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Abstract: Catalytic partial oxidation (CPO) of logistic fuels is a promising technology for the
small-scale and on-board production of syngas (H2 and CO). Rh coated monoliths can be used as
catalysts that, due to Rh high activity, allow the use of reduced reactor volumes (with contact time in
the order of milliseconds) and the achievement of high syngas yield. As the CPO process is globally
exothermic, it can be operated in adiabatic reactors. The reaction mechanism of the CPO process
involves the superposition of exothermic and endothermic reactions at the catalyst inlet. Thus, a
hot spot temperature is formed, which may lead to catalyst deactivation via sintering. In this work,
the effect of the flow rate on the overall performance of a CPO-reformer has been studied, using
iso-octane as model fuel. The focus has been on thermal behavior. The experimental investigation
consisted of iC8-CPO tests at varying total flow rates from 5 to 15 NL/min, wherein axially resolved
temperature and composition measurements were performed. The increase of flow rate resulted in a
progressive increase of the hot spot temperature, with partial loss of activity in the entry zone of the
monolith (as evidenced by repeated reference tests of CH4-CPO); conversely, the adiabatic character
of the reformer improved. A detailed modelling analysis provided the means for the interpretation of
the observed results. The temperature hot spot can be limited by acting on the operating conditions of
the process. However, a tradeoff is required between the stability of the catalyst and the achievement
of high performances (syngas yield, reactants conversion, and reactor adiabaticity).
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1. Introduction

Nowadays, the industrial sector (mining, manufacturing, agriculture, construction, and others)
accounts for the largest share in energy consumption all around the world. According to IEA,
the transportation sector ranks at the second position in terms of energy consumption and projections
show that, in the 2015–2040 period, its demand for energy will grow more quickly than the industrial
field, reaching 1%/year, 0.3% higher than the industrial rate [1]. To supply this ever-increasing demand,
while coping with the commitment to mitigating CO2 emissions, fuel cell and hydrogen technology can
be a key player [2,3]. The final goal of a green energy market is the full exploitation of renewable energy
sources (with H2 production via water electrolysis); however, the development of a decentralized
H2-production and supply chain based on small scale processors represents a realistic transition
strategy [4–7]. Small-scale reformers have also been proposed for the on-board applications of H2

(fueling of auxiliary power units based on fuel cells, the injections in the combustion chamber, and the
regeneration of catalytic traps) in view of an improvement of the vehicle efficiency [8–11].

Natural gas, LPG, and liquid hydrocarbons can be converted catalytically into hydrogen-rich
steams by steam reforming (SR) and catalytic partial oxidation (CPO). The use of noble metal-based
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catalysts is an important aspect of the process intensification, since higher activity allows for smaller
catalyst inventory and faster dynamic response. Furthermore, such catalysts reduce the risk of coke
formation with respect to non-precious metals as Ni and Fe [12,13]. Operating at very short contact
times mitigates the cost issues associated with the adoption of precious metal catalysts. Among noble
metals, Rh was reported to provide the highest activity and lower the tendency to coke formation at
typical CPO conditions [4,14,15].

Concerning the reactor design, steam reforming of methane is an already consolidated industrial
technology based on multi-tubular reactors but the necessity of a large energy input due to its high
endothermicity makes the reactors hardly scalable down to small sizes (1–10 kW) of interest for
distributed applications [2,16–19]. Instead, the catalytic partial oxidation (CPO) of hydrocarbons is
a more flexible technology as it is globally exothermic and can be carried out in simple adiabatic
structured reactors that are easily scalable.

The autothermal operation of the so-called short contact time CPO reformers has been successfully
demonstrated by the pioneering and extensive work of Lanny Schmidt and coworkers, who have
shown the obtainment of high syngas yields via partial oxidation of gaseous and vaporized liquid
hydrocarbons over Rh washcoated foams [20–23]. The results from the Minnesota group have been
largely confirmed in the years by several groups [24–27]. Besides, the development of advanced
experimental and modelling tools has significantly contributed to the comprehension of the transport
and chemical phenomena that govern the performance of CPO reformers [28]. Basini and co-workers
have addressed a comprehensive analysis of the reduction of investment costs and energy consumption,
the flexibility towards feedstock composition and product capacity, and the simplicity of technical and
operational processes [29].

In previous works, the authors have reported the results of recent studies on the autothermal
CPO of model hydrocarbons, representative of logistic fuels: iso-octane (iC8), a model for gasoline;
and n-octane, a model for diesel [19,30]. The measurement of axially resolved temperature and
concentration profiles and the engineering analysis of the reactor by the means of mathematical
modelling have shown that the CPO of logistic fuels is a more severe process than the CPO of light
hydrocarbons, being characterized by a higher peak surface temperature and the onset of gas-phase
reactions leading to the formation of coke precursors; both factors can significantly contribute to
accelerate catalyst deactivation by sintering and coking [17,19,30].

In this work, the effect of the input load on the performance of an iC8-CPO reformer was
investigated by both experimental and modelling approaches. Flow rate is a key parameter of the
reformer performance; it affects the reaction pathways, the output product yield, and the extent of heat
dissipations. In turn, these factors can significantly impact the thermal behavior of the reactor and,
consequently, the catalyst stability. At this scope, experiments and calculations were performed for a
400/7 CPSI cordierite honeycomb monolith, coated with a 2 wt% Rh/ α-Al2O3 active phase.

2. Results and Discussion

2.1. Conversion and Selectivity Performances

Experiments of iC8-CPO were performed at constant feed composition (iC8, Air, N2 with 3% iC8
and C/O = 0.9) and varying total flow rate from 5 to 15 NL/min; Figure 1 reports the integral results of
the experiments in terms of reactant conversions and product yields.
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Figure 1. Effect of flow rate on the integral performance of the catalytic partial oxidation (CPO) 
reactor: (a) reactants conversion (χ); (b) products yield (Yi,j, i=product and j=reference atom balance). 
Feed composition: iC8 = 3%, air with C/O = 0.9 and N2 complement. Symbols = experiments; dashed 
lines = calculated adiabatic equilibrium. 

It was verified that O2, the limiting reactant, was fully converted under all the conditions. Except 
in the case of 5 NL/min, iso-octane was also completely converted since its conversion was not limited 
by thermodynamics. At increasing flow rate, the selectivity and yield of H2 and CO increased, 
progressively approaching the expected equilibrium values under adiabatic conditions (dotted lines 
in Figure 1). The yields of CH4, CO2, and H2O, instead, moderately decreased and tended to the 
calculated equilibrium values as inlet flow increased. This result might appear counter-intuitive, 
considering the indirect-consecutive nature of CO and H2 formation and the expected negative effect 
of reducing the contact time on the formation of terminal products. However, the axial evolution of 
temperature profiles changed considerably at increasing flow rates; the measurements obtained 
during the iso-octane experimental campaign are presented in Figure 2, where thin lines represent the 
measurements obtained by the thermocouple (representative of the gas-phase temperature), while 
thicker lines represent the measurements obtained from the optical-fiber/pyrometer system 
(representative of the emitting surface temperature). 

 

Figure 2. Experimental temperature profiles varying the inlet flow rate. Feed composition: iC8 = 3%, 
Air with C/O = 0.9 and N2 complement (Tsolid measured with an optcal fiber and Tgas measured with a 
thermocouple). 
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Figure 1. Effect of flow rate on the integral performance of the catalytic partial oxidation (CPO) reactor:
(a) reactants conversion (χ); (b) products yield (Yi,j, i = product and j = reference atom balance). Feed
composition: iC8 = 3%, air with C/O = 0.9 and N2 complement. Symbols = experiments; dashed lines
= calculated adiabatic equilibrium.

It was verified that O2, the limiting reactant, was fully converted under all the conditions. Except
in the case of 5 NL/min, iso-octane was also completely converted since its conversion was not
limited by thermodynamics. At increasing flow rate, the selectivity and yield of H2 and CO increased,
progressively approaching the expected equilibrium values under adiabatic conditions (dotted lines
in Figure 1). The yields of CH4, CO2, and H2O, instead, moderately decreased and tended to the
calculated equilibrium values as inlet flow increased. This result might appear counter-intuitive,
considering the indirect-consecutive nature of CO and H2 formation and the expected negative effect
of reducing the contact time on the formation of terminal products. However, the axial evolution
of temperature profiles changed considerably at increasing flow rates; the measurements obtained
during the iso-octane experimental campaign are presented in Figure 2, where thin lines represent
the measurements obtained by the thermocouple (representative of the gas-phase temperature),
while thicker lines represent the measurements obtained from the optical-fiber/pyrometer system
(representative of the emitting surface temperature).
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Figure 2. Experimental temperature profiles varying the inlet flow rate. Feed composition: iC8 = 3%,
Air with C/O = 0.9 and N2 complement (Tsolid measured with an optcal fiber and Tgas measured with a
thermocouple).
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The temperature of the catalyst surface and of the gas phase measured along the entire axial
coordinate increased significantly with the increase of flow rate. Several factors have a role in this
trend, including operational, thermodynamic, and kinetic factors.

First, the inlet temperature increased with the flow rate from a value of 62 ◦C (at 5 NL/min) to
103 ◦C (at 15 NL/min) because of the enhanced heat exchange between the pre-heating cartridge and
the gas flow with increasing flow rate. Thus, the adiabatic equilibrium temperature also increased; the
single values calculated for the various experiments are reported as short dotted bars at the right-hand
side of Figure 2. Secondly, as better shown in Figure 3a, the measured outlet temperature increased
more markedly than the adiabatic temperature; thus, the difference between the outlet adiabatic
equilibrium temperature and the outlet measured temperature decreased with the increase of the
flow rate.

Catalysts 2019, 9, x FOR PEER REVIEW 4 of 13 

 

The temperature of the catalyst surface and of the gas phase measured along the entire axial 
coordinate increased significantly with the increase of flow rate. Several factors have a role in this 
trend, including operational, thermodynamic, and kinetic factors. 

First, the inlet temperature increased with the flow rate from a value of 62°C (at 5 NL/min) to 
103°C (at 15 NL/min) because of the enhanced heat exchange between the pre-heating cartridge and 
the gas flow with increasing flow rate. Thus, the adiabatic equilibrium temperature also increased; the 
single values calculated for the various experiments are reported as short dotted bars at the 
right-hand side of Figure 2. Secondly, as better shown in Figure 3(a), the measured outlet temperature 
increased more markedly than the adiabatic temperature; thus, the difference between the outlet 
adiabatic equilibrium temperature and the outlet measured temperature decreased with the increase 
of the flow rate.  

In other words, at increasing load, the reactor better approached the adiabatic behavior. This 
effect can be quantified through the definition of an adiabaticity coefficient, expressing the ratio 
between the measured temperature rise across the CPO reactor and ideal temperature rise for the 
fully adiabatic reactor, as follows:  

α =
T − T

T , − T
 (1) 

 

Figure 3. Effect of flow rate. Flow rate: (a) adiabaticity coefficient and (b) temperatures. Feed 
composition: iC8 = 3%, air with C/O = 0.9 and N2 complement. 

As shown in panel (b) of Figure 3, the adiabaticity coefficient increased significantly with the 
flow rate, passing from a value of 80% in the case of 5 NL/min, to 93% in the case of 10 NL/min, and 
finally to 95% in the case of 15 NL/min. This trend reveals the impact of heat dispersions on the 
thermal balance of the reactor or, in other words, the relative impact of heat dispersion over heat load. 
The data clearly show that although heat dispersions expectedly grew on absolute basis due to the 
progressive increase of the reactor temperature, the ratio between heat dispersion and the inlet 
enthalpy flux entering the reactor decreased. The criticality of obtaining a full adiabatic behavior at 
the lab scale is well known, and this is especially true when dealing with miniaturized systems, given 
the high surface-to-volume ratio; thus, the experiments were extremely important to verify the 
sensitivity of the system to a key parameter as input flow. It was concluded that at total flows above 
10 NL/min, the CPO reactor can be treated as fully adiabatic. 

Lastly, it is observed that another important phenomenon was the increase and enlargement of 
the hot spot region at increasing flow rate (as shown in Figure 2 and highlighted in Figure 3, panel 

7,5 12,55,0 10,0 15,0
0,0

0,2

0,4

0,6

0,8

1,0

A
di

a
ba

tic
 C

o
ef

ic
ie

nt
 [-

]

Inlet Flow Rate [Nl/min]

feedadout

feedout

TT

TT





,



(a) (b)

7,5 12,55,0 10,0 15,0
0

200

400

600

800

1000

Inlet Flow Rate [Nl/min]

T
em

pe
ra

tu
ra

 [
°C

]

Thot-spot,cat

Teq

Tout

Tfeed

Figure 3. Effect of flow rate. Flow rate: (a) adiabaticity coefficient and (b) temperatures. Feed composition:
iC8 = 3%, air with C/O = 0.9 and N2 complement.

In other words, at increasing load, the reactor better approached the adiabatic behavior. This effect
can be quantified through the definition of an adiabaticity coefficient, expressing the ratio between the
measured temperature rise across the CPO reactor and ideal temperature rise for the fully adiabatic
reactor, as follows:

α =
Tout − Tfeed

Tout,ad − Tfeed
(1)

As shown in panel (b) of Figure 3, the adiabaticity coefficient increased significantly with the flow
rate, passing from a value of 80% in the case of 5 NL/min, to 93% in the case of 10 NL/min, and finally to
95% in the case of 15 NL/min. This trend reveals the impact of heat dispersions on the thermal balance
of the reactor or, in other words, the relative impact of heat dispersion over heat load. The data clearly
show that although heat dispersions expectedly grew on absolute basis due to the progressive increase
of the reactor temperature, the ratio between heat dispersion and the inlet enthalpy flux entering the
reactor decreased. The criticality of obtaining a full adiabatic behavior at the lab scale is well known,
and this is especially true when dealing with miniaturized systems, given the high surface-to-volume
ratio; thus, the experiments were extremely important to verify the sensitivity of the system to a key
parameter as input flow. It was concluded that at total flows above 10 NL/min, the CPO reactor can be
treated as fully adiabatic.

Lastly, it is observed that another important phenomenon was the increase and enlargement of
the hot spot region at increasing flow rate (as shown in Figure 2 and highlighted in Figure 3, panel (a)),
which cannot be explained by the above-mentioned factors. A modelling analysis was thus performed
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to understand more deeply the kinetic effects involved in the temperature profile, and its dependence
on flow rate.

2.2. Modeling Analysis

To gain insight into the correlation between inlet flow rate and hot spot temperatures, the reactor
was simulated, assuming a perfect adiabatic behavior. The predicted gas-phase and solid phase
temperature profiles are reported in Figure 4.
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Figure 4. Simulated temperature profiles varying the inlet flow rate. Feed composition: iC8 = 3%, air
with C/O = 0.9 and N2 complement. Very good agreement with the experimental results was obtained,
since the calculations showed a progressive increase of the whole temperature profiles and an especially
important increase of temperatures in the hot spot at the monolith entrance.

Notably, a progressive enlargement of the hot spot is predicted; in fact, the decline of the
temperature downstream of the maximum becomes more gradual at increasing flow, such that at any
flow rate, the consumption of O2 is more rapid than the consumption of i-C8 and the formation of CO
and H2 starting from the very entrance of the monolith. Thus, the heat release occurs across a shorter
distance than heat consumption, which originates from the hot spot at the entrance.

The simulated concentration profiles are reported in Figure 5.
Panels (a) and (b) present a progressive extension of the iso-C8H18 and O2 consumption zones

with inlet flow increase. In fact, a higher flow rate corresponds to a higher velocity of the gas phase
inside the reactor; thus, there is an expected delay of consumption of the reactants. In particular,
the O2—consumption length (Figure 5b) grows from 0.25 cm (5 NL/min) to 0.75 cm (15 NL/min).
This region is the so-called oxy-reforming zone, where the hot spots develop as the result of the balance
between exothermic reactions responsible for O2 consumption (mainly H2 oxidation) and endothermic
reactions responsible for the fuel consumption (iC8 steam reforming to CO and H2) [31].
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Figure 5. Simulated concentration profiles obtained varying the inlet flow. Feed composition: iC8 = 3%,
air with C/O = 0.9 and N2 complement.

However, the balance between exothermic and endothermic reactions can change. This is more
clearly shown in Figure 6, where the conversion profiles of the reactants are plotted in the various
flow conditions; taking the coordinate 0.25 cm as a reference, here the oxygen conversion moves from
98% at 5 NL/min to 78% at 15 NL/min. On the other hand, iso-octane conversion moves from 88% of
5 NL/min to 53% of 15 NL/min. Thus, the exothermic contribution increases over the endothermic one
and temperatures grow consequently. A change of selectivity is also produced, leading to an increased
concentration of H2O and CO2 a decreased concentration of CO and H2.

Such an unbalancing of exothermic and endothermic contributions is fuel-specific, being related
to the slow diffusivity of i-C8, which enhances the consecutive nature of the surface process [2], and to
its high gas phase reactivity, which results in the onset of homogeneous reactions upon an ignition
delay. The onset of gas phase reactions is progressively shifted downstream on increasing the flow
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rate, as evidenced by the change of slope of iC8 conversion curves in Figure 6. In addition to this
fuel-specific effect, there is also a general trend associated with the increase of gas velocity in CPO
processes: at increasing importance of convection, conduction is less effective in smoothing the surface
hot spot [32].
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Figure 6. Effect of flow rate: (a) i-C8H18 conversion and (b) O2 conversion. Feed composition: iC8 = 3%,
air with C/O = 0.9 and N2 complement.

2.3. Catalyst Stability

The effect on the catalyst stability of performing iC8 experiments at increasing flow rate, and thus
the effect of exposing the catalyst to progressively temperature increase, was verified by systematically
repeating methane CPO tests; these were carried out on the fresh catalyst and after every iso-octane
CPO test.

The reactor integral performance was measured, and the results are reported in Table 1, in terms
of reactant conversion and product selectivity. Negligible differences were observed between the
experiment on fresh catalyst and the following tests, and a close approach to thermodynamic equilibrium
was found.

Table 1. Methane CPO: reactants conversion and products selectivity.

Table
χCH4 χO2 σH2 σCO σCO2 σH2O

[-] [-] [-] [-] [-] [-]

equilibrium 0.86 1.00 0.92 0.86 0.14 0.08
fresh catalyst 0.84 1.00 0.90 0.84 0.16 0.10

after 5 NL/min 0.84 1.00 0.90 0.85 0.15 0.10
after 7.5 NL/min 0.84 1.00 0.90 0.85 0.15 0.10
after 10 NL/min 0.84 1.00 0.90 0.85 0.15 0.10

after 12.5 NL/min 0.84 1.00 0.90 0.85 0.15 0.10
after 15 NL/min 0.84 1.00 0.90 0.84 0.16 0.10

More sensitive data were, however, obtained from the axially resolved temperature measurements
shown in Figure 7.

The outlet temperature remained aligned with the adiabatic equilibrium, but changes of the
temperature profiles were observed in the entering zone. In fact, the fresh catalyst showed a hot spot of
temperature of about 780 ◦C and flattening of the solid and gas temperature profiles (which indicates
where the system approaches the thermodynamic equilibrium) at about 1.5 cm from the entrance.
Test after test, the maxima measured by the thermocouple and the pyrometer, as well as the axial
extension of the hot spot, increased. After the iC8 experiment at 15 NL/min, the hot spot temperature
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measured by the optical fiber amounted to 856 ◦C, while the flattening of the solid and gas-phase
temperatures was observed in correspondence with the coordinate of 2.5 cm.
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Figure 7. Effect of flow rate variation on the catalyst stability. CH4 = 27.3%, air with C/O = 0.9,
and Tin = 25 ◦C, F = 10 NL/min. (Tsolid measured with an optcal fiber and Tgas measured with
a thermocouple).

This is the clear evidence of a progressive deactivation of the catalyst, likely due to sintering of Rh
clusters after exposure to temperature exceeding 900 ◦C in the iC8 experiments. The phenomenology
of deactivation has been discussed in previous works from this and other research groups [14,32,33].
Since O2 consumption in the oxidation reactions is fully mass transfer controlled, while CH4

consumption via steam reforming is more chemically controlled, a loss of surface sites will preferentially
affect the steam reforming reaction, with a consequent loss of the heat consumption rate and thus an
increase of temperatures in the oxy-reforming zone.

Despite the deactivation probed by the temperature measurements, the evidence that equilibrium
conversion and syngas yield were still reached in every CH4 CPO test confirms that the monolith was
sufficiently oversized for keeping a stable methane CPO application.

Taking into consideration all the results obtained, methane CPO tests confirm that, when feeding
a logistic fuel such as iso-octane, a flow rate of 10 NL/min is a relatively safe condition that is able to
preserve catalyst stability and avoid an important deactivation via sintering.

3. Materials and Methods

3.1. Catalyst Synthesis, Structural and Morphological Characterizations

The catalyst evaluated in this work is a sample of 400/7 cordierite honeycomb monolith, coated
with a 2 wt% Rh/ α-Al2O3 active phase. The Rh/α-Al2O3 catalytic powder was synthesized by incipient
wetness impregnation of α-Al2O3 with Rh(NO3)3 solution, followed by drying at 120 ◦C overnight.
Surface area and pore size volume of the catalyst powders, respectively, 5 m2/g and 0.21 mL/g, were
determined by N2 adsorption–desorption at 77 K with the BET method using a Micromeritics TriStar
3000 instrument. Rhodium content, 1.71% w/w, was determined by ICP-MS using a XSeries instrument.

Rh dispersion on the catalyst powders was estimated by hydrogen pulse chemisorption using a
TPD/R/O 1100 Thermo Fischer Instrument. A pre-treatment was performed consisting of an initial
reduction with a 5% H2/Ar flow (50 Ncm3/min) from room temperature up to 500 ◦C (heating rate
7 ◦C/min). After 1h at 500 ◦C, the sample was cooled down to 40 ◦C in pure Argon. The chemisorption
was performed with 20–30 pulses (0.86 Ncm3) of the same diluted H2 mixture. Ageing experiments
under reaction atmosphere were performed in order to evaluate the catalyst stability using mild
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(4% CH4, C/O = 0.9, N2 to balance) and severe (27% CH4 in air with C/O = 0.9) conditions, ramping the
temperature from R.T to 850 ◦C (heating rate 10 ◦C/min, 850 ◦C hold for 4h) at GHSV = 80,000 NL/kg/h.
The results of chemisorption on the fresh and aged catalysts are presented in Table 2, showing a
progressive decrease of Rh dispersion from 69% for the as prepared catalyst to 7% under severe ageing
conditions, which resemble those achieved in the adiabatic reactor.

Table 2. Catalyst morphological characteristics.

Catalyst
Rh Load Rh Dispersion (%)

% w/w Fresh Aged (4% CH4) Aged (27% CH4)

Rh/α-Al2O3 1.71 69 23 7

After drying, the catalyst powders were suspended with water and nitric acid before undergoing
a 24h-long ball milling. The coating proceeded through the dip-coating technique. Further details on
synthesis methodology can be found elsewhere [34].

Aiming to verify the presence of heat losses along the reactor, the monolith was partly uncoated,
in the rear part, forming a continuous back heat shield (CBHS), being completely coated at the entrance
and avoiding a continuous front heat shield, thus reducing the hot spot temperature.

Table 3 reports the characteristics of the catalyst used in this work.

Table 3. Catalyst specifications.

Catalyst
Lcat LCBHS mcat tcat Void Fraction

[cm] [cm] [g] [µm] [-]

Rh/α-Al2O3 3.65 0.53 0.63 9.43 0.714

LCat = catalyst length; LCBHS = continuous back heat shield length; mcat = catalyst deposited mass; tcat =
catalyst thickness.

The catalysts were inserted in a quartz pipe between a FeCrAlloy 15 ppi foam and an inert
cordierite monolith inserted in such a way to guarantee downstream position to the back-heat shield.

3.2. Experimental Setup

A capillary (ID 320 µm), carefully allocated in a central channel of the catalyst, was capable to
slide along the axial coordinate, as the reactor is equipped with spatially resolved sampling apparatus.
Two different types of capillaries are employed in alternance: a (ID = 200 µm, OD = 350 µm), opened
at its tip, allowing collecting gas samples and a second capillary (OD = 500 µm), closed at its tip, used
to host the 250 µm K-Type thermocouple or a 45◦ ground optical fiber. Optical fiber and thermocouple
are used to collect, respectively, the temperatures of the solid and gas phase. An Agilent MicroGC
3000A equipped with two columns (Plot U and a Molecular Sieve, Agilent, Santa Clara, CA, USA)
was used to determine the gas phase concentration of different species. Plot U was operated at 60 ◦C,
in order to get better resolution for light hydrocarbons (C1–C4) and then at 160 ◦C in order to get peaks
of small tailing effect. N2 was chosen as internal standard. As Plot U is not capable to separate N2

from CH4, O2, H2, and CO, the Molecular Sieve was used as well.
The effect of the inlet flow rate on CPO of iC8 was conducted with a progressive increase of the

total flow from 5 NL/min to 15 NL/min. The inlet concentration of the hydrocarbon was 3%, and the C/O
ratio was kept constant and equal to 0.9. The goal of this campaign is to evaluate the adiabaticity of the
reactor and the activity of the catalyst. The stability of the catalyst has been evaluated, by performing
methane CPO tests on the fresh catalyst and after each iso-octane experiment.
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3.3. Reactor Modelling

A mathematical 1D, dynamic, fixed bed, heterogeneous, single channel reactor model was used
for the reactor design and for the analysis of experimental results. Its development was presented in
previous works [16,34].

The model accounts for axial convection and diffusion, gas–solid transport term, solid conduction,
and mass and energy balances for both solid and gas phase (Table 4).

Table 4. Model equations.

Gas Phase

Mass Balance ∂ωi
∂t = − G

ρgε
∂ωi
∂z −

av
ε kmat,i

(
ωi −ωwall,i

)
+
Di,mix
ε

∂2ωi
∂z2 + MWi

NRg∑
j=1

υi, jrhomo
j

Enthalpy Balance ∂Tg

∂t = − G
ρgε

∂Tg

∂z −
avh(Tg−Ts)
ερg ĉp,g

−

NRg∑
j=1

∆Hr, jrhomo
j

Solid Phase

Mass Balance 0 = avρgkmat,i
(
ωi −ωwall,i

)
+

MWiρwα

ρsŜatt
η

NRs∑
j=1

υi, jrhet
j

Enthalpy Balance ∂Ts
∂t =

avh(Tg−Ts)
(1−ε)ρs ĉp,s

+
∂
∂z

(
ke f f

ax
∂Ts
∂z

)
(1−ε)ρs ĉp,s

+ α
(1−ε)ρs ĉp,sŜatt

η
NRs∑
j=1

∆Hr, jrhet
j

Boundary Conditions

Reactor Inlet ωi|z=0 = ωi, f eed Tg
∣∣∣
z=0 = T f eed

∂Ts
∂z

∣∣∣∣
z=0

= 0

Reactor Outlet ∂ωi
∂z

∣∣∣∣
z=L

= 0 ∂Ts
∂z

∣∣∣∣
z=L

= 0

Initial Conditions ωi(z, 0) = 0 Tg(z, 0) = T f eed Ts(z, 0) = 650 ◦C

This model is an extension of a previous, already validated methane CPO model, now taking into
consideration a catalytic kinetic scheme for i-C8H18 conversion [30]. The gas phase kinetics are also
included, as reported in [19].

The kinetic scheme is presented in Table 5.

Table 5. Heterogeneous reaction mechanism for iso-octane CPO [30,35,36].

Reaction Name and Chemical
Equation

Rate Equation
[mol/atm/gcat/s]

ki@873K
[mol/atm/gcat/s]

Eactivation
[kJ/mol] Ref.

CH4 oxidation
CH4 + 2 O2 → CO2 + 2 H2O rOX

CH4

∣∣∣∣
873K

=
kOX

CH4
pCH4

1+Kads
H2OpH2O

σO2 1.030 × 10−1 91.96 [33]

CH4 steam reforming
CH4 + H2O→ CO + 3 H2

rSR
CH4

∣∣∣∣
873K

=

kSR
CH4

pCH4

1+Kads
O2

pO2+Kads
COpCO

σH2O
(
1− ηSR

CH4

) 1.027 × 10−1 91.80 [33]

CO methanation
CO +3 H2 → CH4 + H2O

rmeth
CO

∣∣∣
873K =

kmeth
CO pH2σCO

(
1− ηmeth

CO

) 1.500 × 10−3 30.00 [26]

Water Gas Shift
CO + H2O→ CO2 + H2

rWGS|873K =
kWGSpH2OσCO(1− ηWGS)

6.831 × 10−3 74.83 [33]

Reverse Water Gas Shift
CO2 + H2 → CO + H2O

rRWGS|873K =
kRWGSpCO2σH2 (1− ηRWGS)

1.277 × 10−2 62.37 [26]

H2 oxidation
H2 + 1/2 O2 → H2O rOX

H2

∣∣∣∣
873K

= kOX
H2

pH2σO2 2.666 × 103 61.65 [33]

CO oxidation
CO + 1/2 O2 → CO2

rOX
CO

∣∣∣
873K

= kOX
CO pCOσO2 1.937 × 101 76.07 [33]

iso-C8H18 total oxidation
iso-C8H18 + 25/2 O2 → 8 CO2 + 9 H2O rOX

i−C8H18

∣∣∣∣
873K

=
kOX

i−C8H18
pi−C8H18

1+Kads
H2OpH2O

σO2 4.600 × 10−1 80.00 [34]
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Table 5. Cont.

Reaction Name and Chemical
Equation

Rate Equation
[mol/atm/gcat/s]

ki@873K
[mol/atm/gcat/s]

Eactivation
[kJ/mol] Ref.

iso-C8H18 steam reforming
iso-C8H18 + 8 H2O→ 8 CO + 17 H2

rSR
i−C8H18

∣∣∣∣
873K

=

kSR
i−C8H18

pi−C8H18

1+Kpoison
i−C8H18

pi−C8H18
pH2O

σH2O
(
1− ηSR

i−C8H18

) 7.500 × 10−2 69.00 [34]

rchemical reaction
j = rchemical reaction

j

∣∣∣∣
873 K

exp
[
−

Eatt, j
R

(
1
T −

1
873

)]
Adsorption Ki

0,ads @873K [1/atm] ∆Hadsorption [kJ/mol] Ref.

O2 5.461 × 100 −72.83 [33]

CO 2.114 × 102 −37.15 [33]

H2O 8.974 × 100 −57.48 [33]

Poisoning term Ki
0, poisoning @873K [-] ∆Hadsorption [kJ/mol] Ref.

i-C8H18 6.000 × 100 −26.00 [34]

n-C8H18 6.000 × 100 −26.00 [34]

r j = K0
j exp

[
−

Eatt, rj
R

(
1
T −

1
873

)]

4. Conclusions

Rhodium supported catalysts, operated in adiabatic reactors, are effective in the small-scale
production of synthesis gas from liquid fuels. These features make this process attractive for the
development of a compact reformer. Rhodium-based catalysts are able to efficiently reform iso-octane
into synthesis gas.

Experiments and model simulations confirm the indirect reaction mechanism, which is responsible
for the presence of an oxy-reforming zone in the first part of the catalyst and a reforming zone
further downstream.

It has been observed that the increase of the inlet flow rate promotes the adiabaticity of the reactor,
but it leads to a higher catalyst hot spot temperature, due to the higher inlet enthalpic flux. The catalyst
stability has been evaluated by performing a methane CPO after each octane test. The optimal inlet
flow rate has been set to 10 NL/min, the setting that guarantees the best compromise between the
adiabaticity of the reactor and the stability of the catalyst.
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