric
assays and calibration curve for determination of enzyme activity, Figure S4: Urease activity assays over multiple
centrifugation cycles, Figure S5: Retention of phages. Supporting Video 1.mp4, Supporting Video 2.mp4,
Supporting Video 3.mp4.
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