Supplementary Materials

PPh₃-Assisted Esterification of Acyl Fluorides with Ethers via C(*sp*³)-O Bond Cleavage Accelerated by TBAT

Zhenhua Wang¹, Xiu Wang¹, and Yasushi Nishihara^{2,*}

- ¹ Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan; <u>ptpl9ag1@s.okayama-u.ac.jp</u> (Z.W.); <u>p5ri81bx@s.okayama-u.ac.jp</u> (X.W.)
- ² Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan; <u>vnishiha@okayama-u.ac.jp</u> (Y.N.)
- * Correspondence: <u>ynishiha@okayama-u.ac.jp</u>; Tel.: +81-86-251-7855

Table S1. Screening the Amounts of TBAT and PPh₃

entry ^a	PPh₃ (x equiv)	TBAT (y equiv)	yield (%) ^b
1	-	0	0
2	-	0.2	27
3	-	1.0	53
4	-	1.5	61
5	0.2	1.0	70
6	0.3	1.0	74
7	0.5	1.0	73
8	1.0	1.0	74

^{*a*}**1a** (0.2 mmol), PPh₃, and TBAT in CPME (2 mL) at 130 °C for 24 h. ^{*b*}Determined by GC analysis of the crude mixture, using dodecane as an internal standard.

R ¹ F +	O ^{Me}	TBAT (1.5 equiv) 130 ℃ 24 h	R ¹ 3
entry ^a	\mathbb{R}^1		yield (%)
1	Н		60 ^b
2^c	Н		71 ^b
3	Ph		69 ^d
4^c	Ph		92 ^{<i>d</i>}

Table S2. Effect of PPh₃

^{*a*}**1a** (0.2 mmol), and TBAT (0.3 mmol) in CPME (2 mL) at 130 °C for 24 h. ^{*b*}Determined by GC analysis of the crude mixture, using dodecane as an internal standard. ^{*c*}30 mol % of PPh₃ was added. ^{*d*}Determined by NMR analysis of the crude mixture, using dibromomethane as an internal standard.

Detection of Ph₃SiF

To a 20 mL Schlenk tube containing PPh₃ (15.7 mg, 0.06 mmol, 30 mol %) and TBAT (108 mg, 0.2 mmol, 1 equiv), were added [1,1'-biphenyl]-4-carbonyl fluoride (**1b**) (40.0 mg, 0.2 mmol) and CPME (2.0 mL). Subsequently, the resulting mixture was heated at 130 °C for 24 h. After the reaction mixture was cooled down to room temperature. The $^{19}F{}^{1}H{}$ NMR spectrum was measured in CDCl₃.

¹H NMR (600 MHz) spectrum of **2c** (CDCl₃, rt).

¹H NMR (600 MHz) spectrum of **3d** (CDCl₃, rt).

¹H NMR (400 MHz) spectrum of **3h** (CDCl₃, rt).

 ^1H NMR (400 MHz) spectrum of **31** (CDCl₃, rt).

¹H NMR (400 MHz) spectrum of **3t** (CDCl₃, rt).

 1 H NMR (400 MHz) spectrum of **3v** (CDCl₃, rt).

¹H NMR (600 MHz) spectrum of **3bb** (CDCl₃, rt).

