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Abstract: The dibenzyl zirconium(IV) complex (4) incorporating with a carbazolyl(Cbz)-substituted
[OSSO]-type bis(phenolate) ligand was synthesized. Upon activation with dried modified
methylaluminoxane (dMMAO), precatalyst 4 at relatively low catalyst loadings was found to promote
the 1,2-regioselective oligomerization of 1-hexene to produce the corresponding vinylidene-ended
oligomers with moderate turnover frequencies (TOFs) up to 2080 h−1. The 13C NMR analysis of the
resulting oligomers revealed the formation of dimer-enriched oligo(1-hexene)s in 39–62% distributions.
The precatalyst 4 with dried methylaluminoxane (dMAO) also exhibited good performance in the
polymerization of styrene yielding isotactic polystyrenes ([mm] > 99%) with quite large molecular
weights (Mw < 508,100 g mol−1) and relatively high catalytic activity (up to 2810 g mmol(4)−1 h−1).

Keywords: zirconium; oligomerization; polymerization

1. Introduction

Since the discovery of Ziegler-Natta catalyst and single-site metallocene catalyst, the development
of precise oligomerization and polymerization catalysts for α-olefins has been attractive in both
academic and industrial fields [1–4]. During the past two decades, considerable attention has been
focused particularly on the development and design of early transition metal catalysts featuring
non-Cp (cyclopentadienyl) ligands which demonstrate high activity and regio- and stereocontrols in
the α-olefin polymerization [5–8]. Among them, dianionic [OSSO]-type tetradentate ligands, based
on two phenoxide frameworks with two sulfur donors at the ortho- or benzyl-positions have been
of great interest so far [9–37]. We have reported several Group 4 and 5 metal complexes having
an original [OSSO]-type bis(phenolate) ligand possessing a trans-1,2-cyclooctanediyl platform [38–45].
The combination of these complexes and activators could achieve the controlled isotactic polymerization
of various α-olefins involving excellent activity. Recently, we have also preliminarily investigated
the preparation of dibenzyl zirconium(IV) complexes (1 and 2) bearing [OSSO]-type bis(phenolate)
ligands substituted with phenyl or 2,6-dimethylphenyl (Dmp) groups on the phenolate groups
(Scheme 1) [46]. Upon activation with dMAO (dried methylaluminoxane), the dibenzyl complexes 1
and 2 promote high performance in the polymerization of styrene (activity < 7700 g mmol(cat.)−1 h−1)
yielding the corresponding isotactic polymers with molecular weights of Mw < 181,000 g mmol−1.
Moreover, these catalyst systems could catalyze the oligomerization of 1-hexene at low catalyst
loadings (0.0019–0.0056 mol %) to yield the corresponding vinylidene-ended dimer (74–91%) as the
main product with relatively high turnover frequencies (TOFs) up to 11,100 h−1 [47]. These successful
results with aryl-substituted [OSSO]-type zirconium(IV) complexes stimulated us to expand further
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exploring the synthesis and catalytic performance of new [OSSO]-type complex in the oligomerization
and polymerization of α-olefins. Herein we wish to present the synthesis of dibenzyl zirconium(IV)
complex (4) incorporating with a carbazolyl(Cbz)-substituted [OSSO]-type preligand (3) and its
performance in the oligomerization of 1-hexene together with polymerization of styrene, as a part of
our investigation in the single-site non-Cp catalysis.
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Scheme 1. Dibenzyl zirconium (IV) complexes 1 and 2 having [OSSO]-type bis(phenolate) ligands 
substituted with aryl groups. 
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that is, by treatment of the corresponding 2-(bromomethyl)-6-(9H-carbazol-9-yl)-4-methylphenol and 
trans-cyclooctane-1,2-dithiol in the presence of Et3N in Et2O. The dibenzyl zirconium(IV) complex 4 
was readily synthesized as pale yellow crystals in 93% yield by the reaction of 3 with Zr(CH2Ph)4 in 
toluene at room temperature (Scheme 2). In the 1H NMR spectrum of 4, an AB pattern for the S-benzyl 
geminal protons was observed at δ 2.82 and 2.99 as doublets with a coupling constant of 12 Hz. Two 
doublet signals for benzyl ligands appeared at considerably upfield (δ −0.05 and 0.88) with a coupling 
constant of 8 Hz, due to the shielding effect of aromatic rings in the Cbz groups. These observations 
indicate its C2-symmetric structure in solution on the NMR time scale.  

Scheme 2. Preparation of dibenzyl zirconium (IV) complex 4 with carbazolyl-substituted [OSSO]-type 
bis(phenolate) ligands. 
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Scheme 1. Dibenzyl zirconium (IV) complexes 1 and 2 having [OSSO]-type bis(phenolate) ligands
substituted with aryl groups.

2. Results and Discussion

A Cbz-substituted [OSSO]-type preligand 3 was prepared according to literature procedure [48],
that is, by treatment of the corresponding 2-(bromomethyl)-6-(9H-carbazol-9-yl)-4-methylphenol and
trans-cyclooctane-1,2-dithiol in the presence of Et3N in Et2O. The dibenzyl zirconium(IV) complex 4
was readily synthesized as pale yellow crystals in 93% yield by the reaction of 3 with Zr(CH2Ph)4

in toluene at room temperature (Scheme 2). In the 1H NMR spectrum of 4, an AB pattern for the
S-benzyl geminal protons was observed at δ 2.82 and 2.99 as doublets with a coupling constant of
12 Hz. Two doublet signals for benzyl ligands appeared at considerably upfield (δ −0.05 and 0.88)
with a coupling constant of 8 Hz, due to the shielding effect of aromatic rings in the Cbz groups.
These observations indicate its C2-symmetric structure in solution on the NMR time scale.
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Scheme 2. Preparation of dibenzyl zirconium (IV) complex 4 with carbazolyl-substituted [OSSO]-type
bis(phenolate) ligands.

To assess the polymerization ability of dibenzyl zirconium(IV) complex 4, we examined the
oligomerization of 1-hexene under various reaction conditions. The results are collected in Table 1.
Upon activation with dMMAO (0.20 mmol), complex 4 (0.002 mmol, 0.0056 mol %) acted as a precatalyst
to oligomerize 1-hexene (3.0 g, 35.6 mmol) without any solvents to give vinylidene-terminated oligomers
with a low product conversion of 6.3% in 1 h at 25 ◦C (Table 1, Run 1). The corresponding TOF value



Catalysts 2019, 9, 528 3 of 9

is 1130 h−1, which is still higher than that of MAO-activated zirconocene (TOF = 296 h−1) [49], but
approximately one-tenth reduced compared to that of phenyl-substituted [OSSO]-type complex 1
(TOF = 11,100 h−1) [47]. This result would be explained by steric hindrance of bulky Cbz groups and
reduced Lewis acidity of the active center by the electron donating Cbz groups. The microstructure of
the resulting oligomers was estimated by 1H and 13C NMR spectroscopy. High 1,2-regioselectivity
was confirmed in the 1H NMR spectrum of the oligomers; the vinylidene selectivity was calculated
to be 98% (see, Figure S2). The 13C{1H} NMR spectrum of the oligomers presented two sets for
two vinylidene carbon atoms at 108.3 and 150.4 ppm as the major signals and approximately 110
and 150 ppm as minor signals corresponding to the dimer and other oligomers (including trimer)
of 1-hexene, respectively (see, Figure S3). In contrast to precatalysts 1 and 2, very weak resonances
for vinylene-terminated groups were confirmed around 130 ppm. The relative integral ratio of these
vinylidene signals suggested an oligomeric distribution as follow; 39% of dimer, 34% of trimer, and 27%
of other oligomers. Increasing the amount of dMMAO to 150, 200, and 250 equivalents also resulted in
the dominant production of vinylidene-ended oligomers including dimers of high contents in 56–62%
(Table 1, Runs 2–4). The corresponding conversions and TOFs were recorded in the ranges of 7.6–9.5%
and 1350–1690 h−1, respectively, increasing with elevating the amount of dMMAO. In particular, it is
noteworthy that 250 equivalents of dMMAO exhibited the highest TOF of 1690 h−1 in this study
(Table 1, Run 4). When the reaction temperature was raised to 40 ◦C, a similar oligomerization
proceeded successfully yielding vinylidene-terminated oligomers (Table 1, Run 5). The slightly
increased conversion and TOF value were observed in 11.7% and 2080 h−1, respectively. The obtained
oligomers showed a dimer distribution of 53% similar to those in Runs 1–4. It is noteworthy that
trimer distributions (21–34%) obtained with 4 are remarkably increased compared with those with
precatalysts 1 and 2 (8–11%). Overall, the low conversions could be speculated by the decomposition
of active species such as Zr−H intermediates during the reaction process.

Table 1. Oligomerization of 1-hexene using precatalyst 4 activated with dMMAO a.
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1 100 25 6.3 1130 98 39 34 27
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3 200 25 8.6 1540 98 56 25 18
4 250 25 9.5 1690 98 55 25 20
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a Conditions: 4 (0.002 mmol, 0.0056 mol %), 1-hexene (3.0 g, 35.6 mmol), reaction time: 1 h; b Estimated by 1H NMR
spectroscopy in CDCl3; c Estimated by 13 C{1H} NMR spectroscopy in CDCl3.

Since dibenzyl zirconium(IV) complexes 1 and 2 featuring aryl-substituted [OSSO]-type ligands
have already served as useful precatalysts for the isospecific polymerization of styrene [46], we next
turned our attention to the polymerization of styrene employing Cbz-substituted precatalyst 4.
The results are summarized in Table 2. Similarly to the cases for complexes 1 and 2, the polymerization
of styrene (3.0 g, 28.8 mmol) using the system of 4 (0.002 mmol) and dMAO (0.5 mmol, 250 equiv.)
in toluene at 0 ◦C occurred sluggishly to afford a crystalline polymer of 0.085 g, which corresponds
to the activity of 85 g mmol(4)−1 h−1 (Table 2, Run 6). An analysis with GPC revealed that the
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resulting polymer had a unimodal distribution with a quite large polydispersity index (PDI) of 20.3
and a large molecular weight Mw of 223,000 g mol−1. The resulting large PDI value suggested that
the reaction rate of the initiation process that gives the first initial active species from 4 is slower
than that of the chain propagation process at low temperature. The 13C{1H} NMR spectrum of
the obtained polymer exhibited six sharp peaks indicating the formation of an excellent isotactic
polystyrene up to 99% of the [mm] triad (see, Figure S4). Since there is no observation of stereo irregular
around the phenyl ipso carbon at 146.3 ppm [50], the detailed microstructure of the polystyrene is
assigned to the [mmmmmm] heptad even with a very large PDI value. At 25 ◦C, the polymerization
of styrene by 4/dMAO system was somewhat accelerated to furnish 0.61 g of completely isotactic
polystyrene ([mm] >99%) with the largest Mw of 508,000 g mol−1 in this study and still a large PDI
of 4.2 (Table 2, Run 7). The corresponding activity of 414 g mmol(4)−1 h−1 is increased compared
to that at 0 ◦C. The production of isotactic polystyrene having a large Mw of 458,000 g mol−1

and a narrow PDI value of 2.8 was also found in the polymerization at 40 ◦C (Table 2, Run 8).
These Mw are distinctly larger compared with those obtained with aryl-substituted precatalysts 1
and 2 (1: Mw = 9500–181,000 g mol−1, 2: Mw = 195,000–380,000 g mol−1). The catalytic activity of
1000 g mmol(4)−1 h−1 is approximately 2.4-folds higher than that at 25 ◦C. At 70 ◦C, 4/dMAO system
exhibited the highest activity of 2810 g mmol(4)−1 h−1 (Table 2, Run 9), which is comparable to the
related precatalysts for the isospecific polymerization of styrene at varied temperatures, [OSSO]-type
titanium complex [330 g mmol−1 h−1 at 40 ◦C] [10] and yttrium and neodymium complexes supported
by ansa-type Cp ligands [392–1637 g mmol−1 h−1 at 60–120 ◦C] [51], but remarkably lower than that of
Dmp-substituted precatalyst 2 at the same temperature (7700 g mmol(2) −1 h−1). The low activity of 4
would be explained by the decrease of Lewis acidity of active species probably due to the substitution
of the electron-donating Cbz group. Despite the high polymerization temperature, the yielding
polystyrene is completely isotactic ([mm] >99%). Again, GPC analysis of the polystyrene showed
a monomodal (Mw = 179,000 g mol−1) and a PDI of around 2, indicating single-site polymerization
behavior of 4/dMAO system

Table 2. Polymerization of styrene using precatalyst 4 activated with dMAO a.
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Run Temp.
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6 0 0.085 85 223,000 20.3 >99
7 25 0.414 414 508,000 4.2 >99
8 40 1.00 1000 458,000 2.8 >99
9 70 2.81 2810 179,000 2.1 >99

a Conditions: 4 (0.002 mmol), [dMAO]/[4] = 250, styrene (3.0 g, 28.8 mmol), toluene 5 mL, reaction time: 30 min; b PDI
(polydispersity index) = Mw/Mn, determined by GPC (PS standard); c Determined by 13C{1H} NMR spectroscopy
in CDCl3.

3. Materials and Methods

3.1. General

All air- and/or moisture-sensitive compounds were manipulated under an inert atmosphere
of argon either using standard Schlenk-line techniques or in Glovebox Japan E300 gloveboxes
(Tokyo, Japan). Toluene and hexane were purchased from Kanto Chemical (Tokyo, Japan) and
were dried over a potassium mirror prior to use. 1-Hexene and styrene were purchased from
Tokyo Chemical Industry (Tokyo, Japan) and dried over a potassium mirror for 1 h under argon
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atmosphere, and then degassed by the freeze-thaw cycle prior to use. C6D6 was dried over a potassium
mirror for 1 h under argon atmosphere and was degassed by the freeze-thaw cycle prior to use.
1H (400 MHz) and 13C NMR (101 MHz) spectra were measured in CDCl3 or C6D6 using a Bruker
DPX-400 spectrometer (MA, USA). All melting points were determined on a Mel-Temp capillary tube
apparatus (Saitama, Japan) and are uncorrected. The weight average molecular weights (Mw) and
molecular weight distributions (Mw/Mn) of the polymers were determined at ambient temperature
using a GPC KF-804L (Shodex Corporation, Tokyo, Japan) gel permeation chromatograph (GPC)
equipped with a SCL-10AVP/LC-10ATVP/DGU-14A/CTO-10ACVP/RID-10A apparatus (Shimadzu
Corporation, Kyoto, Japan). THF [purchased from Kanto Chemical (Tokyo, Japan)] was used as
carrier solvent. The calibration curve was established with polystyrene standards as the reference.
2-(Bromomethyl)-6-(9H-carbazol-9-yl)-4-methylphenol [48], dMMAO [52], and dMAO [53] were
prepared by the literature procedures.

3.2. Synthesis of Dibenzyl Zirconium(IV) Complex 4

A solution of Zr(CH2Ph)4 [54] (95 mg, 0.209 mmol) in toluene (2 mL) was added to a solution of
3 (157 mg, 0.209 mmol) in toluene (2 mL) at room temperature. The mixture was stirred for 17 h at
room temperature, and the solvent was evaporated under reduced pressure. The resulting residue
was rinsed with hexane and dried under reduced pressure to give dibenzyl zirconium(IV) complex 4
(198 mg) in 93% yield as pale yellow crystals. 4: Mp 288–289 ◦C (dec.).

1H NMR (400 MHz) δ –0.05 (d, J = 8 Hz, 2H, ZrCH2), 0.88 (d, J = 8 Hz, 2H, ZrCH2), 0.90–1.60
(m, 12H, CH2), 1.96 (s, 6H, CH3), 2.38 (s, 2H, CH), 2.82 (d, J = 12 Hz, 2H, SCH2), 2.99 (d, J = 12 Hz,
2H, SCH2), 5.63 (d, J = 8 Hz, 2H, Ar), 6.35 (s, 2H, Ar), 6.68 (t, J = 8 Hz, 2H, Ar), 6.75–6.81 (m, 6H,
Ar), 7.00–7.02 (m, 2H, Ar), 7.08 (d, J = 8 Hz, 2H, Ar), 7.21–7.25 (m, 2H, Ar), 7.31–7.36 (m, 6H, Ar),
7.55 (t, J = 8 Hz, 2H, Ar), 8.04 (d, J = 8 Hz, 2H), 8.11 (d, J = 8 Hz, 2H). 13C{1H} NMR (101 MHz) δ 19.9
(CH3), 25.2 (CH2), 25.9 (CH2), 28.6 (CH2), 33.6 (SCH2), 48.0 (CH), 57.6 (CH2), 109.9 (CH), 110.4 (CH),
119.1 (CH), 120.6 (CH), 120.8 (CH), 122.5 (CH), 123.2 (C), 123.4 (C), 123.7 (C), 125.26 (CH), 125.31 (C),
125.7 (CH), 125.9 (C), 128.7 (CH), 129.0 (CH), 129.4 (CH), 130.3 (CH), 131.1 (CH), 141.66 (C), 141.71 (C),
143.0 (C), 155.4 (C).

3.3. General Procedure of 1-Hexene Oligomerization

To a 50 mL Schlenk-flask was charged sequentially 4 (0.0020 mmol, 0.0056 mol %) and dMMAO
at 25 ◦C or 40 ◦C. After stirring 5 min at the temperature, 1-hexene (3.0 g, 35.6 mmol) was added to
the reaction mixture. The reaction mixture was stirred for desired time at the temperature, and then
MeOH and aqueous HCl were added to quench the reaction. Volatile materials were evaporated
under reduced pressure, and the residue was extracted with CH2Cl2. The extract was washed with
water and dried over anhydrous Na2SO4. The solvent was removed under reduced pressure to give
oligo(1-hexene) as a colorless liquid.

3.4. General Procedure for Styrene Polymerization

To a 50 mL Schlenk-flask was charged sequentially 4 (0.0020 mmol), dMAO (0.50 mmol),
and toluene (5 mL) at 25 ◦C. The reaction mixture was stirred for 5 min at the temperature, and then
styrene (3.0 g, 28.8 mmol) was injected to the reaction mixture. After stirring for desired time at the
temperature, the reaction was stopped by addition of MeOH and aqueous HCl, and volatile materials
were removed under reduced pressure. The residue was extracted with CH2Cl2, and the extract was
washed with water and dried over anhydrous Na2SO4. The solvent was removed under reduced
pressure at 70 ◦C overnight to leave polystyrene.

4. Conclusions

We synthesized the dibenzyl zirconium(IV) complex 4 possessing a carbazolyl-substituted
[OSSO]-type bis(phenolate) ligand as a new single-site non-Cp precatalyst. Oligomerization of
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1-hexene using the combination of precatalyst 4 at relatively low catalyst loadings and dMMAO as
an activator produced the corresponding vinylidene-terminated oligomers with moderate TOFs up to
2080 h−1. The 13C NMR analysis revealed that the resulting oligomers contained the dimer of 1-hexene
as the main product in 39–62% distributions. Upon activation with dMAO, the precatalyst 4 promoted
the polymerization of styrene to afford isotactic polystyrenes ([mm] > 99%) with quite large molecular
weights Mw (508,100 g mol−1) and relatively high catalytic activities up to 2810 g mmol(4)−1 h−1.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/6/528/s1,
Figure S1: 1H NMR spectrum of dibenzyl zirconium(IV) complex 4, Figure S2: 1H NMR spectrum of oligo(1-hexene)
obtained by the 4/dMMAO system at 25 ◦C (Table 1, Run 4), Figure S3: 13C{1H} NMR spectrum of oligo(1-hexene)
obtained by the 4/dMMAO system at 25 ◦C (Table 1, Run 4), Figure S4: 13C{1H} NMR spectrum of isotactic
polystyrene obtained by the 4/dMAO system at 70 ◦C (Table 2, Run 9).
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