Supporting information

Heterogeneous Synergistic Catalysis for Promoting Aza-Michael-Henry Tandem Reaction for the Synthesis of Chiral 3-Nitro-1,2-Dihydroquinoline

Zhe An, Lifeng Chen, Yitao Jiang, and Jing He*

Figures and Descriptions:

Fig. S1. XRD patterns of (a) SBA-15, (b) SBA-15-SH, (c) SBA-15-PY, and (d) SBA-15-Q.

Fig. S2. XRD patterns of (a) SBA-15, (b) SBA-15-Br, and (c) SBA-15-AEP.

Fig. S3. Nitrogen adsorption-desorption isotherms and the pore size distribution of (a) SBA-15, (b) SBA-15-SH, (c) SBA-15-PY, and (d) SBA-15-Q.

Fig. S4. Nitrogen adsorption-desorption isotherms and the pore size distribution of (a)
SBA-15, (b) SBA-15-Br, and (c) SBA-15-AEP.
N_{2} adsorption-desorption isotherms for all samples are typical of type IV, and H1-type hysteresis loop with delayed capillary evaporation located at a $\mathrm{P} / \mathrm{P}_{0}$ of about 0.7 is observed, revealing the predominance of well-defined mesopores with uniform size. The pore size shows a narrow distribution with the maximum at $6.5-6.5 \mathrm{~nm}$. Table S 1 summarizes the pore sizes along with the BET surface areas and pore volumes. The decreases in surface area and pore volume clearly indicate that the grafted (3-mercaptopropyl)trimethoxysilane/3-bromopropyltrichlorosilane groups and chiral amines are located inside the mesopore channels.

Fig. S5. TEM images of (a) SBA-15, (b) SBA-15-SH, (c) SBA-15-Br, (d) SBA-15-PY, (e)
SBA-15-AEP, and (f) SBA-15-Q, perpendicular (left) and parallel (right) to the channels.

Fig. S7. ${ }^{13} \mathrm{C}$ CP/MAS NMR spectrum of SBA-15-PY and ${ }^{13} \mathrm{C}$ NMR spectrum of (S)-(+)-prolinol.

Fig. S8. ${ }^{13} \mathrm{C}$ CP/MAS NMR spectrum of SBA-15-AEP and ${ }^{13} \mathrm{C}$ NMR spectrum of
(S)-(-)-2-aminomethyl-1-ethylpyrrolidine.

Fig. S9. ${ }^{29}$ Si MAS NMR spectra of (a) SBA-15-SH and (b) SBA-15-Br.
${ }^{29}$ Si BD/MAS NMR spectra were recorded for SBA-15-SH/SBA-15-Br. The resonances attributed to the silicon in $\mathrm{Q}^{4}\left[\mathrm{Si}(\mathrm{SiO})_{4}\right], \mathrm{Q}^{3}\left[\mathrm{Si}(\mathrm{SiO})_{3} \mathrm{OH}\right]$, and $\mathrm{Q}^{2}\left[\mathrm{Si}(\mathrm{SiO})_{3}(\mathrm{OH})_{2}\right]$ linkages are observed at $-110,-100$ and -92 ppm . The silanol density was quantified by curve fitting and deconvolution of ${ }^{29} \mathrm{Si}$ MAS NMR signals according to the reference method [Palkovits, R.; Yang, C. M.; Olejnik, S.; Schüth, F. Active sites on SBA-15 in the Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam, J. Catal. 2006, 243, 93-98.] and the calculated formula is illustrated as follows:

$$
\text { Silanol density }\left(\mu \mathrm{mol} \mathrm{~g}^{-1}\right)=\sum W_{Q n} \cdot M_{Q n}
$$

Wherein W and M respectively represent the peak area percentage and the molar mass of $\mathrm{Q}^{\mathrm{i}}(\mathrm{i}=2$, 3, 4). The results are shown in Table S3. The final silanol density based on the specific surface area of SBA-15-SH/SBA-15-Br is calculated as 4.46 and $8.87 \mu \mathrm{~mol} / \mathrm{m}^{2}$.

Fig. S10. XRD pattern and TEM images of reused SBA-15-AEP in five runs.

Fig. S11. Nitrogen adsorption-desorption isotherms and the pore size distribution of reused SBA-15-AEP in five runs.

Tables:

Table S1. The specific surface area, pore volume, and pore diameter of mesoporous silica.

Sample	Surface area $/ \mathrm{m}^{2} \mathrm{~g}^{-1}$	Pore volume $/ \mathrm{cm}^{3} \mathrm{~g}^{-1}$	Pore diameter $/ \mathrm{nm}$
SBA-15	618	1.043	6.6
SBA-15-SH	549	0.995	6.6
SBA-15-Q	386	0.608	6.5
SBA-15-PY	452	0.727	6.5
SBA-15-Br	539	0.798	6.6
SBA-15-AEP	454	0.783	6.6

Table S2. The density of chiral basic sites and the ratio of silanol to basic sites.

Catalyst	SBA-15-Q	SBA-15-PY	SBA-15-AEP
The content of C, unit mass $(\mathrm{mmol} / \mathrm{g})$	11.69	7.49	6.03
The content of H, unit mass $(\mathrm{mmol} / \mathrm{g})$	20.50	17.70	16.90
The content of S, unit mass $(\mathrm{mmol} / \mathrm{g})$	0.800	0.938	--
The content of N, unit mass $(\mathrm{mmol} / \mathrm{g})$	0.829	0.639	0.629
The content of N, unit area $\left(\mu \mathrm{mol} / \mathrm{m}^{2}\right)$	2.148	1.414	1.385
The density of basic sites $\left(\mu \mathrm{mol} / \mathrm{m}^{2}\right)^{\mathrm{a}}$	1.074	0.707	0.693
The density of silanol $\left(\mu \mathrm{mol} / \mathrm{m}^{2}\right)^{\mathrm{b}}$	4.46	4.46	8.87
The molar ratio of silanol to basic sites ${ }^{\mathrm{c}}$	$4: 1$	$6: 1$	$13: 1$

${ }^{\text {a }}$ The density of basic sites $=$ The content of $\mathrm{N}\left(\right.$ unit area, $\left.\mu \mathrm{mol} / \mathrm{m}^{2}\right) / \mathrm{N}$ atom number in the basic site (2 for SBA-15-Q and SBA-15-AEP; 1 for SBA-15-PY); ${ }^{\text {b }}$ determined from the ${ }^{29}$ Si BD-MAS NMR spectra; ${ }^{c}$ The molar ratio of silanol to basic sites $=$ The density of silanol $\left(\mu \mathrm{mol} / \mathrm{m}^{2}\right) /$ The density of basic sites $\left(\mu \mathrm{mol} / \mathrm{m}^{2}\right)$

Table S3. The molecular weight, molar fractions of Q^{i} sites and the density of silanols for SBA-15-SH and SBA-15-Br.

Sample	$\mathrm{Q}^{4}(\%)$	$\mathrm{Q}^{3}(\%)$	$\mathrm{Q}^{2}(\%)$	MW^{a} $(\mathrm{g} / \mathrm{mol})$	Content of OH $(\mathrm{mmol} / \mathrm{g})$	Density of OH $\left(\mu \mathrm{mol} / \mathrm{m}^{2}\right)$
SBA-15-SH	69.35	30.65	-	62.75	2.45	4.46
SBA-15-Br	77.17	13.60	9.24	62.89	4.78	8.87

${ }^{\text {a }}$ determined as sum of molar weights and fractions of $\mathrm{Q}^{4}, \mathrm{Q}^{3}$, and Q^{2}.

Product analysis:

3-nitro-2-phenyl-1,2-dihydroquinoline: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.98(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.35$ $(\mathrm{m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.99(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=144.38,142.16,134.13,131.29$, 131.26, 130.92, 129.01, 128.85, 128.77, 126.28, 118.65, 114.93, 113.41, 55.51. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z}$ 275.26; found 275.05.

HPLC analysis of 3-nitro-2-phenyl-1,2-dihydroquinoline

Structure	Column	Eluent	Flow rate	Retention time

2-(2,3-dimethoxyphenyl)-3-nitro-1,2-dihydroquinoline: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.13$ (s, $1 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=152.89,144.96,144.64,139.36,134.33,133.98,132.96,131.17$, $124.48,118.59,118.44,115.20,113.85,112.48,60.99,55.79,49.36$. HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{4}[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z} 335.31$; found 335.19.

HPLC analysis of 2-(2,3-dimethoxyphenyl)-3-nitro-1,2-dihydroquinoline

Structure	Column	Eluent	Flow rate	Retention time

3-nitro-2-p-tolyl-1,2-dihydroquinoline: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.96$ (s, 1H), 7.31-7.05 $(\mathrm{m}, 6 \mathrm{H}), 6.69(\mathrm{t}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=152.89,144.96,144.64,139.36,134.33,133.98,132.96,131.17,124.48$, $118.59,118.44,115.20,113.85,112.48,60.99,55.79 . \operatorname{HRMS}(E S I):$ calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}]^{+}$ m/z 289.28; found 289.20.

HPLC analysis of 3-nitro-2-p-tolyl-1,2-dihydroquinoline

Structure	Column	Eluent	Flow rate	Retention time
	CHIRALPAK OD-H	Hexane: 2-PrOH $=85: 15$	$1.0 \mathrm{~mL} / \mathrm{min}$	9.25 min
		12.97 min		

2-(2,4-chlorophenyl)-3-nitro-1,2-dihydroquinoline: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=8.20(\mathrm{~s}, 1 \mathrm{H})$, $7.57-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{t}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=143.67,138.63,134.98,134.38,133.15,131.96,131.37,130.10,128.69,127.97$, 119.15, 115.06, 114.03, 51.05. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z} 321.02$; found 321.23.

HPLC analysis of 2-(2,4-chlorophenyl)-3-nitro-1,2-dihydroquinoline

Structure	Column	Eluent	Flow rate	Retention time
	CHIRALPAK OD-H	Hexane: $2-\mathrm{PrOH}$ $=85: 15$	$1.0 \mathrm{~mL} / \mathrm{min}$	9.67 min
			19.18 min	

2-(3,4-chlorophenyl)-3-nitro-1,2-dihydroquinoline: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.00(\mathrm{~s}, 1 \mathrm{H})$, $7.46(\mathrm{dd}, \mathrm{J}=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, \mathrm{J}=13.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.81-6.70(\mathrm{~m}$, $1 \mathrm{H}), 6.55-6.42(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3): $\delta=143.81$, $142.05,140.02,134.87,135.73,133.01,132.19,130.38,128.35,125.66,119.15,114.64,113.51$, 54.57. $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z} 321.02$; found 321.26

HPLC analysis of 2-(3,4-chlorophenyl)-3-nitro-1,2-dihydroquinoline
$\begin{array}{|c|c|c|c|c|}\hline \text { Structure } & \text { Column } & \text { Eluent } & \text { Flow rate } & \text { Retention time } \\$\cline { 5 - 6 } \& CHIRALPAK

OD-H\end{array} \(\left.\begin{array}{c}Hexane: 2-\mathrm{PrOH}

=85: 15\end{array}\right) 1.0 \mathrm{~mL} / \mathrm{min}\)| 9.79 min |
| :---: |

8-methoxy-3-nitro-2-phenyl-1,2-dihydroquinoline: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.99(\mathrm{~s}, 1 \mathrm{H})$, $7.44-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=7.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=145.45,142.52$, $140.91,135.00,131.39,128.94,128.62,126.27,122.77,117.39,114.37,113.63,55.59,55.08$.

HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z} 305.28$; found 305.27.
HPLC analysis of 8-methoxy-3-nitro-2-phenyl-1,2-dihydroquinoline

Structure	Column	Eluent	Flow rate	Retention time

6-chloro-3-nitro-2-phenyl-1,2-dihydroquinoline: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89(\mathrm{~s}, 1 \mathrm{H})$, $7.41-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.12(\mathrm{dd}, \mathrm{J}=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}$, 1H); NMR (101 MHz, CDCl_{3}): $\delta 142.74,142.08,141.71,133.65,130.05,129.76,129.11,128.99$, 126.25, 116.05, 114.66, 55.48. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{NaO}_{2}[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z} 309.70$; found 309.50 .

HPLC analysis of 6-bromo-3-nitro-2-phenyl-1,2-dihydroquinoline

Structure	Column	Eluent	Flow rate	Retention time

6,8-dibromo-3-nitro-2-phenyl-1,2-dihydroquinoline: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75$ (s, $1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 6 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3): δ $191.98,139.86,137.10,135.10,134.64,134.51,134.16,131.33,131.15,129.96,128.75,127.67$, 127.02, 59.31, 49.35, 23.44. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z} 433.05$; found 433.27.

HPLC analysis of 6-bromo-3-nitro-2-phenyl-1,2-dihydroquinoline

Structure	Column	Eluent	Flow rate	Retention time
	CHIRALPAK OD-H	Hexane: $2-\mathrm{PrOH}$ $=85: 15$	$1.0 \mathrm{~mL} / \mathrm{min}$	8.97 min
			10.87 min	

Appendix
${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectra

-144.58
-142.22

-134.14
-130.92
-128.98
-126.45

-118.65
-113.48
CDCl_{3}
$\underset{\sim}{\sim}$

For yield calculation:

CDCl_{3}

$\begin{array}{lllllllllllllllllllllllllllllllllll}160 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

$\begin{array}{lllllllllll} \\ 147 & 144 & 141 & 138 & 135 & 132 & 129 & 126 & 123 & 120 & 117\end{array} 11410$

CDCl_{3}

