Supporting Information

On the mechanism of Carbon Dioxide Reduction on Sn-based Electrodes: Insights into the Role of Oxide Surfaces

Giane B. Damas,^{*a} Caetano R. Miranda^b, Ricardo Sgarbi^c, James M. Portela^c, Mariana R. C. Casale^c, Fabio H. B. Lima^c and C. Moyses Araujo^{*a}

^a Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden.
^b Institute of Physics, University of São Paulo, 05508-090, São Paulo, Brazil.
^c Institute of Chemistry, University of São Paulo, 13560-970, São Carlos, Brazil.

Figure S1- Sn 3d XPS spectra of Sn-1 (a) and Sn-2 (b) electrodes. The black lines represent the experimental data and the red lines represent the fitted data. Binding energies were referenced to the C 1s peak at 284.4 eV for graphitic carbon. The association of the peaks with the tin phase is included as a figure inset. The fitted data suggest the presence of SnO₂ and Sn⁰ phases on the tin foil surface.

Figure S2: Faradaic current and faradaic current efficiencies for formate production at - 1.3 V *vs.* RHE, obtained during the stability text for the Sn-1 electrode. The electrolyte was sampled for each elapsed hour for chromatography analysis.

Figure S3- Alternative pathways for the first hydrogenation process on the O-site (a and b) and Sn-site (c), with no formic acid as the resulting product. Values are given vs. RHE.