ESI for

Article

New Cu₄Na₄- and Cu₅-Based Phenylsilsesquioxanes. Svnthesis via Complexation with 1,10-Phenanthroline, Structures and High Catalytic Activity in Alkane Oxidations with Peroxides in Acetonitrile

G. S. Astakhov ^{1,2}, M. M. Levitsky ¹, A. A. Korlyukov ^{1,3}, L. S. Shul'pina ¹, E. S. Shubina ¹, N. S. Ikonnikov ¹, A. V. Vologzhanina ¹, A. N. Bilyachenko ^{1,2,*}, P. V. Dorovatovskii ⁴, Y. N. Kozlov ^{5,6} and G. B. Shul'pin ^{2,5,6,*}

- ¹ Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ulitsa Vavilova, 28, Moscow 119991, Russia
- ² Peoples' Friendship University of Russia, ulitsa Miklukho-Maklaya, 6, Moscow 117198, Russia
- ³ Pirogov Russian National Research Medical University, ulitsa Ostrovitianova, 1, Moscow 117997, Russia
- ⁴ National Research Center "Kurchatov Institute", pl. Akademika Kurchatova, 1, Moscow 123098, Russia
- ⁵ Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, ulitsa Kosygina, 4, Moscow 119991, Russia
- ⁶ Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi pereulok, 36, Moscow 117997, Russia
- * Correspondence: bilyachenko@ineos.ac.ru (A.<u>N.B.); gbsh@mail.ru or shulpin@chph.ras.ru (G.B.S.);</u> Tel.: +7-495-135-9369 (A.N.B.); +7-495-711-8443 (G.B.S.); Fax: +7-499-135-5085 (A.N.B.); +7-495-651-2191 (G.B.S.)

Experiments

Synthesis.

PhSi(OEt)₃, ethanol,dimethylformamide, tetrahydrofuran and 1,10- phenanthroline were purchased from Acros Organics and used as received. All manipulations required no inert atmosphere. IR spectra for **1** and **2** were recorded on Shimadzu IR Prestige21 FTIR spectrometer in KBr pellets. Set of signals: 1600-1400 cm-1 (vC=C, vC=N) 1120 cm⁻¹ (vPh–Si), 940–1100 cm⁻¹ (vasSi–O, vasSi–O–Si), 900 cm⁻¹ (vasSi–O in Si–O–M fragment), 720–680 cm⁻¹ (σC–H of mono-substituted phenyl group)

PhSi(OEt)₃ (2.0 g, 8.3 mmol), NaOH (0.33 g, 8.3 mmol), and 30 mL of an ethanol were placed in a threeneck round-bottom flask (equipped with magnetic stirrer and condenser). The resulting solution was heated under reflux for 2 h and then was cooled to room temperature. Then 0.37 g (2.8 mmol) of CuCl₂ was added at once. The mixture was stirred for 3 h and filtered from NaCl. The filtrate was mixed with 0.5 g (2.8 mmol) of 1,10-phenanthroline in 65 mL of THF. The resulting solution was intensely stirred for 2.5 h with a magnetic stirrer and then filtered from the insoluble precipitate. After approximately 5 days the formation of crystalline material was observed; several single crystals were used for X-ray diffraction analysis (for details of the X-ray diffraction study see below). The rest of the crystalline fraction was separated from the solution, washed with n-heptane, and dried under vacuum. Dried crystalline material was used for XRF analysis (spectrometer VRA-30). Anal. Calcd for [(PhSiO_{1.5})₁₂(CuO)₄(NaO_{0.5})₄(C₁₂H₈N₂)₄]: Cu, 12.93; Na, 0.94; N, 3.42; Si, 13.72. Found (for vacuum-dried sample): Cu, 12.93; Na, 0.94; N, 3.42; Si, 13.72. Yield: 0.34 g (18%). PhSi(OEt)₃ (1.5 g, 6.2 mmol), NaOH (0.19 g, 4.8 mmol), and 25 mL of an ethanol were placed in a threeneck round-bottom flask (equipped with magnetic stirrer and condenser). The resulting solution was heated under reflux for 2 h and then was cooled to room temperature. Then 0.32 g (2.4 mmol) of CuCl₂ was added at once. The mixture was stirred for 3 h at 50°C and filtered from NaCl. The filtrate was mixed with 0.26g (1.4 mmol) of 1,10-phenanthroline in 55 mL of DMF. The resulting solution was intensely stirred for 2.5 h with a magnetic stirrer and then filtered from the insoluble precipitate. After approximately two weeks the formation of crystalline material was observed; several single crystals were used for X-ray diffraction analysis (for details of the X-ray diffraction study see below). The rest of the crystalline fraction was separated from the solution, washed with n-heptane, and dried under vacuum. Dried crystalline material was used for XRF analysis (spectrometer VRA-30). Anal. Calcd for [(PhSiO_{1.5})₆(PhSiO_{1.5})₇(HO_{0.5})₂(CuO)₅(O_{0.25})₂(C1₂H₈N₂)₃]: Cu, 12.38; N, 3.27; Si, 14.22. Found (for vacuumdried sample): Cu, 12.31; N, 3.22; Si, 14.17. Yield: 0.34 g (28%).

datablock	1	2
Brutto formula	$C_{141\cdot 33}H_{133\cdot 67}Cu_4N_8Na_4O_{29\cdot 33}Si_{12}$	$C_{114}H_{100}Cu_5N_8O_{28}Si_{13}$
Formula weight	3096.73	2712.88
Diffractometer	MarExperts mardtb goniostat and Rayonix SX 165 detector	Bruker APEX-II CCD
Scan mode	φ scan	ω and ϕ scans
Anode [Wavelength,]	synchrotron [0.986]	CuKα [1.54178]
Crystal Dimensions, mm	0.14 × 0.25 × 0.9	0.24 × 0.29 × 0.36
Crystal color	blue	blue
Crystal system	monoclinic	triclinic
a,	23.670(5)	16.7871(3)
b,	23.110(5)	20.6126(4)
с,	26.970(5)	37.1418(7)
α, °	90	95.0980(10)
β, °	110.50(3)	100.7880(10)
γ, °	90	95.1000(10)

Table S1. Crystallographic data for 1-2.

Volume, ³	13819(5)	12501.6(4)
Density, gcm ⁻³	1.488	1.441
Temperature,	100	120
K		
T _i /T _{ax}	0.51/0.74	0.5563/0.7528
μ <i>,</i> mm⁻	1.923	2.757
Space group	P2 ₁ /n	ΡŢ
Z	4	4
F(000)	6401	5564
Reflections collected	113928	159003
Independent	15122	42922
reflections		
Reflections $(I > 2\sigma(I))$	12607	29146
Parameters	1544	3017
R _i	0.0608	0.0890
20 i - 20 ax, °	6.750 - 61.890	4.328 - 133.634
wR ₂ (all	0.2397	0.1735
R₁(I>σ(I))	0.1073	0.0616
GOF	1.081	1.018
Q i /Q ax, e -3	-1.277/1.343	-0.629/0.994
Restraints	253	491

Single crystal X-ray studies of **2** were carried out in Center for molecule composition studies of INEOS RAS. X-ray dataset for **1** was collected in Kurchatov Centre for Synchrotron Radiation and Nanotechnology using 'Belok' beamline.

The structures were solved by direct method and refined in anisotropic approximation for non-hydrogen atoms. Hydrogens atoms of methyl, methylene and aromatic fragments were calculated according to

those idealized geometry and refined with constraints applied to C-H bond lengths and equivalent displacement parameters ($U_{eq}(H) = 1.2U_{eq}(X)$, X - central atom of XH₂ group; $U_{eq}(H) = 1.5U_{eq}(Y)$, Y - central atom of YH₃ group. All structures were solved with the ShelXT¹ program and refined with the ShelXL² program. Molecular graphics was drawn using OLEX2³ program.

CCDC 1936365-1936366 contains the supplementary crystallographic data for **1-2**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures.

References:

1. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

2. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

3. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K., Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341