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Abstract: RuO2 has been used for various applications because of its good catalytic properties.
To further improve its electrocatalytic properties, we used a nanocasting technique. By using this
technique, we obtained structure-controlled (SC) RuO2 with a high surface area and an ordered porous
structure, which created enhanced electrocatalytic properties over commercial RuO2 nanoparticles
for both oxygen and chlorine evolution reactions.

Keywords: ruthenium oxide; KIT-6; nanocasting; oxygen evolution reaction; chlorine
evolution reaction

1. Introduction

The oxygen evolution reaction (OER) is an important core reaction for electrochemical energy
conversion systems such as fuel cells, water splitting, and metal–air batteries [1,2]. The chlorine
evolution reaction (CER) is also an essential reaction in the chlor–alkali process for the chemical
industry, which uses chlorine as the main raw material. [3]. RuO2 is considered as a highly active metal
oxide material for both the OER and CER [4,5]. However, RuO2 has the fatal problem of a very high
unit price due to low reserves. Therefore, many research techniques have been developed to reduce
its usage by enhancing its electrocatalytic properties [6–9]. Among these techniques, nanocasting is
a facile and versatile structure design technique for synthesizing various nanostructures through
replication of the microporous or mesoporous siliceous or non-siliceous materials for use as hard or
soft templates. The nanocasting technique is a process by which the structure of the replicate can be
obtained by filling the pores of the template with a metal precursor, followed by optional treatment and
final removal of the template [10–13]. In this work, we demonstrate a structurally controlled ordered
mesoporous RuO2 replica through the nanocasting technique with mesoporous KIT-6 silica material as
a template; the results reveal highly enhanced electrocatalytic activity and stability for OER and CER
over commercial RuO2 nanoparticles.

2. Results and Discussion

Figure 1a–c show representative transmission electron microscopy (TEM) and high-resolution
TEM (HRTEM) images of the KIT-6 template. These images display a well-ordered mesoporous
KIT-6 structure. Figure 1d shows the small-angle X-ray scattering (SAXS) pattern of the KIT-6 in
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the range of 2θ = 0.3–5.0◦. Characteristic peaks of the crystalline KIT-6 phase (211), (220) and (332)
planes appeared at 0.9◦, 1.04◦ and 1.71◦, respectively. This SAXS result can be assigned to a cubic
ordered three-dimensional Ia3d symmetry structure [14,15], indicating that the obtained KIT-6 template
has a well-ordered pore structure. The mesoporous properties of KIT-6, namely the pore-volume
(0.975 cc g−1), the pore size (9.056 nm) and the surface area (868.3 m2 g−1), were revealed by a nitrogen
adsorption–desorption isotherm (Figure 1e).
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(Figure 2c) exhibit a crystalline phase of RuO2 (JCPDS No. 43-1027).  

Figure 1. (a) TEM image, (b and c) HRTEM images, (d) SAXS pattern and (e) nitrogen
adsorption–desorption isotherm (right: pore size distribution) of the KIT-6.

Figure 2 compares the structural properties of the structure-controlled (SC) RuO2 obtained using
the KIT-6 template and the commercial RuO2 (Figure 2). Unlike RuO2, which shows an aggregated
spherical particle structure with a particle size of about 26 nm in TEM and HRTEM images (Figure 2a),
SC RuO2 shows the shape of a framework structure and the same cubic symmetry as the KIT-6
template (Figure 2b). Furthermore, the particle wall thickness of SC RuO2 is almost the same as the
pore size of the KIT-6 template (KIT-6 pore size: 9.056 nm and particle wall thickness of SC RuO2:
approximately 9 nm). The X-ray diffraction (XRD) patterns of both SC RuO2 and commercial RuO2

(Figure 2c) exhibit a crystalline phase of RuO2 (JCPDS No. 43-1027).



Catalysts 2019, 9, 549 3 of 7
Catalysts 2019, 9, x FOR PEER REVIEW 3 of 7 

 

 
Figure 2. TEM and HRTEM image of (a) RuO2 and (b) structure-controlled (SC) RuO2. (c) XRD 
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SAXS patterns of RuO2 and SC RuO2. (f) EDS spectra of KIT-6, RuO2 and SC RuO2. 
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estimate the electrocatalytic activities. Even though the onset potentials were the same for each 
catalyst (1.2 V and 1.1 V vs. Ag/AgCl for OER and CER, respectively), the peak current density of SC 
RuO2 for OER was 272.7 mA cm-2, which is 1.77 times higher than that of RuO2 (154.1 mA cm-2). In 
addition, the current density of SC RuO2 for CER reached 616.4 mA cm-2, which is 1.75 times higher 
than that of RuO2 (352.1 mA cm-2). EIS analysis was also performed at a constant voltage of 1.2 V for 
OER and 1.1 V for CER at frequencies from 100 kHz to 0.1 Hz with an amplitude of 5 mV to compare 
the charge transport ability between SC RuO2 and RuO2 during the OER (Figure 3c) and CER (Figure 
3d). In the Nyquist plot, the quasi-semicircle is related to the Faradaic reactions at the electrode 
surface, and the diameter refers to the charge transfer resistance (Rct) [18,19].  

Figure 2. TEM and HRTEM image of (a) RuO2 and (b) structure-controlled (SC) RuO2. (c) XRD patterns,
(d) nitrogen adsorption–desorption isotherm (inset: pore size distribution of SC RuO2), (e) SAXS
patterns of RuO2 and SC RuO2. (f) EDS spectra of KIT-6, RuO2 and SC RuO2.

To confirm the mesoporosity and long-range pore order of SC RuO2,
nitrogen adsorption–desorption isotherm and SAXS analysis were performed, respectively.
SC RuO2 possesses a typical mesoporosity with a type IV isotherm hysteresis loop [16] and a pore size
between 2 nm and 50 nm (SC RuO2: 20.7 nm), while RuO2 exhibits nonporous properties (Figure 2d).
It is noteworthy that the surface area of SC RuO2 (69.1 m2 g−1) is seven times higher than that of
RuO2 (9.5 m2 g−1). In SAXS patterns (Figure 2e), only SC RuO2 shows two typical peaks of the
long-range pore order properties between 2θ = 0.5◦ and 1.0◦ [17]. Through energy dispersive X-ray
spectrometer (EDS) analysis (Figure 2f), we confirmed that the KIT-6 was completely removed in the
SC RuO2 material.

The electrochemical analyses (linear sweep voltammetry (LSV), electrochemical impedance
spectroscopy (EIS) and chronoamperometry (CA)) for OER and CER over the prepared catalysts were
performed in a 0.5 M H2SO4 solution and a 5 M NaCl + 0.01 M HCl solution, respectively (Figure 3).
LSV analyses were performed at a scan rate of 10 mV s−1 for OER (Figure 3a) and CER (Figure 3b) to
estimate the electrocatalytic activities. Even though the onset potentials were the same for each catalyst
(1.2 V and 1.1 V vs. Ag/AgCl for OER and CER, respectively), the peak current density of SC RuO2 for
OER was 272.7 mA cm−2, which is 1.77 times higher than that of RuO2 (154.1 mA cm−2). In addition,
the current density of SC RuO2 for CER reached 616.4 mA cm−2, which is 1.75 times higher than that of
RuO2 (352.1 mA cm−2). EIS analysis was also performed at a constant voltage of 1.2 V for OER and
1.1 V for CER at frequencies from 100 kHz to 0.1 Hz with an amplitude of 5 mV to compare the charge
transport ability between SC RuO2 and RuO2 during the OER (Figure 3c) and CER (Figure 3d). In the
Nyquist plot, the quasi-semicircle is related to the Faradaic reactions at the electrode surface, and the
diameter refers to the charge transfer resistance (Rct) [18,19].
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Figure 3. (a,c,e) OER in a 0.5 M H2SO4 solution and (b, d and f) CER in a 5 M NaCl + 0.01 M HCl
solution over SC RuO2 and RuO2. (a,b) LSV curves at a scan rate of 10mV s−1. Nyquist plots at
a constant voltage of (c) 1.2 V and (d) 1.1 V at frequencies from 100 kHz to 0.1 Hz with an amplitude of
5 mV. CA curves at a constant voltage of (e) 1.25 V and (f) 1.15 V.

In both reactions, the Nyquist plots obtained via EIS analysis show smaller semicircles for SC
RuO2 than for RuO2, which is related to the enhanced charge transfer ability of SC RuO2. The obtained
electrolyte resistance (Rs) and the Rct for OER (Rs: 11.2 Ω, Rct: 430.6 Ω) and CER (Rs: 5.1 Ω, Rct:
144.9 Ω) of SC RuO2 were lower than those of RuO2 (Rs: 12.0 Ω, Rct: 589.4 Ω for OER and Rs: 6.1 Ω,
Rct: 170.9 Ω for CER). Finally, CA tests were performed to examine the stability of SC RuO2 and RuO2

during OER and CER. Constant voltages of 1.25 V and 1.15 V vs. Ag/AgCl for the OER and CER,
respectively, were applied for 60 min. As Figure 3e,f show, the current density of the OER and CER
remains higher than that of SC RuO2 during the reaction time, which suggests that the SC RuO2 catalyst
has high stability in both reactions. These electrochemical property results suggest that the potential
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for initiating each reaction is the same due to the same constituent elements in both RuO2 catalysts,
but the reaction rate and the stability of the SC RuO2 are much better than that of the RuO2 because of
the distinct structural properties of SC RuO2, namely, its high surface area and mesoporosity.

3. Materials and Methods

3.1. Synthesis of KIT-6 Nanoparticles

Mesoporous silica KIT-6 nanoparticles were prepared following a reported study in the
literature [20]. Pluronic P123 (33.8 g, Aldrich, Saint Louis, MO, USA) was dissolved in distilled
water (1220 mL), and hydrochloric acid (54.2 mL, 35%, Aldrich, Saint Louis, MO, USA) and 1-buthanol
(45.9 mL, Aldrich, Saint Louis, MO, USA) were added. Then, 92.8 mL of tetraethyl orthosilicate
(TEOS, 98%, ACROS, Belgium) was added and the mixture was continuously stirred at 35 ◦C for 24 h.
The final mixture was heated at 100 ◦C for 24 h. The white solid product was obtained by filtration and
calcined at 550 ◦C for 6 h in air.

3.2. Preparation of Structure-Controlled RuO2 (SC RuO2) Catalyst

The replication process of the SC RuO2 from KIT-6 as a template is depicted in Scheme 1.
The replica was prepared by an incipient wetness impregnation (IWI) method using a RuCl3·xH2O
precursor (Aldrich, Saint Louis, MO, USA) and as-prepared KIT-6. The ruthenium precursor (1.09 g)
was dissolved in 10 mL of ethanol. This mixture was infused into 0.3 g of KIT-6. After the ethanol
was evaporated, the sample was exposed to 28% ammonia vapor at 60 ◦C and calcined at 500 ◦C for
3 h [21]. After being calcined, the obtained powder was added to a 1 M NaOH solution to remove
the KIT-6 template. The template-free product was collected by centrifugation, washed with distilled
water and dried at 60 ◦C.
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Scheme 1. Replication process for synthesizing SC RuO2 by the nanocasting technique using
KIT-6 nanoparticles.

3.3. Characterization

The crystal structure was characterized by SAXS (Rigaku, SmartLab, Japan) and an XRD (Rigaku,
Ultima IV, Japan) equipped with a 2D detector (Hypix-3000) using Cu K-alpha (λ = 0.154 nm, 1.5401 A).
HRTEM (TECNAI, G2 T-20S, Japan) equipped with an EDS was used to verify the structural morphology
and elemental composition of the prepared catalysts. Nitrogen adsorption–desorption analysis was
conducted at 77 K using a physical adsorption instrument (Micromeritics, ASAP 2020, Norcross, GA,
USA). To calculate the apparent surface area and the pore size distributions, the Brunauer–Emmett–Teller
(BET) method and the Barret–Joyner–Halenda (BJT) theory were used, respectively. Electrochemical
properties were investigated using LSV, EIS and CA techniques. These electrochemical analyses were
carried out using a three electrode half-cell system connected to a potentiostat (ZIVE MP2A, WonATech,
Seoul, Korea). A glassy carbon (0.196 cm2), an Ag/AgCl (1 M KCl) and a Pt wire (diameter: 0.5 mm,
length: 50 mm, surface area: 0.7 cm2) were used as a working electrode, a reference electrode and
a counter electrode, respectively. The catalysts were mixed with a 5 wt% Nafion solution (catalyst:
Nafion = 90:10 wt%) and loaded onto the glassy carbon electrode (0.2 mg cm−1).
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4. Conclusions

In this study, we successfully synthesized a well-ordered mesoporous SC RuO2 catalyst via
a nanocasting technique using a KIT-6 template. SC RuO2 exhibited highly improved electrocatalytic
properties in terms of both activity and stability for the oxygen and chlorine evolution reactions
over the commercial RuO2 catalyst. The improved electrochemical performance of SC RuO2 could
be attributed to the following unique structural features: (i) well-distributed pores could promote
electrolyte permeability for faster reactant migration, and (ii) framework structures with thin walls
could accelerate electrocatalytic reactions by enlarging the surface area.
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