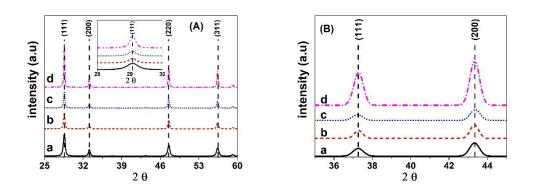


Article

The effect of CeO₂ preparation method on the carbon pathways in dry reforming of methane on 5 wt% Ni/CeO₂ studied by transient techniques

Constantinos M. Damaskinos¹, Michalis A. Vasiliades¹, Vassilis N. Stathopoulos², Angelos M. Efstathiou^{1,*}

- ¹ Heterogeneous Catalysis Laboratory, Chemistry Department, University of Cyprus, 2109 Nicosia, Cyprus; damaskinos.constantinos@hotmail.com (C.M.D.); michael_vasiliades@hotmail.com (M.A.V.)
- ² Laboratory of Chemistry and Materials Technology, General Department, School of Sciences, National and Kapodistrian University of Athens, GR-34400 Athens, Greece; <u>vasta@uoa.gr</u> (V.N.S.)
- * Correspondence: efstath@ucy.ac.cy (A.M.E.); Tel.: +357 22 892776


2. Results

2.1. Catalysts surface texture and structural properties

Table S1. Textural and structural characterization of 5 wt% Ni/CeO₂ (-TD, -PT, -HT and -SG) DRM fresh catalysts.

Catalyst (5 wt% Ni)	SSA (m ² g ⁻¹)	V _P (cm ³ g ⁻¹)	d₽ (nm)	d c (nm)	a (Å)	d Ni (nm)	D _{Ni} (%)
CeO ₂ -TD	23	0.102	17.7	19.6ª	5.4088ª	11.0 ^b	8.8 ^b
CeO2-1D	23	0.102	17.7	19.0-	5.4000	12.4 ^c	7.8°
CeO2-PT	5.6	0.032	22.5	29.9ª	5.4091ª	13.6 ^b	7.1 ^b
CeO2-1 1	5.0	0.052	22.0	27.5	5.4071	15.9°	6.1°
CeO2-HT	50	0.203	15.8	11.5ª	5.4104ª	8.4 ^b	11.5 ^b
Ce02-111	50	0.203	15.6	11.5		10.1°	9.6 ^c
CeO2-SG	14.5	0.029	6.7	43.1ª	a 5.3988a	20.8 ^b	4.7 ^b
CeO2-3G	14.5	0.029	0.7	45.1"	5.5900	28.5°	3.4°

^a estimated based on the 2θ =28.7° diffraction peak of CeO₂ (111) face; ^b estimated based on the 2θ =37.2° diffraction peak of NiO (111) face and after considering the mass densities of Ni^o and NiO phases; ^c estimated from TPD studies.

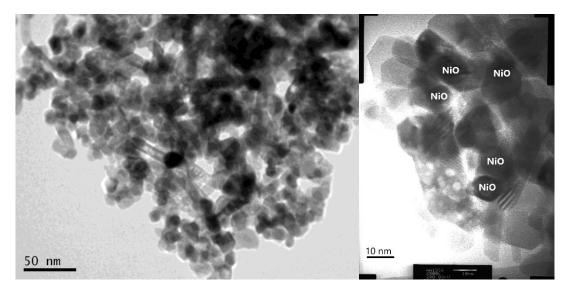


Figure S1. Powder X-ray diffractograms of 5 wt% Ni supported on (a) CeO₂-TD, (b) CeO₂-PT, (c) CeO₂-HT and (d) CeO₂-SG carriers in the (A) 20-70° 2θ and (B) 35-45° 2θ region (diffraction peaks of NiO).

2.2. Transmission Electron Microscopy (TEM) studies

Representative HR-TEM micrographs include structural and morphological information about the fresh 5 wt% Ni supported on CeO₂ prepared by the hydrothermal (HT) method (Figs. S2). The 50 nm resolved image shows that the support consists of agglomerated polyhedral primary crystallites (10-20 nm) of CeO₂. In addition, Fig. S2 image resolved at 10 nm, clearly shows NiO particles in the 8-12 nm range. The latter results correspond closely with the PXRD and H₂-TPD studies reported in Results section and Table S1.

Figure S2. Representative HR-TEM images of the calcined (air, 750 °C/4 h) 5 wt% Ni/CeO₂-HT catalyst. Left graph: magnification at 50 nm unit scale; Right graph: magnification at 10 nm unit scale.

2.3. Scanning Electron Microscopy (SEM) studies

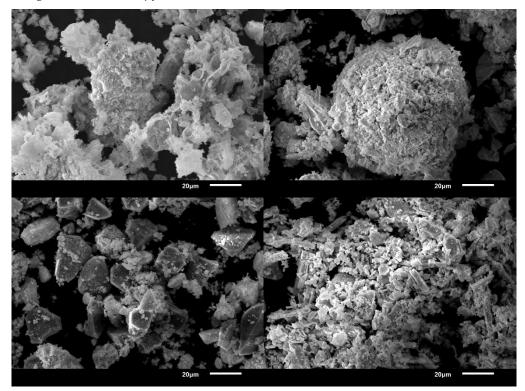


Figure S3. SEM images of the fresh Ni/CeO₂-SG (top left), Ni/CeO₂-PT (top right), Ni/CeO₂-HT (down left) and Ni/CeO₂-TD (down right).

2.4. Catalytic performance studies during DRM

Table S2. Catalytic activity in terms of CH4, CO2 conversion (XCH4, XCO2, %), H2 Yield (%) and H2/CO gas
product ratio obtained after 30 min in DRM at 750 °C for the four ceria supports prepared by different
methods.

Catalyst (5 wt% Ni)	Хсн4 (%)	Xco2 (%)	H2 Yield (%)	H ₂ /CO
CeO ₂ -TD	87.5	87.4	58.4	1.2
CeO ₂ -PT	89.8	89.5	51.4	1.2
CeO ₂ -HT	93.2	91	55.3	1.2
CeO ₂ -SG	81.2	90.3	48.6	1.1

Table S3. Catalytic stability performance in terms of CH₄, CO₂ conversion (X_{CH4}, X_{CO2}, %), H₂ Yield (%), H₂/CO gas product ratio and carbon deposition (mg C g^{-1}_{cat}) obtained during DRM (20% CH₄/20% CO₂/He) at 750 °C over the 5 wt% Ni/CeO₂-PT solid.

TOS (h)	Х _{СН4} (%)	Xco2 (%)	H2 Yield (%)	H ₂ /CO	C deposition (mg C g ⁻¹ cat)
0.5	89.8	89.5	51.4	1.2	-
1	89.4	88.6	51.2	1.2	-
2	89.2	88.2	50.8	1.2	-
6	89.1	88.0	50.8	1.2	-
12	87.9	87.7	50.4	1.2	30.7
24	75.2	84.6	50.0	1.2	-
36	74.6	84.1	47.6	1.1	-
50	74.1	83.0	45.4	1.1	147.1

Catalyst 5 wt% Ni	Хсн4 (%)	Xco2 (%)	H2 Yield (%)	H ₂ /CO
CeO ₂ -TD	97.9	91.3	97.6	1.1
CeO ₂ -PT	98.5	91.6	95.6	1.1
CeO ₂ -HT	98.5	92.0	99.4	1.1
CeO ₂ -SG	95.0	92.0	79.1	1.0

Table S4. Catalytic activity in terms of CH₄, CO₂ conversion (X_{CH4}, X_{CO2}, %), H₂ Yield (%) and H₂/CO gas product ratio obtained after 30 min in DRM (5 vol% 13 CO₂/5 vol% 12 CH₄/He) at 750 °C.

2.5. Characterization of carbon formed under different reaction conditions

Table S5. Carbon accumulation (mg C g_{cat}-1) estimated via TPO followed individual reactions over allcatalysts at 750 °C; 20 vol% CO₂/20 vol% CH₄/He (12h), 5 vol% ¹³CO₂/5 vol% ¹²CH₄/He (30 min), 20 vol%CH₄/He (30min), 20 vol% CO/He (30 min), 2.5 vol% ¹³CO/2.5 vol% ¹²CH₄/He (20 min).

Catalyst (5 wt% Ni)	DRM (12 h)	¹³ CO ₂ / ¹² CH ₄ (30 min)	CH4 decomp. (30 min)	CO dissoc. (30 min)	¹³ CO/ ¹² CH ₄ (20 min)
CeO ₂ -TD	66.2	0.13	145.1	13.7	67.2
CeO ₂ -PT	30.7	-	99.5	32.2	63.5
CeO2-HT	115.1	0.35	81.1	9.2	103.4
CeO ₂ -SG	80.4	0.34	128.3	7.7	78

2.6. Participation of support's lattice oxygen under DRM conditions

Table S6. ¹⁸O consumption (mmol g⁻¹) during ¹⁶O/¹⁸O exchange, C¹⁸O formation (mmol g⁻¹) during DRM following ¹⁶O/¹⁸O oxygen exchange, and C¹⁸O/¹⁸O ratio.

Catalyst (5 wt% Ni)	¹⁸ O consumption (mmol g ⁻¹)	C ¹⁸ O production (mmol g ⁻¹)	C ¹⁸ O/ ¹⁸ O
CeO ₂ -TD	12.4	5.9	0.48
CeO ₂ -PT	11	3.5	0.31
CeO ₂ -HT	11.4	6.5	0.57
CeO ₂ -SG	10.2	3.3	0.32

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).