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Abstract: A new type of I-deficient bismuth oxyiodide Bi3O5I2 with a hollow morphology was
prepared by the solvothermal process. The structure, composition, morphology, optical property
and photoelectric property of the as prepared photocatalyst were investigated through some
characterization methods. Those characterization results showed that Bi3O5I2 displayed a larger
specific surface area, promising band structure and lower recombination of photoinduced carriers
than pure BiOI. Bi3O5I2 had a higher photocatalytic activity than BiOI on the decomposition of methyl
orange (MO) under simulated solar light irradiation. The superoxide (·O2

−) and hole (h+) were the
dominating active species during the degradation of MO. Its stability and reusability performance
showed its great promising application in the degradation of organic pollutant.
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1. Introduction

With increasing concerns on environmentally friendly processes, semiconductor photocatalysts
have been given widely attention because of their promising applications. Among the multitudinous
semiconductor photocatalysts, bismuth oxyiodide (BiOI) with unique layered crystal configuration [1–3]
and excellent visible light absorption [4,5], is a promising photocatalytic material in the field of energy
and environment [6–10]. Nevertheless, the photocatalytic activity of bismuth oxyiodide is far from
potential industrial applications because of their relatively high recombination of photogenerated
carriers and insufficient reduction and oxidation ability [11,12]. For the sake of increasing the
photocatalytic performance of BiOI, measures should be taken to decrease the recombination of
photogenerated carriers and improving its reduction and oxidation ability. So far, many measures have
been taken to enhance the photocatalytic performance of BiOI, such as regulating morphology [13–16],
exposing special crystal face [17–19], doping [20–23], compositing with other semiconductor [24–27]
and synthesizing other bismuth oxyiodides such as Bi4O5I2 [12,28], Bi5O7I [29–31] and Bi7O9I3 [32,33].

Aside from BiOI, I-deficient bismuth oxyiodides have the positive oxidation and reduction
ability [11,12], leading to its high photocatalytic activity. For example, Zhang et al. discovered
that Bi4O5I2 and Bi5O7I displayed enhanced photocatalytic activity for degradation of tetracycline
hydrochloride, bisphenol A and Rhodamine B [11]. Ye et al. synthesized Bi4O5I2 photocatalyst with
excellent activities for photocatalytic H2 evolution [12]. Generally, I-deficient bismuth oxyiodides
were prepared by four methods: (1) Hydrothermal progress using the pH modifier [34], (2) in situ
calcination progress of BiOI [11], (3) hydrolytic process of the bismuth molecular precursor [12],
(4) chemical etching method for bismuth oxides [35]. However, these methods were time consuming
or introduce potential environmental and safety problems. Therefore, a simple method of synthesizing
the I-deficient bismuth oxyiodide is needed.
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It is generally accepted that the morphology of the catalysts has the close relation with the
catalyst performance [36,37]. Photocatalysts with a hollow structure display excellent photocatalytic
performance on account of their high specific surface area. In addition, both their high energy conversion
efficiencies and their strong light-harvesting capacities contribute to their excellent photocatalytic
performance [15,38,39]. For example, Li et al. found that BiOI with hollow structures presented a higher
photocatalytic performance than those BiOI with low-dimensional [15]. Until now, the I-deficient
bismuth oxyiodide with different morphologies are synthesized by several researchers, including
sheet-like morphology [40], rod-like morphology [29] and flower-like morphology [33,41]. However,
there are no reports about synthesizing the I-deficient bismuth oxyiodide with hollow structure.
Therefore, a hollow structure of the I-deficient bismuth oxyiodide should be synthesized.

In this research, a new type of I-deficient bismuth oxyiodide with a hollow structure was prepared
by the hydrothermal progress for the first time. Their structures as well as its photocatalytic ability for
the demineralization of methyl orange (MO) were discussed under systematical characterization.

2. Results

2.1. Molecular Formula Characterization and Phase Transformation

The energy dispersive spectrometry (EDS) apparatus was employed to investigate the chemical
composition on the surface of the as prepared I-deficient bismuth oxyiodide. As shown in Figure 1,
the I-deficient bismuth oxyiodide contained Bi, O and I elements. Meanwhile, the associated EDS
elemental maps confirmed that these elements were distributed homogeneously. As shown in Table S1,
the average Bi:O:I ratio in the surface of the I-deficient bismuth oxyiodide was 3:4.7:2, in conformity
with the molecular formula Bi3O5I2 (3:5:2). This result indicated that its chemical composition possibly
was Bi3O5I2. Meanwhile, the average Bi:O:I ratio of the pure BiOI are 1:1.1:1 (Table S2), which is close
to the ideal ratio for BiOI (1:1:1). This indicated that the result of the EDS was convincing.
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Figure 1. The SEM image of the I-deficient bismuth oxyiodide (a) and Bi, O, I elemental maps of
I-deficient bismuth oxyiodide (b–d).

The inductively coupled plasma (ICP) analysis showed that the percentage of the Bi element in
the bulk bismuth oxyiodide was 64.95%, in conformity with the molecular formula Bi3O5I2 (65%).
Consequently, based on the analysis of ICP and EDS, the molecular formula of the as prepared
I-deficient BiOI can possibly be determined as Bi3O5I2. Therefore, the I-deficient bismuth oxyiodide
was labelled as Bi3O5I2 in the following.

A thermogravimetric (TG) measurement was carried out to evaluate the phase transformation
of Bi3O5I2 and BiOI and the result was shown in Figure 2. In Figure 2, the TG curve of the Bi3O5I2

sample was composed by three mass loss steps. The first mass loss step (250–360 ◦C) was attributed
to the transformation from Bi3O5I2 to Bi4O5I2, whereas the second mass loss step (400–520 ◦C) was
ascribed to the transformation from Bi4O5I2 to Bi5O7I, the third step (580–760 ◦C) was ascribed to the
transformation from Bi5O7I to Bi2O3, which can be illustrated as Equation (1). The weight remaining
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of each phase transformation step in Equation (1) was calculated to be 91.3%, 80.2% and 73.8%,
respectively, which is very similar to the experimental value (91.7%, 80.1% and 73.2%). This result
shows that the molecular formula Bi3O5I2 is correct. According to the results of EDX, ICP and TG,
the as prepared I-deficient bismuth oxyiodide can be determined as Bi3O5I2. The phase transformation
of BiOI

Bi3O5I2
91.3%
→

3
4

Bi4O5I2
80.2%
→

3
5

Bi5O7I 73.8%
→

3
2

Bi2O3 (1)
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shown in Figure 4. It was clearly seen that Bi3O5I2 had a hollow microsphere morphology with an 
average diameter of 1–3 μm and the entire sphere like structures were composed of numerous 
nanoplates (Figure 4a,b). In Figure 4c, there were clearly a contrast between the dark boundary and 
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2.2. Structure Investigation and Morphology Observation

The crystal information of Bi3O5I2 and BiOI were characterized by the X-ray diffraction (XRD),
which was shown in Figure 3. The main diffraction peaks of the as prepared Bi3O5I2 (Figure 3a) could
be clearly seen at 2θ of 10.1, 20.5◦, 29.2◦, 31.7◦, 45.7◦,52.6◦, 55.1◦ and 64.3◦, respectively. According to
the JCPDS file 73–2062, the diffraction peaks at 9.7◦, 29.3◦, 31.9◦, 45.4◦, 51.5◦ and 55.4◦are corresponding
to the (001), (012), (110), (020), (114) and (122) of BiOI, respectively, which is different with the main
diffraction peaks of the as prepared Bi3O5I2.
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The typical scanning electron microscope (SEM) and transmission electron microscopy (TEM)
were shown in Figure 4. It was clearly seen that Bi3O5I2 had a hollow microsphere morphology with
an average diameter of 1–3 µm and the entire sphere like structures were composed of numerous
nanoplates (Figure 4a,b). In Figure 4c, there were clearly a contrast between the dark boundary and
the relatively bright center, which further confirmed their hollow nature [42]. In Figure 4d, clear lattice
fringes showed that the lattice spacing were 0.312 nm and 0.339 nm, which might be the (102) and (101)
plane of Bi3O5I2.
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The surface chemical compositions of the Bi3O5I2 and the pure BiOI, as well as the chemical
states of them, were investigated by the X-ray photoelectron spectroscopy (XPS), which was shown in
Figure 5. In Figure 5a, it could be seen that the surfaces of Bi3O5I2 and BiOI consisted of Bi, O, I and C
elements (C may come from the reference sample), indicating a high purity of Bi3O5I2 and BiOI. In
Figure 5b, the binding energy values of the Bi 4f spectrum of the BiOI was about 158.6 eV and 163.9 eV,
which correspond to Bi 4f7/2 and Bi 4f5/2. It indicated the presence of Bi3+ in the sample [43]. As for the
Bi3O5I2, the peak of Bi 4f7/2 (or 4f5/2) peak could be decomposed into two bimodal peaks of 158.5 eV
and 159.2 eV (or 163.8 eV and 164.5 eV), which could be ascribed to Bi3+ and Bi5+, respectively [44].
The O 1s spectrum of BiOI (presented in Figure 5c) had two peaks. One was at 530.8 eV and the
other was at 532.9 eV. The peak at 530.8 eV should be attributed to the Bi-O bonds the existed in BiOI.
The peak at 532.9 eV should be attributed to the O-H bonds on the surface of BiOI [43]. The O 1s
spectrum of Bi3O5I2 had three peaks at 530.7 eV, 531.4 eV and 532.9 eV. The peak at 530.7 eV belongs
to the Bi3+-O bonds in the Bi3O5I2 lattice [45]. The peak at 531.4 eV belongs to the Bi5+-O bonds in
the Bi3O5I2 lattice [43]. In addition, the peak at 532.9 eV belongs to the O-H bonds that existed on
the Bi3O5I2 surface. As shown in Figure 5d, the two peaks can be observed at 630.1 eV and 618.6 eV.
They were ascribed to I 3d5/2 and I 3d3/2, which could be assigned to the monovalent oxidation state of
the I elements in BiOI [43]. It should be noted that the peaks for I 3d of the Bi3O5I2 samples (630.4
eV and 618.9 eV) presented a 0.3 eV shift to higher binding energy. This implied that the I in Bi3O5I2

possibly existed at a different ambient chemical environment [43]. The XPS character showed that the
Bi in the Bi3O5I2 includes Bi3+ and Bi5+.
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As shown in Figure 6, the specific surface area and the pore size distribution of Bi3O5I2 and BiOI
were analyzed by the N2 absorption and desorption analysis. It was clear to see that all the isotherms
were type IV, which exhibited the presence of mesoporous [43]. The hysteresis loop located at the range
of 0.5–1.0 P/P0 were ascribed to type H3 in the IUPAC classification, indicating that the mesoporous
could be considered as accumulated pores of the sample nanosheets [43]. Moreover, the hysteresis
loop shifts approach P/P0 = 1, implying the existence of macroporous (>50 nm). The BET specific
surface area of the Bi3O5I2 was 26.81 m2/g, while the surface area of BiOI was 13 m2/g, possibly due
to its hollow microsphere structure. The PSD curves showed that the pore size range of Bi3O5I2 and
BiOI was 2–140 nm. The main pore size of Bi3O5I2 was 21 nm, while the main pore size of BIOI was
39 nm. To our best knowledge, the larger specific surface area can lead to the increase of photocatalytic
reaction sites [37]. Therefore, it could be concluded that the Bi3O5I2 might have a higher photocatalytic
activity than BiOI.
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2.3. Optical Property and Photoelectric Property of the Photocatalysts

The UV-vis diffuse reflectance spectroscopy of Bi3O5I2 and BiOI was shown in Figure 7a.
In comparison with BiOI, Bi3O5I2 had a clearly blue shift in the absorption edge, indicating Bi3O5I2 had
a higher energy gap (Eg). This agrees with the results of the I-deficient bismuth oxyiodide reported
in the previous literature [46,47]. Meanwhile, the DRS displayed that the absorption band edge of
Bi3O5I2 was 586 nm, which indicated that Bi3O5I2 had a good visible light absorption [29].
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To estimate the Eg value of Bi3O5I2, a classical Tauc approach was introduced. According to
the equation αhν = K(hν − Eg)n/2 (α, hν, K and Eg are the absorption coefficient, the energy of
irradiation light, a constant and band gap energy, respectively), the Eg value can be calculated [43].
Considering BiOI and Bi3O5I2, were indirect transition semiconductor, the value of n is 4 [31,32,34].
The band gaps of Bi3O5I2 was calculated to be 2.02 eV and higher than that of BiOI (1.89 eV). In order
to determine the relative positions of the valence band edge (VB), the VB-XPS spectra of Bi3O5I2 and
BiOI were measured and shown in Figure 7b. The VB edge of Bi3O5I2 and BiOI was 1.50 eV and
1.42 eV. The conduction band (CB) edge of Bi3O5I2 and BiOI could be obtained using the equation
of ECB = EVB − Eg. Therefore, the CB positions of Bi3O5I2 and BiOI were −0.72 eV and −0.47 eV.
The suitable bang energy of Bi3O5I2 compared to BiOI implied that Bi3O5I2 has a stronger oxidation
and reduction ability than BiOI [43]. As we all know, the electron in the less positive conduction band
edge (CB) has higher reduction ability and the hole in the more positive valence band edge (VB) has
higher oxidization ability. As we all know, the electron in the less positive conduction band edge
(CB) has higher reduction ability and the hole in the more positive valence band edge (VB) has higher
oxidization ability. Therefore, Bi3O5I2 with the less positive CB position and more positive VB position
had the promising photacatalytic activity than BiOI. The energy band structure of Bi3O5I2 and BiOI
were shown in Figure S2. The conduction band edge (CB) and the valence band edge (VB) of Bi3O5I2

were −0.72 eV and 1.50 eV (versus normal hydrogen electrode (NHE)). Since the CB value of Bi3O5I2

was less positive than E0(O2/•O2
−) (−0.046 eV vs. NHE) and the VB value of Bi3O5I2 was more positive

than E0(•OH/OH−) (2.38 eV vs. NHE) [48], the photogenerated electrons can reduce O2 to •O2
− and

the photogenerated holes cannot oxidize OH− to •OH. Meanwhile, the VB value of Bi3O5I2 was more
positive than the redox potential of MO (1.48 eV versus NHE) [49], the photogenerated holes can
oxidize MO directly. The result of active species experiments shown in Figure 11 further confirm the
above results. Based on the band structure analysis, Bi3O5I2 would exhibit effective photocatalytic
performance, owing to its strong oxidation and reduction ability.

The transient photocurrent responses and electrochemical impedance spectroscopy (EIS) were
further explored to estimate the generation and recombination rate of photogenerated electron-hole
pairs, which was displayed in Figure 8. In Figure 8a, it was worth noting that the photocurrent density
of the Bi3O5I2 electrode is much higher than BiOI for each switch-on and -off event. The enhanced
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photocurrent response of the Bi3O5I2 indicated a lower recombination of photogenerated electron-hole
pairs than pure BiOI [50]. The photocurrent response mainly depends on the generation rate
of photoinduced electron-hole pairs and the recombination rate of photogenerated electron-hole
pairs. Meanwhile, the recombination rate of photogenerated electron-hole pairs were the rate
controlling step of the photocurrent response. Just shown in Figure 7a, BiOI had a superior light
harvesting than the I-deficient bismuth oxyiodides. It indicates that BiOI might have a higher
generation rate of photoinduced electron-hole pairs than Bi3O5I2. However, it should be noted
that the recombination rate of photogenerated electron-hole pairs of BiOI was much higher than
Bi3O5I2. Therefore, the photocurrent response of Bi3O5I2 is stronger than that of BiOI. The result of
the electrochemical impedance spectroscopy (EIS) of BiOI and Bi3O5I2 shown in Figure 8b can verify
this result. Bi3O5I2 had a smaller arc radius of the EIS Nyquist plot than BiOI, suggesting an effective
separation of photoinduced electron−hole pairs and fast interfacial charge transfer than BiOI [11].
In conclusion, Bi3O5I2 has a more efficient photocatalytic performance than BiOI.
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2.4. Photocatalytic Performance of the Photocatalysts

The photocatalytic ability of Bi3O5I2 were measured on the decomposing of MO (20 mg/L) in water
under the simulated visible light, which was shown in Figure 9. In Figure 9a, the maximum absorption
of MO shifted from 464 nm to 420 nm in the presence of Bi3O5I2 after irradiation for 180 min [37].
Meanwhile, the color of MO changed from yellow to colorless during the photocatalytic reaction,
which indicated that MO was degraded by Bi3O5I2 under the simulated solar light irradiation.
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The variation of the MO content with the irradiation time was shown in Figure 9b. It can be
seen that 81% of MO was photodegraded by Bi3O5I2 while only 11% of MO was degraded by BiOI.
This confirmed that Bi3O5I2 present higher photoactivities than BiOI. Moreover, it was much higher
than most of the activity data over other similar catalysts reported in previous works, as compared in
Table S3.

The quantum efficiency of the photocatalytic activity is important for the photocatalysts. However,
there is little information about the quantity of electrons needed to degrade a methyl orange molecule
in literatures. Additionally it is also difficult to measure it in our Lab. In order to calculate the quantum
efficiency (QE) of Bi3O5I2 and BiOI, the following equation about the apparent QE is put forward
according to the literature and the calculated process is listed below in detail [12].

The photocatalytic reaction conditions: 100 mL, 20 mg/L methyl orange (MO 327.334 g/mol)
solvent, the moles of MO is 6.11 × 10−6 mol. A light (λ ~ 420 nm) was used and the light intensity was
300 mW·cm−2. The energy can be obtained on the surface (1.3 cm−2) of the reaction mixture solution.
We assumed that it takes m electrons to degrade a methyl orange molecule. n % of MO was degraded
after the t hour. The apparent QE detected under the same photocatalytic reaction condition and
calculated to the equation as below:

QE = number of reacted eletrons
number of incident photons × 100% = 6.11×10−6mol×m×n%

E
hν

= 6.11×10−6mol×m×n%×hc
Eλ

= 6.11×10−6
×m×n%×6.02×1023

×6.63×10−34
×3×108

300×1.3×10−3×t×3600×420×10−9

= 0.00124 m×n%
t

When m = 1, it can be found that the QE of Bi3O5I2 and BiOI were 0.033% and 0.005% at 420 nm.
Based on the above analysis, the high photocatalytic activity of Bi3O5I2 should be ascribed to its

hollow structure, suitable band structure and efficient separation of photogenerated electron–hole
pairs. Firstly, with a hole in microspheres, Bi3O5I2 has a larger surface area (26.81 m2/g) than BiOI
(13.00 m2/g). With a higher surface area, Bi3O5I2 had more active sites and absorb more MO on
its surface. Moreover, the high surface area of hollow structures could promote the transfer of
photoinduced carriers to the surface and enhance the decomposition of MO [37]. Secondly, Bi3O5I2

had a higher CB position and lower VB location than BiOI, which enable the photogenerated electron
and hole of the Bi3O5I2 strong oxidation capability [9]. Thirdly, the photocurrent spectra showed that
Bi3O5I2 had a lower recombination of photoinduced carriers under the simulated light irradiation.
Therefore, Bi3O5I2 should have an enhanced photocatalytic performance since the photocatalytic
activity of the photocatalyst mainly depend on the charge carrier generation and separation [9].

2.5. The Lifetime eValuation of the Photocatalysts

The reusability of the Bi3O5I2 material was investigated by recycling and reusing the catalyst (in
Figure 10). Figure 10a shows no distinct loss in the photocatalytic activity when MO was degraded for
the fourth time. Therefore, the Bi3O5I2 exhibited an excellent stability during the degradation of MO.

In order to evaluate the structural stability of Bi3O5I2, the fresh and used Bi3O5I2 were characterized
by the XRD. The result was shown in Figure 10b. Obviously, there was no apparent change for the
recycled Bi3O5I2 compared with the fresh Bi3O5I2, indicating the Bi3O5I2 are stable and reusable.
Owing to its good photocatalytic activity as well as its stable and reusable character, Bi3O5I2 shows
great potential for the photocatalytic degradation of organic pollutants in waste water.
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would transfer from the valence band to the conduction band, leaving h+ in the valence band and 
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2.6. The Possible Photacatalytic Mechanism

The probe mechanism Bi3O5I2 was further evaluated by the radicals and holes trapping
experiments and the result was shown in Figure 11. Benzoquinone (BQ) was used as the quenching
agent of superoxide radical (•O2

−). Potassium iodide (KI) was used as the scavenger of hole (h+)
and hydroxyl radical (•OH). Tert-butyl alcohol (TBA) was used as the quenching agent of •OH.
Their concentrations in the MO solution were 0.1 mM/L. Figure 11 showed that the degradation of MO
was obviously decreased from 81% to 55% in the presence of KI, indicating that h+ or •OH played
an important role for degrading MO [51]. While, the addition of TBA did not influence the MO
degradation efficiency, indicating that •OH has no effect on the degrading MO. Therefore, it could be
inferred that h+ was the major active species for the degradation of MO. When BQ was added, the MO
degradation efficiency decreased significantly from 81% to 29%, suggesting that •O2

− played the key
role for degrading MO. In conclusion, •O2

− was the primary active species and h+ was the main active
species in the degradation of MO.
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scavenging species.

In conclusion of the analysis above, a possible photocatalytic program was proposed, which was
displayed in Scheme 1. Firstly, the MO molecules were absorbed on the surface of the Bi3O5I2. Secondly,
when the Bi3O5I2 was irradiated by simulated visible light, the photogengenerated electron would
transfer from the valence band to the conduction band, leaving h+ in the valence band and electrons in
the conduction band. Thirdly, h+ are capable of oxidizing MO directly and the electrons were also
believed to be capable of benefiting the oxidation process through reduction of the absorbed O2 into
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•O2
−. As a result, the MO molecular was demineralized to CO2, H2O and other inorganic substances

by the •O2
− and h+.
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3. Materials and Method

3.1. Materials

The bismuth nitrate pentahydrate (99.5 %, Sinopharm Chemical Reagent Co., Ltd. Shanghai,
China), potassium iodide(99.5 %, Sinopharm Chemical Reagent Co., Ltd. Shanghai, China), ethyl alcohol
and ethylene glycol (99.0 %, Sinopharm Chemical Reagent Co., Ltd. Shanghai, China) were used as
received. The distilled water was synthesized by the water purification system.

3.2. Synthesis of the Bi3O5I2 and BiOI

In a typical synthesis route, 0.004 mol of bismuth nitrate pentahydrate and 0.004 mol of potassium
iodide (KI) was dissolved in 40 mL of ethylene glycol under vigorously stirring for 0.5 h, respectively.
After that, the KI solution was added dropwise into the solution which contained bismuth nitrate. Then,
the mixture solution was stirred vigorously for 0.5 h at 25 ◦C and transferred into a 100 mL Teflon-lined
stainless autoclave. The Teflon-lined stainless autoclave was heated to 160 ◦C and maintained for 12 h
in a homogeneous reactor and air-cooled to room temperature. The synthesized precipitates were
centrifuged and washed three times by ethanol and deionized water, and dried at 80 ◦C for 12 h in air.
The sample was labelled as the I-deficient bismuth oxyiodide. Meanwhile, BiOI was prepared with the
method above except using distilled water as the solvent of KI.

3.3. Photocatalyst Characterization

The samples are tested by the X-ray diffraction (XRD) with a D8 ADVANCE X-ray diffractometer
(Cu Kα radiation, λ = 1.54178 Å Karlsruhe, German). A field emission scanning electron microscope
(FE-SEM, JSM-7001F, Kyoto, Japan) was used to characterize the morphology of the samples.
The FE-SEM was equipped with an energy dispersive analysis system of the X-ray spectroscope
(EDS) as well as an elemental mapping system. The images of the transmission electron microscopy
(TEM) for the samples were from a JEOL (JEM-2100F, Kyoto, Japan) operating at 200 kV. The N2

adsorption and desorption isotherms were investigated by a Tristar II 3020 sorptometer (Atlanta, GA,
USA). The operating condition is at 77 K with the samples degassed at 100 ◦C in vacuo. The XPS spectrum
was obtained with a KRATOS X-ray photoelectron spectroscopy(AXIS ULTRA DLD, Manchester, UK).
The diffuse reflectance UV–vis absorbance spectroscopy were recorded by using a spectrophotometer
(Shimadzu UV-2550, Kyoto, Japan) BaSO4 as the reference. The thermogravimetric analysis (TG) was
carried out with a Netzsch STA 449C (Free State of Bavaria, German). In addition, the samples were
heated with 10 ◦C/min from 25 ◦C to 900 ◦C in air atmosphere. The content of Bi was estimated by an
Inductive Coupled Plasma emission spectrometer (Thermo iCAP6300, Waltham, MA, USA). The CHI
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660E electrochemical system (Shanghai, China) was used for photoelectrochemical and electrochemical
measurements and the sample preparation process was the same with the previous report [52].

3.4. Test of Photocatalytic Activity

To evaluate the photocatalytic activities of the as prepared samples, the photocatalytic degradation
of MO was used under simulated visible light with a radiation source of the 300 W Xe lamp (PLS-SXE
300, Beijing, China). A 250 mL home-made reactor combined with a cooling water system was used.
In each experiment, 100 mL of the MO solution (20 mg/L) was put in the reactor. A 25 mg catalyst was
added into the MO solution. After that, the mixture of the MO solution and 25 mg catalyst placed in
the dark was stirred for 60 min. Then, the mixture was exposed to simulated solar light with stirring.
During the process, a 5 mL mixture was sampled at 30 min intervals. In addition, the concentration of
MO in the mixture was measured by a UV–visible spectrophotometer. The spectrophotometer is the
UV-2550 of Shimadzu, Japan, operating at 464 nm with water as a reference.

4. Conclusions

In summary, a new I-deficient bismuth oxyiodide Bi3O5I2 with a hollow structure was successfully
prepared by an ethylene glycol-assisted solvothermal process. The average diameter of the Bi3O5I2

hollow microspheres was 1–3 µm, and the hollow nature contribute to the larger BET specific surface
area than BiOI. The Bi3O5I2 presented a higher photocatalytic performance on the degradation of MO
under simulated solar light irradiation than BiOI did. The enhanced photocatalytic activities of Bi3O5I2

could be contributed to its hollow structure, its appropriate band-gap and its low recombination rate
of photogenerated carriers. The •O2

− and h+ was the main active specie in the degradation of MO.
The result of the stable and reusable performance indicated that Bi3O5I2 showed great potential for the
photocatalytic degradation of organic pollutants in waste water.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/9/709/s1.
Figure S1: SEM images and EDS analysis of as prepared samples in different locations: (a), (b) I-poor bismuth
oxyiodide, (c), (d)BiOI, Figure S2: The energy band structure of Bi3O5I2 and BiOI, Table S1: The elemental
composition of I-poor bismuth oxyiodide, Table S2: The elemental composition of BiOI, Table S3 Photocatalytic
activity of different researches.
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