Assessment of photocatalytic production of hydrogen from biomass or wastewaters depending on the metal co-catalyst and its deposition method on TiO₂

Mikel Imizcoz, Alberto V. Puga**

Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022 Valencia, Spain.

⁺ Current address: Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. dels Països Catalans, 26, 43007 Tarragona, Spain

alberto.puga@urv.cat

Supporting Information

Table S1. Product yields for the photocatalytic reforming of glucose under simulated solar light on
<i>M</i> /TiO ₂ . ^[a,b]

Photocatalyst	Production rate/	TOF ^[c] /s ⁻¹	
	H ₂	CO ₂	H ₂
^{H,DP} Au/TiO ₂	993.8	73.8	1171
^{H,DP} Ag/TiO ₂	320.2	17.0	298
^{H,DP} Cu/TiO ₂	560.4	59.0	44
^{H,DP} Pt/TiO ₂	1706.9	250.3	306
^{PD} Au/TiO₂	905.6	83.8	2169
^{PD} Ag/TiO ₂	402.4	30.7	796
^{PD} Cu/TiO ₂	904.3	56.3	134
^{PD} Pt/TiO ₂	1912.7	158.2	1353
™Au/TiO₂	298.3	10.3	5993
™Ag/TiO ₂	203.8	13.2	1099
™Cu/TiO₂	259.3	23.0	27
[™] Pt/TiO ₂	157.1	29.6	52

^[a] Stirred suspensions of the photocatalyst (25 mg) in aqueous glucose (5% w/v, 25 mL) were irradiated under simulated solar light (AM1.5G, 1.0 kW m⁻²) under Ar atmosphere (1.4 bar) at 25 °C for 2 h. ^[b] Estimated standard deviations for H₂ production rates lie within a ± 5% error bar, as determined by independent results. ^[c] The activities per active site (TOF) were calculated according to the average cocatalyst particle size as listed in Table 1, assuming semi-spherical morphology and {111} facet surface atom densities.

						global saccharide		molar	
T/°C	cycle yield/% ^[b]					yield/% ^[c]	conversion/% ^[d]	balance/% ^[d]	
		glucose	xylose	HMF	furfural				
100		7.6	C7 A			10.2	24 5	06.0	
160	#1	7.6	67.4	-	-	18.3	21.5	96.8	
	#2	4.8	18.4	-	-	7.2	30.6	94.9	
	#3	3.7	7.8	-	-	4.5	35.0	95.0	
	overall	16.2	93.6	-	-	29.9	35.0	95.0	
180	#1	9.1	22.2	4.3	23.9	11.5	41.3	77.9	
	#2	4.9	10.0	2.6	2.1	6.5	59.2	69.0	
	#3	3.0	7.0	2.0	0.5	4.2	70.3	63.8	
	overall	17.1	39.2	8.9	26.6	22.1	70.3	63.8	

Table S2. Hydrolysis of α -cellulose in acidic aqueous media in short thermal cycles at different temperatures.^[a]

concentrations of biomass-derived oxygenated substances in the hydrolysate used for photocatalytic H_2 production experiments

		c/%(w/v)			
160	#1	0.53	0.85	-	-
		<i>c/</i> %(mM)			
160	#1	29.5	56.5	-	-

^[a] Reaction conditions: α -cellulose (6.00 g) in aqueous HCl (1% w/v, 60 mL), N₂ atmosphere, heated to the specified temperature (ramp ≈ 10 °C min⁻¹) and then, allowed to cool down naturally to room temperature. ^[b] Yields relative to the expected amounts of either glucose or xylose ($\approx 85:15 w/w$) units in the starting α cellulose, as determined by HPLC using an Aminex[®] HPX-87H column. ^[c] Global yields relative to the total
amount of saccharide units in the starting α -cellulose. ^[d] Conversions and molar balances are cumulative.

H ₂	CO ₂
< 0.1	64.1
0.2	75.8
0.1	129.3
17.3	125.8
2.9	93.4
	0.2 0.1 17.3

Table S3. Product yields for the photocatalytic reforming of the α -cellulose hydrolysate obtained after a first hydrolysis cycle at 160 °C^[a] under simulated solar light^[b] either directly or after UV pre-treatment^[c] on *M*/TiO₂

[b] for simulated sunlight, but using an Hg lamp (125 W, \approx 1.5 kW m⁻²). ^[e] Determined by HPLC using an Aminex[®] HPX-87H column.

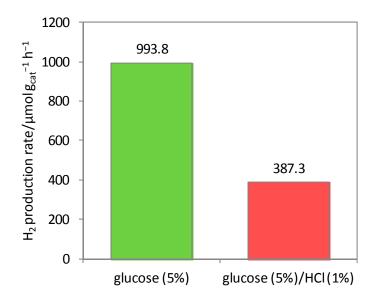


Figure S1. Photocatalytic H₂ yields from aqueous glucose at either natural pH or in an HCl-acidified medium on ^{H,DP}Au/TiO₂. Stirred suspensions of the photocatalyst (25 mg) in aqueous glucose (5% w/v, 25 mL, without or with HCl, 1% w/v) irradiated under simulated solar light (AM1.5G, 1.0 kW m⁻²) under Ar atmosphere (1.4 bar) at 25 °C for 2 h.

Figure S2. Picture showing the amber colour of the α -cellulose hydrolysate (left) obtained at 160 °C (cycle #1, see Table S2 footnote), and the bleaching effect caused by the UV photocatalytic treatment leading to an almost colourless solution (right).

Table S4. Chemical characteristics of the rice husks hydrolysate,^[a] and wastewaters used in photocatalytic experiments.

biomass hydrolysate or wastewaters	_c/%(w/v)	[b]				COD ^[c] / mg L ⁻¹	[N] ^[d] / mg L ^{−1}	σ ^[e] / μS cm ⁻¹
	sucrose	glucose	xylose	HMF	furfural			
rice husks hydrolysate	-	0.27	0.88	< 0.01	0.02	≈ 10 ^{3 [f]}	-	-
municipal wastewater	-	< 0.01	-	-	-	389	25	2130
juice production wastewater	0.02	0.04	0.03	-	-	≈ 10 ^{2 [f]}	-	2850

^[a] Reaction conditions: milled rice husks (6.00 g) in an aqueous solution of concentrated HCl (1% w/v, 60 mL), N₂ atmosphere, heated to the specified temperature (ramp \approx 10 °C min⁻¹) and then, allowed to cool down naturally to room temperature. ^[b] Determined by HPLC using an Aminex[®] HPX-87H column. ^[c] COD: Chemical Oxygen Demand. ^[d] The major N species was [NH₄]⁺. ^[e] Conductivity (σ) measured using a Crison CM 35 device and a Crison + Pt 1000 Conductivity Cell. ^[f] Estimated from HPLC data.

Table S5. Product yields for the photocatalytic reforming of wastewaters under simulated solar light^[a] on M/TiO_2

Photocatalyst	Production rate/ μ mol g _{cat} ⁻¹ h ⁻¹		
	H ₂	CO ₂	
municipal wastowator			
municipal wastewater			
^{H,DP} Au/TiO ₂	< 0.1	15.8	
^{H,DP} Cu/TiO ₂	0.1	18.2	
juice production wastewater			
^{H,DP} Au/TiO ₂	115.1	306.9	
^{H,DP} Cu/TiO ₂	10.7	291.2	
^[a] Stirred suspensions of the photocataly	vst (25 mg) in the corresponding wastewater (25 mL) v	were irradiated	

^[a] Stirred suspensions of the photocatalyst (25 mg) in the corresponding wastewater (25 mL) were irradiated under simulated solar light (AM1.5G, 1.0 kW m⁻²) under Ar atmosphere (1.4 bar) at 25 °C for 2 h.