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Abstract: A new photocatalytic reactivity of carbon-nanodot-doped graphitic carbon nitride
(CD-C3N4) with alkenes and dienes, has been disclosed. We have shown that CD-C3N4 photosensitizes
the oxidation of unsaturated substrates in a variety of solvents according to two competing mechanisms:
the energy transfer via singlet oxygen (1O2) and/or the electron transfer via superoxide (O·−2). The
singlet oxygen, derived by the CD-C3N4 photosensitized process, reacts with alkenes to form allylic
hydroperoxides (ene products) whereas with dienes, endoperoxides. When the electron transfer
mechanism operates, cleavage products are formed, derived from the corresponding dioxetanes.
Which of the two mechanisms will prevail depends on solvent polarity and the particular substrate.
The photocatalyst remains stable under the photooxidation conditions, unlike the most conventional
photosensitizers, while the heterogeneous nature of CD-C3N4 overcomes usual solubility problems.

Keywords: photocatalyst; photosensitizer; graphitic carbon nitride; singlet oxygen; photooxidation
mechanism; ene products

1. Introduction

Graphitic carbon nitride (g-C3N4) is recently one of the most studied heterogeneous, metal-free
photocatalysts. g-C3N4 is a polymeric material, composed of highly abundant elements such as
carbon and nitrogen, thermally stable and nontoxic. Ever since the synthesis of this material in bulk
quantities [1–3], a large number of reports concerning the photochemical properties and photocatalytic
activity were published. Next, the demand to optimize the photocatalytic properties of g-C3N4 was
inevitable. The relatively low band gap energy Eg of 2.7 eV and high conduction and valence bond
positions of the photocatalyst [4] prompted many research groups to improve the photocatalytic
activity of g-C3N4. This was achieved by doping the surface of the catalyst with a variety of metallic
elements [3,5–11], oxides [12,13], sulfides [14] even graphene [15] and carbon nanotubes [16].

It is important to note here that structure-controlled g-C3N4 is a highly efficient photocatalyst for
water splitting to produce hydrogen, in an internal quantum yield of 26.5% under visible light [17]. In
a more recent article [18], the metal-free carbon-nanodot-doped graphitic carbon nitride (CD-C3N4)
impressively photocatalyzed the water splitting via a two-electron mechanism. Although many studies
concern the photochemical activity and spectroscopic data analysis of g-C3N4 as well as modification of
its surface [19], applications to organic transformations are limited. For example, graphitic C3N4 as well
as its surface-doped-materials, catalyze a few reactions; a) photoacetalization of aldehydes/ketones [20]
b) the Friedel-Crafts reaction of benzene [21] c) oxidation of alcohols using transition metal doped
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g-C3N4 [22–25] d) oxidation of sulfides to sulfoxides using oxidized g-C3N4 (CNO). In addition,
selective oxidations of benzylic C-H bonds utilizing mesoporous g-C3N4 with N-OH co catalysts have
been reported [26–29].

Herein, following our recent work in this field [30], we report a new approach that utilizes
carbon-nanodot-doped g-C3N4 (CD-C3N4) as a visible light photocatalyst for the direct photooxidation
of alkenes via the intermediacy of singlet oxygen to allylic hydroperoxides as well as the {4 + 2}
cycloaddition of singlet oxygen to hexacyclodiene. We also demonstrate chemically that in CD-C3N4

photosensitized reactions, electron transfer and singlet oxygen mechanisms are in competition,
depending mostly on the nature of the substrate and the polarity of the solvent. In addition, the
CD-C3N4 mediated photooxygenation results were compared with those derived using conventional
singlet oxygen photosensitizers.

Singlet molecular oxygen (1O2, 1∆g) plays an important role in chemical [31], biological [32,33] and
therapeutic processes [34,35], as well as in the degradation of food and materials [36–38]. Historically,
although 1O2 was discovered more than 80 years ago [39,40], and until the early 1960s was considered
to be a molecular species of passing astrophysical interest and rather limited as a research subject. The
pioneering work by Foote and Wexler [41,42], provided strong evidence for the formation of 1O2 as the
reactive intermediate in photosensitized processes in solution. Today, the use of 1O2 as a reagent in
organic synthesis has received remarkable attention [43,44].

2. Results and Discussion

In the present work, the photocatalyst g-C3N4 was prepared according to the procedure described
by Tang and coworkers [45], while the carbon nanodots via thermal decomposition of sucrose [46].
The so produced nanodots were deposited by heating on the g-C3N4 surface to provide the metal-free
carbon-nanodot-doped g-C3N4 (CD-C3N4). Details on the experimental conditions as well as the
spectroscopic characterization are described in our previous work [30].

Photosensitized oxidations were performed in a 4 mL pyrex cell containing 0.09 M solution of
2,3-dimethylbut-2-ene (1) in a variety of solvents with 4 mg/mL of the insoluble CD-C3N4 photocatalyst.
While bubbling oxygen at 20 ◦C, the solution was irradiated for a period of 30 min. A 300 W xenon
lamp was utilized as the visible light source. The photooxidation reaction was followed by GC and/or
1H NMR analysis after filtration from celite followed by reduction of the allylic hydroperoxides with
triphenylphosphine to the corresponding allylic alcohols.

We report here the unprecedented photooxygenation of alkenes utilizing CD-C3N4 as the
photosensitizer. The electron rich tetramethylethylene (1) was chosen as the singlet oxygen acceptor,
Scheme 1. Within a few minutes of irradiation, the allylic hydroperoxide 1a (see GC chromatograms
S16, S17 and S18) was formed followed by reduction with Ph3P to the corresponding allylic alcohol 1b
(GC chromatogram S19).
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Scheme 1. CD-C3N4 photosensitized oxidation of tetramethylethylene (1).

The GC and/or 1H NMR analysis of product 1b, as can be seen in S2, showed identical results with
those when typical singlet oxygen photosensitizers, such as rose Bengal (RB) or tetraphenyl-porphyrine
(TPP), were utilized. The production of allylic hydroperoxides by the sensitized photooxygenation of
alkenes, the so called “ene or Schenck” reaction, was studied several years ago, for its synthetic [43,44],
mechanistic [47,48] and theoretical [49,50] point of view. Furthermore, addition of a small amount of
1,4-diazabicyclo[2.2.2]octane (DABCO), a well-known 1O2 quencher [51,52], into the reaction mixture,
Scheme 1, retarded completely the production of allylic hydroperoxides. This is an additional indication
of the 1O2 involvement as the reactive intermediate in the above-mentioned reaction.
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The kinetics of the CD-C3N4 photosensitized oxygenation of 1, Scheme 1, was examined in a
variety of solvents. Reaction progress at several conversions was easily monitored by GC analysis.
Diglyme was used as the internal standard. First, assuming that during the photooxygenation, the
oxygen concentration remains constant while there is a first-order dependence of the reaction rate on
the tetramethylethylene (1) concentration, the following equation can be applied: kt = −ln (1 − x) where
k, t, and x define the rate constant, the irradiation time, and the conversion of tetramethylethylene,
respectively. However, an adequate linear correlation was not found. Therefore, we simply plot
the conversion of tetramethylethylene (1) vs the illumination time, as shown in Figure 1. The plot
(Figure 1) shows that the rate of product formation depends on solvent polarity, e.g., in EtOAc, is
favored compared to CCl4 by roughly a factor of two.

Catalysts 2019, 9, x FOR PEER REVIEW 3 of 12 

 

hydroperoxides. This is an additional indication of the 1O2 involvement as the reactive intermediate 
in the above-mentioned reaction. 

The kinetics of the CD-C3N4 photosensitized oxygenation of 1, Scheme 1, was examined in a 
variety of solvents. Reaction progress at several conversions was easily monitored by GC analysis. 
Diglyme was used as the internal standard. First, assuming that during the photooxygenation, the 
oxygen concentration remains constant while there is a first-order dependence of the reaction rate on 
the tetramethylethylene (1) concentration, the following equation can be applied: kt = −ln (1 − x) where 
k, t, and x define the rate constant, the irradiation time, and the conversion of tetramethylethylene, 
respectively. However, an adequate linear correlation was not found. Therefore, we simply plot the 
conversion of tetramethylethylene (1) vs the illumination time, as shown in Figure 1. The plot (Figure 
1) shows that the rate of product formation depends on solvent polarity, e.g., in EtOAc, is favored 
compared to CCl4 by roughly a factor of two. 

 

Figure 1. Conversion % vs irradiation time of CD-C3N4 sensitized photooxidation of 
tetramethylethylene. 

Next, we examined the regioselectivity of the present oxidation system with an alkyl 
trisubstituted alkene, Scheme 2. For this purpose, the regiospecifically deuterium labeled alkene 2 
was synthesized (see S3, S4, S5 and S6) and was used as an appropriate substrate for sensitized 
photooxygenation using two different catalysts, one conventional photosensitizer (TPP) and the 
photocatalyst CD-C3N4. It is well established that double bond formation via singlet oxygen ene 
reaction will occur preferentially in the most substituted side of the alkyl substituted double bond 
[53]. Indeed, as seen in Table 1 (entries 1 and 2), both conventional (TPP) and CD-C3N4 photocatalysts 
upon visible light irradiation show, within experimental error, identical regioselectivity. For example, 
2a and 2b which can be seen in S7 and S8, are the main products (cis effect) [53], while the E-methyl 
group is highly unreactive. This result is again a strong evidence of 1O2 involvement, excluding the 
involvement of other reactive oxygen species (ROS). 

 

Scheme 2. Sensitized Photooxidation of 2-(1,1,1-trideuteromethyl)-5-methylhex-2-ene (2). 

Table 1. Photooxidation of alkyl trisubstituted alkene 2 with TPP and CD-C3N4. 

Entry Photocatalyst Regioselectivities (%) b 

Figure 1. Conversion % vs irradiation time of CD-C3N4 sensitized photooxidation of tetramethylethylene.

Next, we examined the regioselectivity of the present oxidation system with an alkyl trisubstituted
alkene, Scheme 2. For this purpose, the regiospecifically deuterium labeled alkene 2 was synthesized
(see S3, S4, S5 and S6) and was used as an appropriate substrate for sensitized photooxygenation using
two different catalysts, one conventional photosensitizer (TPP) and the photocatalyst CD-C3N4. It is
well established that double bond formation via singlet oxygen ene reaction will occur preferentially in
the most substituted side of the alkyl substituted double bond [53]. Indeed, as seen in Table 1 (entries
1 and 2), both conventional (TPP) and CD-C3N4 photocatalysts upon visible light irradiation show,
within experimental error, identical regioselectivity. For example, 2a and 2b which can be seen in S7
and S8, are the main products (cis effect) [53], while the E-methyl group is highly unreactive. This
result is again a strong evidence of 1O2 involvement, excluding the involvement of other reactive
oxygen species (ROS).

Catalysts 2019, 9, x FOR PEER REVIEW 3 of 12 

 

hydroperoxides. This is an additional indication of the 1O2 involvement as the reactive intermediate 
in the above-mentioned reaction. 

The kinetics of the CD-C3N4 photosensitized oxygenation of 1, Scheme 1, was examined in a 
variety of solvents. Reaction progress at several conversions was easily monitored by GC analysis. 
Diglyme was used as the internal standard. First, assuming that during the photooxygenation, the 
oxygen concentration remains constant while there is a first-order dependence of the reaction rate on 
the tetramethylethylene (1) concentration, the following equation can be applied: kt = −ln (1 − x) where 
k, t, and x define the rate constant, the irradiation time, and the conversion of tetramethylethylene, 
respectively. However, an adequate linear correlation was not found. Therefore, we simply plot the 
conversion of tetramethylethylene (1) vs the illumination time, as shown in Figure 1. The plot (Figure 
1) shows that the rate of product formation depends on solvent polarity, e.g., in EtOAc, is favored 
compared to CCl4 by roughly a factor of two. 

 

Figure 1. Conversion % vs irradiation time of CD-C3N4 sensitized photooxidation of 
tetramethylethylene. 

Next, we examined the regioselectivity of the present oxidation system with an alkyl 
trisubstituted alkene, Scheme 2. For this purpose, the regiospecifically deuterium labeled alkene 2 
was synthesized (see S3, S4, S5 and S6) and was used as an appropriate substrate for sensitized 
photooxygenation using two different catalysts, one conventional photosensitizer (TPP) and the 
photocatalyst CD-C3N4. It is well established that double bond formation via singlet oxygen ene 
reaction will occur preferentially in the most substituted side of the alkyl substituted double bond 
[53]. Indeed, as seen in Table 1 (entries 1 and 2), both conventional (TPP) and CD-C3N4 photocatalysts 
upon visible light irradiation show, within experimental error, identical regioselectivity. For example, 
2a and 2b which can be seen in S7 and S8, are the main products (cis effect) [53], while the E-methyl 
group is highly unreactive. This result is again a strong evidence of 1O2 involvement, excluding the 
involvement of other reactive oxygen species (ROS). 

 

Scheme 2. Sensitized Photooxidation of 2-(1,1,1-trideuteromethyl)-5-methylhex-2-ene (2). 

Table 1. Photooxidation of alkyl trisubstituted alkene 2 with TPP and CD-C3N4. 

Entry Photocatalyst Regioselectivities (%) b 

Scheme 2. Sensitized Photooxidation of 2-(1,1,1-trideuteromethyl)-5-methylhex-2-ene (2).



Catalysts 2019, 9, 639 4 of 12

Table 1. Photooxidation of alkyl trisubstituted alkene 2 with TPP and CD-C3N4.

Entry Photocatalyst Conversion (%) a Irradiation Time (min)
Regioselectivities (%) b

2a 2b 2c

1 TPP 100 5 56 31 13
2 CD-C3N4 34 30 58 29 13

a, b Determined by 1H NMR analysis.

The second mode of 1O2 reactivity is the {4 + 2} cycloaddition to conjugated dienes to yield
endoperoxides. We demonstrate here, Scheme 3, that CD-C3N4 photosensitizes the addition of
singlet oxygen to 1,3-cyclohexadiene (3) to produce efficiently endoperoxide 3a (Figure 2, S9) in
ambient conditions.
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Furthermore, apart from oxygen photoactivation, the CD-C3N4 catalyst was tested for promoting
an electron transfer process. The proposed two mechanisms for the sensitized photooxygenation of
organic substrates were initially classified by Gollnick [54] as Type I and Type II as shown below in
Scheme 4.
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The two mechanisms, Type I and Type II as well as singlet oxygen (1O2) and superoxide (O·−2)
formation, are always in competition. Which of them will prevail depends on the nature of the
photocatalyst, the solvent, the substrate’s nature and the concentration. In Type II mechanism
singlet oxygen is produced by energy transfer whereas superoxide anion (O·−2) by electron
transfer mechanism. To check the electron transfer ability of CD-C3N4 catalyst, the electron rich
2-(4-methoxyphenyl)-3-methylbut-2-ene (4) was prepared (see S11). This substrate apart from 1O2

acceptor is also a good electron donor. The results from the irradiation of aryl alkene 4 in a variety of
solvents and sensitizers, Scheme 5, are shown in Table 2.
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Entry Photocatalyst Solvents 4a % a 4b % b 4c % c Conversion %

1 TPP CCl4 76 24 - 100d

2 RB CDCl3 70 30 - 100d

3 MB CH3CN 66 34 - 100d

4 DCA CD3CN 61 27 12 87d

5 CD-C3N4 CDCl3 53 31 16 80
6 CD-C3N4 CD3CN 58 27 15 70
7 CD-C3N4 Benzene 53 31 16 67
8 CD-C3N4 EtOAc 53 29 18 65
9 CD-C3N4 EtOH - - 100 100

10 CD-C3N4 CDCl3 - - - - e

11 no catalyst CDCl3 traces traces - <1 f

a, b ene reaction products; c electron transfer products determined by 1H-NMR analysis; d 5 min irradiation at 0 ◦C;
e in the dark for 3 h, determined by 1H NMR and GC analysis; f irradiated without any photocatalyst. Samples after
0.5 h, 1.0 h and 2 h were analyzed by 1H NMR and GC analysis.

For comparison reasons, apart from CD-C3N4, four sensitizers were utilized in the above reaction
(entries 1–4). Rose Bengal (entry 2, RB), TPP (entry 1) and methylene blue (entry 3, MB) are well studied
singlet oxygen photosensitizers. However, 9,10-dicyano-anthracene (entry 4, DCA), an electron poor
compound, sensitizes the photooxygenation by both singlet oxygen and electron transfer mechanisms
depending on the particular substrate and the polarity of the solvent [55].

Irradiation of 4 in the presence of TPP, RB or MB as photosensitizers afforded the allylic
hydroperoxides 4a and 4b in a ratio of approximately 7:3. These hydroperoxides are typical singlet
oxygen products whose ratio 7:3 is independent of solvent polarity [47,56] or the para-substitution
of the phenyl ring. However, the DCA-photosensitized oxygenation of 4 in acetonitrile (entry 4),
afforded apart from the ene products 4a and 4b considerable amount of p-methoxy-acetophenone
(4c). In this case, the results are supported by both electron transfer and singlet oxygen mechanisms.
Similarly, in the CD-C3N4 catalyzed photooxidation of 4 in non protic solvents, apart from the
allylic hydroperoxides 4a and 4b, considerable amounts of 4c in the range of 15–18% were obtained.
These results are also similar with those derived earlier from DCA photosensitized oxygenation of
diphenyl-ethylene [55]. p-Methoxy-acetophenone 4c is most probably produced from the cleavage of
dioxetane 4d via the intermediacy of superoxide anion (O·−2) through an electron transfer mechanism,
as shown in Scheme 6. The formation of superoxide anion O·−2 and not a hydroxyl radical has been
also recently documented [20]. We must note here that control experiments either with the CD-C3N4

in dark (entry 10) or without the photocatalyst under irradiation conditions (entry 11) did not show
any detectable oxidation products (entry 10) or small traces observed by 1H NMR and GC analysis
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(entry 11). It is interesting to note here that when this reaction was run in EtOH as the solvent (entry 9,
Table 2), the cleavage product 4c was exclusively obtained in 100% conversion. This result indicates
that under these conditions, electron transfer is the only operating mechanism (Scheme 6). However,
it is not clear at the present why the irradiation of CD-C3N4 surface in EtOH, promotes the electron
transfer mechanism leading exclusively to cleavage products 4c, (entry 9, Table 2). Most probably,
among some other unknown at the time reasons, the polar protic solvent ethanol stabilizes favorably
the pair of radical ions (anion + cation) favoring dramatically the electron transfer path producing
exclusively the superoxide anion (O·−2) as the reactive intermediate.
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To assess further the extent of electron transfer efficiency of CD-C3N4 surface in a polar and
non protic solvent, the photooxidation of 1,1-di(p-anisyl)ethylene (5) was performed (Scheme 7). An
electron transfer test can be probed by utilizing substrate 5; an electron rich alkene, not reactive with
singlet oxygen. Scheme 7 shows the CD-C3N4 sensitized photooxygenation of 5 in acetonitrile.
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Scheme 7. Photooxidation of 5 with CD-C3N4 as photocatalyst.

This reaction afforded exclusively and quantitatively the cyclic peroxide 5a (Figure 3, S15), by
cycloaddition of photochemically produced two radical cations of 5 and one super oxide anion.
Similar results under the same conditions have been reported previously [57,58], when DCA was the
photosensitizer. Furthermore, upon addition of a small quantity of 1,3,5-trimethoxybenzene, the above
reaction, Scheme 7, was retarded. This result supports an electron transfer mechanism considering that
the lower oxidation potential of a donor molecule (1,3,5-trimethoxybenzene) than the corresponding
potential of the competing electron donor alkene, [55], quenches the electron transfer pathway from
the alkene to the sensitizer. Similar mechanism was published earlier by Ericksen and Foote [55],
when in their case, electron deficient DCA was used as the photocatalyst and 1,1-diphenylethylene or
tetramethylethylene were used as the substrates.
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3. Materials and Methods

3.1. General

All solvents and tetramethylethylene (1) (2,3-dimethylbut-2-ene), 4-bromoanisole,
3-methyl-2-butanone, 1,3-cyclohexadiene (3) were purchased from Sigma-Aldrich (Munich-
Germany) in the highest purity and were used without any purification. In addition, the photosensizers
5, 10, 15, 20-tetraphenyl-21H,23H-porphyrine (TPP), 9,10-dicyano-anthracene (DCA), methylene blue
(MB) and Rose Bengal (RB) were purchased from Sigma-Aldrich.

Column chromatographic separations were carried out by a flash chromatography system using
silica gel and hexane/ethyl acetate or petroleum ether/ethyl acetate solvent mixtures. For thin layer
chromatography (TLC), Merck silica gel (grade 60 F245, Merck & Co., Kenilworth, NJ, USA) was used.

The progress of the photooxidation reactions was monitored by gas chromatography
using SHIMADZU GC-2014 gas chromatograph FID detector, (HP-5 capillary column
30 m× 0.32 mm× 0.25 µm, 5% diphenyl and 95% dimethylpolysiloxane) and by 1H-NMR. NMR spectra
were recorded at room temperature on Bruker DPX-300 and Bruker Avance series 500. Chemical shifts
(δ) are reported in ppm relative to the residual solvent peak (CDCl3, δ: 7.26, 13CDCl3, δ: 77.0, CD3CN,
δ: 1.94), and the multiplicity of each signal is designated by the following abbreviations: s, singlet; d,
doublet; t, triplet; q, quartet; m, multiplet; br, broad. Coupling constants (J) are quoted in Hz.

3.2. General Photooxidation Method

In a suitable 4 mL pyrex cell were initially added 0.5–2.0 mL of the solvent and the CD-g-C3N4

catalyst in concentration 4 mg mL−1. Next, the compound, which will be oxidized was added, using a
25 µL syringe. The corresponding amounts were: 93 mM of tetramethylethylene (1), 12 × 10−3 mM
of (E)-2-(1,1,1-trideuteromethyl)-5-methylhex-2-ene (alkene 2), 130 mM of 1,3-cyclohexadiene (3) and
110 mM of 1-methoxy-4-(3-methylbut-2-en-2-yl)benzene (aryl alkene 4). Also, the photosensitizers TTP,
MB, DCA or RB were used for control experiments in catalytic amounts (0.5–1.0 mg). In the experiments
which include the quenchers; 1,4-diazabicyclo[2.2.2]octane (DABCO) or 1,3,5-trimethoxybenzene, they
were added in the amount of 1% mole in proportion to the oxidizing substance. The test tube was then
placed into an ice bath in a pyrex receptacle, at a distance of approximately 10 cm from the visible light
source (variable intensity Xenon bulb, Cermax 300 W). Oxygen was transferred inside the test tube
by a syringe under gentle and continuous flow (gentle bubbling). The reaction was usually left for
30 min., or 60 min. At the end, the carbon nitride catalyst was removed by simple filtration through
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cotton cloth and celite. In the cases where deuterated solvents were used, they were not evaporated,
and the conversion was determined by 1H NMR analysis. In all the other cases with non-deuterated
solvents, either they were evaporated under reduced pressure and the conversion was determined
by 1H NMR analysis using CDCl3 or with aprotic solvent the reaction progress was monitored by
gas chromatography.

3.3. Synthesis of 2-(4-methoxyphenyl)-3-methylbut-2-ene (4)

• Synthesis of 2-(4-methoxyphenyl)-3-methylbutan-2-ol
Under dry nitrogen atmosphere, 220 mg of Mg turnings (9.00 mmol) were dissolved in dry

diethyl ether (10 mL). Then, 0.8 mL (6.50 mmol) of 4-bromoanisole were initially dissolved in extra
dry diethyl ether (4 mL) and the solution was added dropwise, while the mixture was stirred. In
order to initiate the reaction, 1 granule of iodine was added to the mixture. The reaction was then
heated at 35 ◦C (reflux) for about 45 min. The reaction was then cooled to room temperature and
3-methyl-2-butanone (0.7 mL, 6.50 mmol) was added dropwise. After the addition of the ketone, the
reaction was heated again to reflux (35 ◦C) for 30 min. The reaction mixture was quenched with
distilled water (20 mL) and after addition of saturated NH4Cl (4 mL) the mixture was extracted with
diethyl ether (2 × 15 mL). The combined organic layers were dried over MgSO4 and evaporated to
dryness. Pure 2-(4-methoxyphenyl)-3-methylbutan-2-ol was obtained after silica gel chromatography
(petroleum ether/EtOAc v/v, 10/1), 250 mg. 1H NMR (CDCl3, 300 MHz) δ: 7.33 (d, 2H, J = 8.8 Hz), 6.86
(d, 2H, J = 8.8 Hz), 3.80 (s, 3H), 1.99 (m, 1H), 0.86 (d, 3H, J = 6.8 Hz), 0.82 (d, 3H, J = 6.8 Hz).

• Synthesis of aryl alkene 4
2-(4-methoxyphenyl)-3-methylbutan-2-ol (250 mg, 1.03 mmol) was heated neat with catalytic

amount of I2 (1/2 granule) at 120 ◦C for 1 minute. Then, the reaction was cooled at room temperature
and then extracted with diethyl ether (3 × 10 mL), distilled water (10 mL) and saturated Na2S2O3

(4 mL). The organic layers were dried over MgSO4 and the solvents were evaporated to dryness. Pure
2-(4-methoxyphenyl)-3-methylbut-2-ene was obtained after brief purification by a short pad of silica
with Hexane/EtOAc v/v, 50/1 with 20% overall yield (230 mg). 1H NMR (CDCl3, 300 MHz) δ: 7.05 (d,
2H, J = 8.7 Hz), 6.84 (d, 2H, J = 8.7 Hz), 3.81 (s, 3H), 1.94 (s, 3H), 1.80 (s, 3H), 1.60 (s, 3H). 13C NMR
(CDCl3, 500 MHz) δ: 157.54, 137.68, 132.22, 129.40, 126.94, 113.26, 55.18, 22.07, 20.87, 20.57.

3.4. Synthesis of 2-(1,1,1-trideuteromethyl)-5-methylhex-2-ene (2)

Alkene 2 was prepared (synthesis of similar deuterated alkenes have been
reported [59]) by the following method: Wittig coupling of the stabilized ylide
methyl(triphenylphosphoranylidene)propionate (1.64 g, 4.7 mmol) with 2-methylbutanal (0.39 g,
4.5 mmol) in dry CH2Cl2 (10 mL) at RT overnight, gave the E configuration of the corresponding
ester in 94–96% isomeric purity by 1H NMR analysis. The isolated yield was 80% (0.56 g). 1H NMR
(500 MHz, CDCl3) δ: 0.89 (d, J = 7.0 Hz), 1,72 (m, 1H), 1.75 (s, 3H), 2.02 (m, 2H), 3.69, (s, 3H), 6.76
(m, 1H).

Reduction of the above ester (0.7 g, 4.4 mmol) with LiAlD4 (0.126 g, 3 mmol) in diethyl ether, at
0 oC, gave the corresponding dideuterio allylic alcohol, in 90% yield (0.52 g). 1H NMR (500 MHz,
CDCl3) δ: 0.89 (d, J = 6.5 Hz, 6H), 1.65 (m, 1H), 1.66 (s, 3H), 1.91 (t, J = 7.0 Hz, 2H), 5.43 (td, J = 7.0,
1.5 Hz, 1H).

Next, this allylic alcohol (0.5 g, 3.8 mmol) was brominated with Br2 (0.76 g, 4.75 mmol) and Ph3P
(1.19 g, 4.55 mmol) in 10 mL of dry dichloromethane. The isolated yield of the allylic bromide was
50.6% (0.372 g, 1.92 mmol). 1H NMR (500 MHz, CDCl3) δ: 0.89 (d, J = 6.5 Hz, 6H), 1.65 (m, 1H), 1.74 (s,
3H), 1.91 (t, J = 7.5 Hz, 2H), 5.62 (td, J = 7.5 Hz, 1.5 Hz, 1H).

Finally, reduction of the above allylic bromide (295 mg, 1.52 mmol) in dry diglyme (2mL) with
LiAlD4 (23.8 mg, 0.57 mmol) in diglyme (2 mL) was left at RT overnight, followed by the usual quench
with two drops of water. Finally, the reaction mixture was heated at 150 ◦C, for 1.5 h, and 75 mg of the
alkene (E)-2 were distilled from diglyme.
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Compound (E)-2: 1H NMR (500 MHz, CDCl3,) δ: 0.86 (d, J = 11.0 Hz, 6H), 1.55 (m, 1H), 1.56
(s, 3H), 1.85 (t, J = 7.0 Hz, 2H), 5.13 (t, J = 12.0 Hz, 1H).

3.5. Synthesis of 1,1-di(p-anisyl)ethylene (5)

Alkene 5 was prepared by the following method: in a solution of bis(4-methoxyphenyl)methanone
(0.87 g, 3.6 mmol) in dry THF (40 mL), MeLi (2 mL) was added at 0 ◦C. After 24 h the reaction mixture
was quenched with a few drops of H2O. The reaction mixture was acidified with 3N HCl, and washed
with NH4Cl and H2O solutions. After drying the organic layer, and evaporation of the solvent, 0.76 g
(87 %) of alkene 5 was isolated as a solid. 1H NMR (500 MHz, CDCl3,) δ: 3.83 (s, 6H), 5.29 (s, 2H), 6.87
(d, J = 9 Hz, 4H), 7.28 (d, J = 9 Hz, 4H).

4. Conclusions

In conclusion, we have shown that CD-C3N4 photocatalyst sensitizes the photooxidation of
unsaturated compounds. With simple alkenes and dienes, the singlet oxygen mechanism operates
efficiently producing the allylic hydroperoxides and endoperoxides respectively. In the case of aryl
alkenes, efficient electron donor molecules, both 1O2 and/or electron transfer mechanisms can be
achieved. Which of these competing mechanisms will prevail depends on the nature of substrate
and the protic-non protic solvents. Finally, the easy modification of graphitic carbon nitride to bulk
amounts of CD-C3N4 shows the following advantages: a) photocatalyzes the oxidation of a variety of
alkenes and dienes b) the reaction is heterogeneous, a simple celite filtration removes the catalyst which
can be reused at least three times c) stability of the catalyst under the photooxidation conditions unlike
most of the conventional photosensitizers and d) the heterogeneous nature of the present photocatalyst
overcomes solubility problems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/8/639/s1, 1H
NMR spectra of compounds 1a and 1b: S2, 1H NMR spectrum of E- ester, precursor of alkene 2: S3, 1H NMR
spectrum of allylic alcohol-d2, precursor of alkene 2: S4, 1H NMR spectrum of allylic bromide-d2 precursor of
alkene 2: S5, 1H NMR spectrum of alkene 2: S6, 1H NMR spectrum o 2a, 2b, 2c (TPP as the photosensitizer): S7, 1H
NMR spectrum of 2a, 2b, 2c (CD-C3N4 as the photocatalyst): S8, 1H and 13C NMR spectra of compound 3a: S9, 1H
NMR spectrum of 2-(4-methoxyphenyl)-3-methylbutan-2-ol, precursor of alkene 4: S10, 1H and 13C NMR spectra
of aryl alkene 4: S11, 1H NMR (CD3CN) spectrum of 4a, 4b, 4c, products from the photooxidation of alkene 4: S12,
1H NMR (CDCl3) spectrum of 4a, 4b, 4c, products from the photooxidation of alkene 4: S13, 1H NMR spectrum
of alkene 5: S14, 1H and 13C NMR spectra of 5a after photooxidation of alkene 5: S15, GC Chromatogram of
compound 1a in Acetonitrile: S16, GC Chromatogram of compound 1a in Ethyl acetate: S17, GC Chromatogram
of compound 1a in Chloroform-d: S17, GC Chromatogram of compound 1a in Hexane: S18, GC Chromatogram of
compound 1a in Carbon tetrachloride: S18, GC Chromatogram of compound 1b in Dimethyl sulfoxide: S19.
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