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Abstract: High acidic vacuum gas oil (VGO) decreases product quality and causes corrosions. To
overcome these problems, catalytic esterification was utilized for the deacidification of VGO. A series
of Al2O3-supported ZnO catalysts, undoped and doped with Fe2O3, were prepared and characterized.
The results showed that both the ZnO/Al2O3 and the ZnO/Al2O3 doped with Fe2O3 had good
deacidification effects with glycol for the 4th VGO. The deacidification rate reached 95.1% and 97.6%,
respectively, under mild conditions (catalysts 2.5 wt%, glycol dosage 4.0 wt%, 250 ◦C and 1 h). The
naphthenic acids were transferred into ester, which was proved by the Fourier Transform Infrared
(FT-IR) and 1H nuclear magnetic resonance (NMR).Reusability of the catalyst for the esterification
reaction was also studied. It was found that the deacidification rate was still over 90% after six reruns.
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1. Introduction

Worldwide, high total acid number (TAN) crude oil production has increased in recent years,
leading to high TAN petroleum fractions, especially vacuum gas oil (VGO). The total acid numbers
(TANs) of crude oil and petroleum fractions are mainly supplied by naphthenic acids (NAs), and
this refers to all carboxylic acids present in the oil which have the general formula RCOOH, where R
represents cyclopentane and cyclohexane derivatives. The NAs may cause serious equipment failures,
lead to high maintenance costs, reduce product quality, and pose environmental disposal issues [1].
For these reasons, the removal of intrinsic NAs from crude oil and petroleum fractions is of paramount
necessity. Various techniques have been put forward to solve this difficult problem, such as a treatment
using ionic liquids, catalytic esterification, catalytic decarboxylation, neutralization or caustic washing,
thermal decomposition, physical adsorption, and solvent extraction [2]. However, some of these
approaches have drawbacks. For example, the ionic liquid treatment, catalytic hydrogenation, physical
adsorption, and thermal decomposition are usually costly, because of expensive chemicals or high
energy consumption. Catalytic decarboxylation needs a high temperature for operation and metal
oxide catalysts could be polluted by acid–base neutralization reactions with the NAs. Neutralization
or caustic washing might cause emulsion problems and product loss. Solvent extraction requires a
large amount of solvent, which is complex and needs lots of energy for solvent recovery [3–6]. So, it is
important to adopt a simple, high efficiency, environmentally-friendly, and economical deacidification
technology to remove NAs from the crude oil and fractions.
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In the present work, esterification is an interesting and promising way to deal with removal of
the NAs into naphthenic acid esters without loss of oil, which overcomes the disadvantages of the
traditional deacidification methods for crude oil and petroleum fractions [7], and makes the process
suitable for existing refineries. The non-catalytic deacidification method was adapted to process the
high-acid crude via esterification with methanol, in which the reaction occurred under a high pressure
of up to 6.4 mPa and with the needed amount of methanol [8]. Considering most of the NAs from
crude oils will transfer into VGO in refiners, the deacidification of VGO plays a significant role in the
process. Some researchers have processed petroleum fractions by catalytic esterification and achieved a
deacidification efficiency of up to 95.6%. However, the reaction time took 6 hours [1,9,10]. Among the
catalysts tested for catalytic esterification, SnO and ZnO were the most popular, with oxide loaded on
different supporters such as SnO/Al2O3, ZnO/SiO2 [11], ZnO/zeolite [12,13], and ZnO/SiO2 [11,14,15].
In particular, the ZnO was found to be a relatively economical, non-toxic, and environmentally friendly
material. The esterification reactions using zinc oxide supported on alumina was only used for
phytosteryl esters from the esterification production of phytosterol with fatty acids [16]. However,
this catalyst was not used for the esterification deacidification of naphthenic acids that are present in
hydrocarbon fractions and acidic crude oil. In a recent study [17], we applied ZnO/Al2O3 as a catalyst
for 4th VGO esterification deacidification under moderate reaction conditions, and the deacidification
rate was over 92% while other main physicochemical properties varied little. Nevertheless, the effects of
preparation parameters on the deacidification rate have not been investigated sufficiently. Furthermore,
the modification of a ZnO/Al2O3 catalyst with small amounts of Fe2O3 has not been reported [18]. In
this regard, the aim of this study is to prepare ZnO/Al2O3 solid acid catalysts under different conditions
and modify the catalysts by Fe2O3 to obtain higher deacidification rates of VGO. The general reaction
scheme of the esterification process is given as the Scheme 1 below [7].
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Scheme 1. Proposed esterification reaction of the naphthenic acid and glycol.

2. Results and Discussion

2.1. Characterization of Catalyst

2.1.1. XRD and Phases

Figure 1 shows X-ray diffraction (XRD) patterns of the synthesized catalyst. When the calcination
time was extended to 45 min and the calcination temperature was 400 ◦C, typical diffraction peaks of
ZnO were observed, as shown in Figure 1a, indicating the formation of a ZnO crystal with a hexagonal
structure [19]. The crystallinity increased with the calcination time because it needed enough time for
the decomposition of Zn(NO3)2 into ZnO, as well as the growth of the crystal. However, long-time
calcinations had no benefit for the ZnO crystal at high temperatures, and it led to a drop of diffraction
peaks in all directions, due to the probable fusion into the carrier. Further investigation showed that
the main structure of Al2O3 remained unchanged until the calcination time was 3 h. The existence of
an Al2O3 crystal was demonstrated by XRD diffraction peaks at 2θ of 14.4◦, 28.3◦, 38.5◦, and 48.8◦. The
effect of the calcination temperature on the crystallinity is depicted in Figure 1b. It was observed that
400 ◦C was the best calcination temperature for the crystal of the ZnO, and the diffraction peaks of ZnO
was most clear at 2θ = 31.9◦, 34.7◦, 36.4◦, 47.7◦, 56.8◦, and 63.10◦, which corresponded to the lattice
planes (100), (002), (101), (102), (110), and (103), respectively [4]. The decomposition temperature of the
Zn(NO3)2 was around 350 ◦C, and an appropriately higher temperature was a benefit for the complete
decomposition of Zn(NO3)2. The effect of ZnO loading on the crystallinity is shown in Figure 1c. It
indicated that 5% to even 10% loading of ZnO was not enough for ZnO crystal formation, and a higher
loading of ZnO was beneficial for the ZnO crystal with sharper diffraction intensity. When the ZnO
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loading was up to 25% or more, the diffraction peaks of Al2O3 dropped sharply. The XRD pattern
showed almost only typical diffraction peaks of ZnO, indicating that the surface of the carrier was
covered by plenty of ZnO crystal. Moreover, two mixed metal oxides were found on the XRD patterns,
especially when the loading of Fe2O3 was increased over to 3.0%, as seen in Figure 1d. The peak of
Fe2O3 at 2θ = 33.1◦ ostensibly appeared [20], implying that an approximately 3.0% amount of Fe2O3

was necessary for the Fe2O3 crystal’s growth.
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Figure 1. XRD patterns of catalysts with different calcination time, calcination temperature, ZnO 

loading, and Fe2O3-doped amount. (a) Different calcination time; (b) different calcinations 

temperature; (c) different ZnO loading; (d) different Fe2O3-doped amount. 
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Figure 1. XRD patterns of catalysts with different calcination time, calcination temperature, ZnO
loading, and Fe2O3-doped amount. (a) Different calcination time; (b) different calcinations temperature;
(c) different ZnO loading; (d) different Fe2O3-doped amount.

2.1.2. Brunauer Emmett Teller (BET) Surface Area and Pore Volume

The N2 adsorption isotherms results are shown in Figure 2 and the BET surface areas of the
synthesized catalysts particles are shown in Table 1. The results indicate the effects of different metal
oxide loading on the BET surface areas and pore volumes. The blank Al2O3 had the maximum BET
surface areas and pore volumes. When the ZnO loading amount was 15%, both the BET surface areas
and pore volumes dropped off, because the ZnO particles covered part of the small pores and led to a
reduction of pore surface area and pore volume. Zinc oxide catalysts promoted with various Fe2O3

amounts showed that the higher the Fe2O3 loads, the less BET surface area and pore volume. Greater
amounts of Fe2O3 were a benefit for forming bigger crystals, which had less BET surface area and pore
volume than the small particles. Figure 2 shows the N2 adsorption isotherms’ results of the carrier



Catalysts 2019, 9, 499 4 of 13

blank Al2O3 and the various catalysts. The characteristic features of the physisorption isotherms in
Figure 2 belong to Type IV with hysteresis loops. This is associated with limiting uptake over a range
of high P/P0, which means that the pore size distribution of the catalysts used in this work is mainly
mesopore where capillary condensation has taken place. The hysteresis loops in Figure 2 were Type H2,
which was attributed to a difference in mechanism between condensation and evaporation processes
occurring in pores with narrow necks and wide bodies, indicating that the pores of the catalysts were
proven to be “ink bottle” pores [21]. In addition, the pore size distribution also confirmed the mesopore
diameter of the catalysts, as shown in Figure 2.
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Figure 2. The N2 adsorption-desorption isotherms and pore size distribution (inset) of different catalysts.

Table 1. Pore structure parameters of the different catalysts.

Samples Al2O3 15Zn 0.5Fe15Zn 1Fe15Zn 3Fe15Zn

BET areas (m2/g) 174 132 132 131 129
Pore Volume (cm3/g) 0.24 0.23 0.23 0.17 0.16

2.1.3. SEM Analysis

The effect of calcination time on the particle images is shown in Figure 3a–c. Results showed
that 45 min was the optimal calcination time for the ZnO particle dispersity when the calcination
temperature was 400 ◦C and with a the ZnO loading amount of 15%, and the average grain size of ZnO
was about 40 nm. In fact, although sufficient time is good for the crystal growth, longer calcination
times will lead to the fusion of ZnO with the carrier aluminum oxide as shown in Figure 3c. It can
be seen from the Figure 3d that if the calcination temperature was up to 450 ◦C, only a small part
of the ZnO particles could be seen, because of the fusion into the carrier. In Figure 3e–f, there were
no apparent compact ZnO particles, because the amount of zinc oxide was not enough when the
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ZnO loading amount was 5%. When the ZnO loading amount was increased to 30%, a large block
of small ZnO particles formed and almost completely coated the aluminum oxide carrier. These
phenomena were consistent with the XRD results provided in Figure 1c. The surface morphology of
Fe2O3-ZnO/Al2O3 is shown in Figure 3g–i. The particle surface seemed to be loose and porous with the
Fe2O3-doped amount of 0.5%. When the Fe2O3 amount increased to 3% or even 5%, the Fe2O3-doped
ZnO/Al2O3 catalyst presented similar images, and more Fe2O3 contributed to relatively bigger and
regular composite particles.
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Figure 3. SEM images of catalysts prepared under different conditions. (a–c) 15Zn, calcination
temperature 400 ◦C, with calcination times of 30, 45, and 300 min, respectively; (d)15Zn, calcination
temperature 450 ◦C, calcination time 45 min; (e–f) calcination temperature 400 ◦C, calcination time
45 min, with 5Zn and 30Zn, respectively; (g–i) calcination temperature 400 ◦C, calcination time 45 min,
with 0.5Fe15Zn,3Fe15Zn and 5Fe15Zn, respectively.

2.1.4. Temperature-Programmed Desorption (TPD)

The acidities of the catalysts 15Zn and 0.5Fe15Zn were determined by NH3-TPD, as depicted in
Figure 4. Table 2 lists the NH3-TPD amounts. Obviously, three NH3 desorption curves were detected
in the ranges of 100–600 ◦C with two desorption peaks, indicating the weak and strong acid sites on
the surface of the catalyst, respectively. Moreover, the number of strong acid sites was larger than that
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of weak ones for 15Zn, while the weak acid sites were slightly more numerous than those of the strong
for the 0.5Fe15Zn. There are more weak acid sites on 0.5Fe15Zn compared to 15Zn, although the higher
total acid sites of the latter had been observed.
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Table 2. NH3-TPD results of the catalysts.

Catalysts NH3 Desorption:
Peak I/(mmol·g−1)

NH3 Desorption:
Peak II/(mmol g−1)

Total NH3
Desorption/(mmol g−1)

15Zn 0.27 0.48 0.75
0.5Fe15Zn 0.29 0.25 0.54

2.2. Influencing Factors of the Esterification Reaction

2.2.1. Effect of Calcination Time

The effect of the calcination time on the reduction of the TAN was investigated in order to
determine the optimum catalyst preparation conditions at the calcination temperature of 400 ◦C and
loading amount of 15% ZnO. The results are summarized in Figure 5. When calcination time was
extended from 15 min to 45 min, the deacidification rate increased from 62.3% to 95.1% because enough
time was needed for the decomposition of the Zn(NO3)2 into the active component ZnO. Then the
deacidification rate began to decline with longer calcination times, because long-time calcinations at
high temperatures would not only lead to fusion of ZnO, which could reduce the effective contact
between the reactant and active constituent ZnO, but also decrease the surface acid amount of the
catalysts, which was not benefit for the esterification reaction [17]. Thus, the optimal calcination time
was 45 min.
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2.2.2. Effect of Calcination Temperature

The calcination temperature is an important parameter for the morphology, structure, and
properties of the catalyst. The effect of calcination temperature on reduction of the TAN was studied at
the calcination time of 45 min with a 15% loading amount of ZnO. The results are shown in Figure 6.
The deacidification rate first increased from 82.4% to 95.1%, then reduced to 82.6% as the calcination
temperature varied from 300 ◦C to 450 ◦C. This indicates that a proper calcination temperature was
required for effective deacidification of the VGO, because low temperature was unfavorable for the
decomposition of Zn(NO3)2 and corresponded to crystal formation of ZnO. Furthermore, the catalyst
surface area decreased because of the long-time high temperature calcinations [22], which was not
beneficial for the esterification reaction and deacidification rate. Therefore, a proper calcination
temperature was determined to be 400 ◦C.
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2.2.3. Effect of ZnO Loading

As the active species, a series of catalysts with different ZnO loading amounts were applied to the
esterification of the VGO and glycol, as seen in in Figure 7. The deacidification rate increased from
82.1% to 90.4%, and then reached the maximum of 95.1% with the ZnO loading amount increased to
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15%. This is probably because more active constituent was beneficial for the esterification reaction.
Furthermore, a too-large amount of ZnO on the carrier decreased the deacidification rate. Due to the
gathering phenomena caused by the excessive ZnO, the full cover of the carrier and the surface area
and the pores of the catalyst were reduced. Therefore, the proper ZnO loading amount should be 15%.
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2.2.4. Effect of Fe2O3 Doped Amount

In order to further improve the catalytic performance of the zinc oxide catalyst, doping with
Fe2O3 was tested, and the deacidification rates of the modified catalysts are shown in Figure 8. The
deacidification rate was 97.6% by using the composite catalyst with a Fe2O3-doped amount of 0.5%.
Fe2O3 addition could help to improve the esterification rate, because there are more surface weak acid
sites on Fe2O3 than that of ZnO (in Table 2), which is a benefit for the esterification reaction [23–25],
so the Fe2O3-doped catalyst resulted in a higher deacidification rate. Then, the deacidification rate
changed little in spite of more Fe2O3, and the maximum rate was 98.4%. More Fe2O3 did not help to
increase the deacidification rate greatly, which was probably because more weak acid sites contributed
to a higher esterification effect. But more Fe2O3 decreased the total surface areas and pore volumes of
the catalysts (shown in Figures 2 and 3), so it was not good for the esterification reaction. Thus, doping
with a little ferric oxide was reasonable for the overall deacidification effect.
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2.2.5. Effect of Impregnation Time

The impregnation time affects the efficiency of the catalyst preparation, so different impregnation
times were observed (as shown in Figure 9). The deacidification rate was 89.2% at the corresponding
impregnation time of 3 h, but when the impregnation time was extended to 12 h, the deacidification
rate increased to 97.6% and did not increase any more. Therefore, to make sure of the final high
deacidification rate and efficiency of the catalysts’ preparation, an impregnation time of 12 h was found
to be appropriate.
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2.3. FT-IR and 1H NMR Spectra before and after the Esterification

To analyze the difference before and after the esterification reaction of the raw VGO,
FT-IR spectroscopy was used to identify the products catalyzed by ZnO/Al2O3(15Zn) and
Fe2O3–ZnO/Al2O3(0.5Fe15Zn), to be compared with the raw VGO. The results are presented in
Figure 10. As for the raw VGO, the peak at approximately 1705 cm−1 is the characteristic absorption of
carboxyl group (–COOH) [26]. Compared with the raw VGO, the absorption observed at 1740 cm−1 is
associated with ester function (COOC) [27] after the esterification reaction. The carboxyl functional
group at 1705 cm−1 almost disappeared, which indicated that the NAs were converted into esters.
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The FT-IR spectral data was certificated by the 1H NMR spectra of the esterified VGO catalyzed by
0.5Fe15Zn, as shown in Figure 11. The two peaks appear at 3.84 ppm and 4.23 ppm with the ratio of the
integral curve area 1:1, which belongs to the ethylene of the esterified glycol with the NAs. Those two
signals could be assigned to the protons of –CO2–CH2–CH2–O2C–. The weak signal at 4.29 ppm could
be assigned to the ethylene protons of –CO2–CH2–CH2–OH. However, the other part of the signal of
ethylene protons of –CO2–CH2–CH2–OH was covered by the peak at 3.84 ppm. The vanishing of the
carboxyl signal with the appearance of those signals from 3.84 ppm to 4.29 ppm suggested that the
esterification of the carboxyl group was accomplished.
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2.4. Reusability of the Catalyst

The recycling performance of the selected catalysts was investigated by performing several repeat
reactions under the optimum conditions. The results presented in Figure 12 showed a slight decline
in catalytic performance, and the deacidification was 90.4% after six successive reruns. Compared
with traditional catalysts, the possibility of efficiently recycling Fe2O3–ZnO/Al2O3 was of interest from
environmental and economic perspectives.
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Figure 12. Reusability of the catalyst for the esterification.

3. Experimental Section

3.1. Materials

The 4th VGO (TAN 2.51 mgKOH/g) was obtained from COCC Asphalt (Sichuan) Ltd., Sichuan,
China. The aluminum oxide was purchased from China Medicine (Group) Shanghai Chemical Reagent
Co., Ltd., Shanghai, China. Zinc nitrate, ferric nitrate, and glycol was obtained from Chengdu Kelong
Chemical Reagent Factory, Chengdu, China.

3.2. Catalyst Preparation

Al2O3 were impregnated with an appropriate amount of aqueous Zn(NO3)2 solution to obtain
various ZnO loading amounts on the Al2O3. The mixture was stirred at room temperature for
10 min, and then dried at 120 ◦C after laying up 6 h. The catalyst (ZnO/Al2O3) was calcined in air at
different temperatures and times (by putting the sample into the muffle furnace for the set time as the
temperature rose up to the preset value). The Fe2O3-promoted zinc oxide catalysts were prepared by a
co-precipitation method using aqueous solutions of Zn(NO3)2·6H2O and Fe(NO3)3·9H2O. After the
aforementioned drying and calcinations, the modified catalyst of Fe2O3-ZnO/Al2O3 could be obtained.
The catalyst ZnO/Al2O3 with ZnO loading of 15% (weight percentage based on the carrier, the same as
below) was denoted as 15Zn. The Fe2O3-ZnO/Al2O3 with Fe2O3 loading of 0.5% and ZnO loading of
15% was denoted as 0.5Fe15Zn and the other catalysts were similarly denoted.

3.3. Characterization

XRD patterns were recorded with a Shimadzu XRD-7000 (Kyoto, Japan) using Cu Kα radiation (λ=

1.5418 Å, 40 kV, 30 mA), and a preset time of 2 s. SEM images were conducted on a JSM-7800F microscope
(JEOL Ltd., Kyoto, Japan) operated at 20 kV landing energy. The BET surface areas were calculated
from nitrogen adsorption data at 77.35 K obtained using Quanta chrome Autosorb iQ (Quantachrome
Instruments, Boynton Beach, FL, USA). The outgas time was 6 h and the final out gas temperature was
200 ◦C. The acidity of the catalysts were studied via ammonia temperature-programmed desorption
(NH3-TPD) using AutoChem II 2920 (Micromeritics, Norcross, GA, USA) and the carrier gas was He.
The acid number of the raw VGO or after the esterification reaction was determined according to
the American Society of Testing and Materials (ASTM) D664 international standard method. FT-IR
spectra were acquired using a Nicolet iS50 FT-IR Spectrometer (Thermo Scientific, Waltham, MA, USA)
and the measurements were performed in the transmission mode from 4000 and 400 cm−1 with an
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accumulation of 32 scans at a nominal resolution of 4 cm−1. 1H NMR spectra were obtained at room
temperature on a Bruker (Billerica, MA, USA) AVANCE 500 MHz and the solvent was CDCl3.

3.4. Experimental Procedures

The reactor was a 250 mL three-necked round-bottom flask, connected with a water-cooled
condenser. The reactor was charged with 40 g VGO, glycol 4 wt%, and catalysts 2.5 wt%. The charged
reactor was then placed in a thermostatic bath and heated to the 250 ◦C for 1 h. After the reaction,
the produced water and the residual glycol could evaporate away at a temperature of 250 ◦C. When
the flask was cooled down to the room temperature in the air, there was no obvious water observed.
Then, the TAN of the oil mixture as the refined oil was tested. The deacidification rate was calculated
according to the formula below:

Deacidification rate = (1−
TAN of esterificated oil

TAN of raw oil
) × 100 (1)

To investigate the catalyst lifetime, the catalyst and mixture were separated after the esterification
reaction under the optimal reaction conditions, and then the catalyst was reused in the next experiment
according to the same optimal reaction conditions, without any further treatment of the catalyst.

4. Conclusions

In this work, a series of Al2O3-supported ZnO with and without Fe2O3-doping catalysts were
synthesized under the optimal preparation conditions: calcination time of 45 min, calcination
temperature of 400 ◦C, impregnation time of 12 h, with zinc oxide loading of 15%, and iron oxide
loading of 0.5% using incipient wetness impregnation. Catalytic esterification is a very effective process
in the deacidification of high-TAN vacuum gas oil. Significant reduction of the raw VGO TAN from
2.51 to 0.06 mg-KOH/g-oil with a TAN reduction efficiency of 97.6% was achieved by using the catalyst
Fe2O3-ZnO/Al2O3. The major mechanism of deacidification was esterification of the carboxylic acid
group with glycol.
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