Supporting information

Heterogeneous Synergistic Catalysis for Promoting Aza-Michael-Henry Tandem Reaction for the Synthesis of Chiral 3-Nitro-1,2-Dihydroquinoline

Zhe An, Lifeng Chen, Yitao Jiang, and Jing He*

Figures and Descriptions:

Fig. S1. XRD patterns of (a) SBA-15, (b) SBA-15-SH, (c) SBA-15-PY, and (d) SBA-15-Q.

Fig. S2. XRD patterns of (a) SBA-15, (b) SBA-15-Br, and (c) SBA-15-AEP.

Fig. S3. Nitrogen adsorption-desorption isotherms and the pore size distribution of (a) SBA-15, (b) SBA-15-SH, (c) SBA-15-PY, and (d) SBA-15-Q.

Fig. S4. Nitrogen adsorption-desorption isotherms and the pore size distribution of (a) SBA-15, (b) SBA-15-Br, and (c) SBA-15-AEP.

 N_2 adsorption-desorption isotherms for all samples are typical of type IV, and H1-type hysteresis loop with delayed capillary evaporation located at a P/P₀ of about 0.7 is observed, revealing the predominance of well-defined mesopores with uniform size. The pore size shows a narrow distribution with the maximum at 6.5-6.5 nm. Table S1 summarizes the pore sizes along with the BET surface areas and pore volumes. The decreases in surface area and pore volume clearly indicate that the grafted (3-mercaptopropyl)trimethoxysilane/3-bromopropyltrichlorosilane groups and chiral amines are located inside the mesopore channels.

Fig. S5. TEM images of (a) SBA-15, (b) SBA-15-SH, (c) SBA-15-Br, (d) SBA-15-PY, (e) SBA-15-AEP, and (f) SBA-15-Q, perpendicular (left) and parallel (right) to the channels.

Fig. S6. ¹³C CP/MAS NMR spectrum of SBA-15-Q and ¹³C NMR spectrum of quinine.

Fig. S7. ¹³C CP/MAS NMR spectrum of SBA-15-PY and ¹³C NMR spectrum of (S)-(+)-prolinol.

Fig. S8. ¹³C CP/MAS NMR spectrum of SBA-15-AEP and ¹³C NMR spectrum of

(S)-(-)-2-aminomethyl-1-ethylpyrrolidine.

Fig. S9. ²⁹Si MAS NMR spectra of (a) SBA-15-SH and (b) SBA-15-Br.

²⁹Si BD/MAS NMR spectra were recorded for SBA-15-SH/SBA-15-Br. The resonances attributed to the silicon in Q⁴ [Si(SiO)₄], Q³ [Si(SiO)₃OH], and Q² [Si(SiO)₃(OH)₂] linkages are observed at -110, -100 and -92 ppm. The silanol density was quantified by curve fitting and deconvolution of ²⁹Si MAS NMR signals according to the reference method [Palkovits, R.; Yang, C. M.; Olejnik, S.; Schüth, F. Active sites on SBA-15 in the Beckmann rearrangement of cyclohexanone oxime to ε -caprolactam, J. Catal. 2006, 243, 93-98.] and the calculated formula is illustrated as follows:

Silanol density (μ mol g⁻¹) = $\sum W_{Qn} \cdot M_{Qn}$

Wherein W and M respectively represent the peak area percentage and the molar mass of Q^i (i =2, 3, 4). The results are shown in Table S3. The final silanol density based on the specific surface area of SBA-15-SH/SBA-15-Br is calculated as 4.46 and 8.87 μ mol/m².

Fig. S10. XRD pattern and TEM images of reused SBA-15-AEP in five runs.

Fig. S11. Nitrogen adsorption-desorption isotherms and the pore size distribution of reused

SBA-15-AEP in five runs.

Tables:

Sample	Surface area/ m ² g ⁻¹	Pore volume/cm ³ g ⁻¹	Pore diameter/nm
SBA-15	618	1.043	6.6
SBA-15-SH	549	0.995	6.6
SBA-15-Q	386	0.608	6.5
SBA-15-PY	452	0.727	6.5
SBA-15-Br	539	0.798	6.6
SBA-15-AEP	454	0.783	6.6

Table S1. The specific surface area, pore volume, and pore diameter of mesoporous silica.

Table S2. The density of chiral basic sites and the ratio of silanol to basic sites.

Catalyst	SBA-15-Q	SBA-15-PY	SBA-15-AEP
The content of C, unit mass (mmol/g)	11.69	7.49	6.03
The content of H, unit mass (mmol/g)	20.50	17.70	16.90
The content of S, unit mass (mmol/g)	0.800	0.938	
The content of N, unit mass (mmol/g)	0.829	0.639	0.629
The content of N, unit area (μ mol/m ²)	2.148	1.414	1.385
The density of basic sites (µmol/m ²) ^a	1.074	0.707	0.693
The density of silanol $(\mu mol/m^2)^b$	4.46	4.46	8.87
The molar ratio of silanol to basic sites ^c	4:1	6:1	13:1

^a The density of basic sites = The content of N (unit area, μ mol/m²)/N atom number in the basic site (2 for SBA-15-Q and SBA-15-AEP; 1 for SBA-15-PY); ^b determined from the ²⁹Si BD-MAS NMR spectra; ^c The molar ratio of silanol to basic sites = The density of silanol (μ mol/m²)/The density of basic sites (μ mol/m²)

Table S3. The molecular weight, molar fractions of Q^i sites and the density of silanols for SBA-15-SH and SBA-15-Br.

Sample Q	$O^{4}(0) = O^{3}(0)$		$\Omega^{2}(0/)$	MW ^a	Content of OH	Density of OH
	Q'(%)	$Q^{\circ}(\%)$	$Q^2(\%)$	(g/mol)	(mmol/g)	$(\mu mol/m^2)$
SBA-15-SH	69.35	30.65	-	62.75	2.45	4.46
SBA-15-Br	77.17	13.60	9.24	62.89	4.78	8.87

^a determined as sum of molar weights and fractions of Q^4 , Q^3 , and Q^2 .

Product analysis:

3-nitro-2-phenyl-1,2-dihydroquinoline: ¹H NMR (400 MHz, CDCl₃): δ =7.98 (s, 1H), 7.40–7.35 (m, 2H), 7.32–7.28 (m, 3H), 7.20–7.16 (m, 2H), 6.71 (t, *J* = 7.5 Hz, 1H), 6.46 (d, *J* = 8.1 Hz, 1H), 5.99 (s, 1H), 4.70 (s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ = 144.38, 142.16, 134.13, 131.29, 131.26, 130.92, 129.01, 128.85, 128.77, 126.28, 118.65, 114.93, 113.41, 55.51. HRMS (ESI): calcd for C₁₅H₁₂N₂NaO₂ [M]⁺ m/z 275.26; found 275.05.

HPLC analysis of 3-nitro-2-phenyl-1,2-dihydroquinoline

Structure	Column	Eluent	Flow rate	Retention time
	CHIRALPAK	Hexane: 2-PrOH	10 mI /min	13.36 min
	OD-H	= 85: 15	1.0 mL/min	16.03 min

2-(2,3-dimethoxyphenyl)-3-nitro-1,2-dihydroquinoline: ¹H NMR (400 MHz, CDCl₃): δ =8.13 (s, 1H), 7.26–7.17 (m, 2H), 7.13–7.06 (m, 1H), 6.94 (m, 1H), 6.74 (dd, *J* = 7.7, 1.3 Hz, 1H), 6.65 (t, *J* = 7.4 Hz, 1H), 6.37 (d, *J* = 8.2 Hz, 1H), 6.34 (s, 1H), 4.99 (s, 1H), 4.00 (s, 3H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ =152.89, 144.96, 144.64, 139.36, 134.33, 133.98, 132.96, 131.17, 124.48, 118.59, 118.44, 115.20, 113.85, 112.48, 60.99, 55.79,49.36. HRMS (ESI): calcd for C₁₇H₁₆N₂NaO₄ [M]⁺ m/z 335.31; found 335.19.

HPLC analysis of 2-(2,3-dimethoxyphenyl)-3-nitro-1,2-dihydroquinoline

Structure	Column	Eluent	Flow rate	Retention time
	CHIRALPAK	Hexane: 2-PrOH	10 1/ -	12.35min
H MeO OMe	OD-H	= 85: 15	1.0 mL/min	12.81min

3-nitro-2-p-tolyl-1,2-dihydroquinoline: ¹H NMR (400 MHz, CDCl₃): δ= 7.96 (s, 1H), 7.31–7.05 (m, 6H), 6.69 (t, 1H), 6.44 (d, *J* = 8.0 Hz, 1H), 5.94 (s, 1H), 4.68 (s, 1H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ=152.89, 144.96, 144.64, 139.36, 134.33, 133.98, 132.96, 131.17, 124.48, 118.59, 118.44, 115.20, 113.85, 112.48, 60.99, 55.79. HRMS (ESI): calcd for C₁₆H₁₄N₂NaO₂ [M]⁺ m/z 289.28; found 289.20.

HPLC analysis of 3-nitro-2-p-tolyl-1,2-dihydroquinoline

Structure	Column	Eluent	Flow rate	Retention time
NO ₂	CHIRALPAK	Hexane:	10 1/ .	9.25min
Me	OD-H	= 85: 15	1.0 mL/mm	12.97min

2-(2,4-chlorophenyl)-3-nitro-1,2-dihydroquinoline: ¹H NMR (400 MHz, CDCl₃): δ =8.20 (s, 1H), 7.57–7.16 (m, 5H), 6.76 (t, 1H), 6.47 (d, *J* = 8.0 Hz, 1H), 6.46(s, 1H), 4.98 (s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ =143.67, 138.63, 134.98, 134.38, 133.15, 131.96, 131.37, 130.10, 128.69, 127.97, 119.15, 115.06, 114.03, 51.05. HRMS (ESI): calcd for C₁₅H₁₀Cl₂N₂O₂ [M]⁺ m/z 321.02; found 321.23.

HPLC analysis of 2-(2,4-chlorophenyl)-3-nitro-1,2-dihydroquinoline

Structure	Column	Eluent	Flow rate	Retention time
NO ₂	CHIRALPAK	Hexane: 2-PrOH	1.0 mL/min	9.67min
	OD-H	= 85: 15		19.18min

2-(3,4-chlorophenyl)-3-nitro-1,2-dihydroquinoline: ¹H NMR (400 MHz, CDCl₃): δ=8.00 (s, 1H), 7.46 (dd, J = 7.2, 2.2 Hz, 1H), 7.38 (dd, J = 13.1, 7.1 Hz, 1H), 7.19–7.21 (m, 3H), 6.81–6.70 (m, 1H), 6.55–6.42 (m, 1H), 5.98 (s, 1H), 4.71 (s, 1H). ¹³C NMR (101 MHz, CDCl3): δ=143.81, 142.05, 140.02, 134.87, 135.73, 133.01, 132.19, 130.38, 128.35, 125.66, 119.15, 114.64, 113.51, 54.57. C₁₅H₁₀Cl₂N₂O₂ [M]⁺ m/z 321.02; found 321.26

HPLC analysis of 2-(3,4-chlorophenyl)-3-nitro-1,2-dihydroquinoline

Structure	Column	Eluent	Flow rate	Retention time
NO ₂	CHIRALPAK	Hexane: 2-PrOH	10 1/ .	9.79min
H Cl	OD-H	= 85: 15	1.0 mL/min	17.25min

8-methoxy-3-nitro-2-phenyl-1,2-dihydroquinoline: ¹H NMR (400 MHz, CDCl₃): δ=7.99 (s, 1H), 7.44 – 7.26 (m, 5H), 6.83 (dd, *J* = 7.8, 1.0 Hz, 1H), 6.76 (dd, *J* = 7.9, 0.8 Hz, 1H), 6.63 (t, *J* = 7.9 Hz, 1H), 6.08 (s, 1H), 5.29 (s, 1H), 3.79 (s, 3H) ; ¹³C NMR (101 MHz, CDCl₃): δ=145.45, 142.52, 140.91, 135.00, 131.39, 128.94, 128.62, 126.27, 122.77, 117.39, 114.37, 113.63, 55.59, 55.08. HRMS (ESI): calcd for C₁₆H₁₄N₂NaO₃[M]⁺ m/z 305.28; found 305.27.

Structure	Column	Eluent	Flow rate	Retention time
NO ₂	CHIRALPAK	Hexane: 2-PrOH	1.0 mI /min	13.41min
	OD-H	= 85: 15	1.0 mL/mm	16.07min

HPLC analysis of 8-methoxy-3-nitro-2-phenyl-1,2-dihydroquinoline

6-chloro-3-nitro-2-phenyl-1,2-dihydroquinoline: ¹H NMR (400 MHz, CDCl₃): δ 7.89 (s, 1H), 7.41–7.28 (m, 6H), 7.12 (dd, J = 8.6, 2.4 Hz, 1H), 6.42 (d, J = 8.6 Hz, 1H), 5.98 (s, 1H), 4.72 (s, 1H); NMR (101 MHz, CDCl₃): δ 142.74, 142.08, 141.71, 133.65, 130.05, 129.76, 129.11, 128.99, 126.25, 116.05, 114.66, 55.48. HRMS (ESI): calcd for C₁₅H₁₁ClN₂NaO₂ [M]⁺ m/z 309.70; found 309.50.

HPLC analysis of 6-bromo-3-nitro-2-phenyl-1,2-dihydroquinoline

Structure	Column	Eluent	Flow rate	Retention time
	CHIRALPAK	Hexane: 2-PrOH	1.0 mJ (min	10.83min
N H	OD-H	= 85: 15	1.0 mL/min	17.53min

6,8-dibromo-3-nitro-2-phenyl-1,2-dihydroquinoline: ¹H NMR (400 MHz, CDCl₃): δ 7.75 (s, 1H), 7.62 (s, 1H), 7.56 (s, 1H), 7.45–7.31 (m, 6H), 5.63 (s, 1H); ¹³C NMR (101 MHz, CDCl3): δ 191.98, 139.86, 137.10, 135.10, 134.64, 134.51, 134.16, 131.33, 131.15, 129.96, 128.75, 127.67, 127.02, 59.31, 49.35, 23.44. HRMS (ESI): calcd for C₁₅H₁₁Br₂N₂NaO₂ [M]⁺ m/z 433.05; found 433.27.

HPLC analysis of 6-bromo-3-nitro-2-phenyl-1,2-dihydroquinoline

Structure	Column	Eluent	Flow rate	Retention time
Br NO ₂	CHIRALPAK	Hexane: 2-PrOH	10 1/ :	8.97min
H Br	OD-H	= 85: 15	1.0 mL/min	10.87min

Appendix

¹ H/¹³C NMR spectra

For yield calculation:

