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Abstract: Coimmobilization of lipases may be interesting in many uses, but this means that the
stability of the least stable enzyme determines the stability of the full combilipase. Here, we propose
a strategy that permits the reuse the most stable enzyme. Lecitase Ultra (LU) (a phospholipase) and
the lipases from Rhizomucor miehei (RML) and from Pseudomonas fluorescens (PFL) were immobilized
on octyl agarose, and their stabilities were studied under a broad range of conditions. Immobilized
PFL was found to be the most stable enzyme under all condition ranges studied. Furthermore, in
many cases it maintained full activity, while the other enzymes lost more than 50% of their initial
activity. To coimmobilize these enzymes without discarding fully active PFL when LU or RML had
been inactivated, PFL was covalently immobilized on glyoxyl-agarose beads. After biocatalysts
reduction, the other enzyme was coimmobilized just by interfacial activation. After checking that
glyoxyl-octyl-PFL was stable in 4% Triton X-100, the biocatalysts of PFL coimmobilized with LU or
RML were submitted to inactivation under different conditions. Then, the inactivated least stable
coimmobilized enzyme was desorbed (using 4% detergent) and a new enzyme reloading (using
in some instances RML and in some others employing LU) was performed. The initial activity of
immobilized PFL was maintained intact for several of these cycles. This shows the great potential of
this lipase coimmobilization strategy.

Keywords: enzyme coimmobilization; glyoxyl-octyl; covalent immobilization; interfacial activation;
reuse of coimmobilized enzymes

1. Introduction

Lipases are among the most utilized enzymes due to their high stability and activity in a wide
range of reaction media. Their broad specificity, coupled to high enantio and regio selectivity and
specificity, lack of cofactor requirements, and availability from very different sources, permits their use
in many different reactions (even promiscuous ones) [1-4]. Lipases may be used in many different
areas, from food technology to energy, from pharmaceutical chemistry to flavor synthesis, etc. [5-14].

In some instances, the key feature is the selectivity or the specificity of the biocatalyst. In these cases,
a fully purified enzyme is preferred in order to avoid interferences between enzymes with different
properties that can reduce the final purity of the product (e.g., resolution of racemic mixtures) [15].

Catalysts 2019, 9, 487; doi:10.3390/catal 9050487 www.mdpi.com/journal/catalysts


http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
https://orcid.org/0000-0003-0012-8971
https://orcid.org/0000-0003-4976-7096
http://dx.doi.org/10.3390/catal9050487
http://www.mdpi.com/journal/catalysts
https://www.mdpi.com/2073-4344/9/5/487?type=check_update&version=2

Catalysts 2019, 9, 487 2of 14

However, these features become a problem when the biocatalyst is going to be utilized in the full
modification of a heterogeneous substrate. This is the case of oils, either when they are hydrolyzed
to produce free fatty acids or when they are used in transesterifications to produce biodiesel [16-23].
It should be considered that the oil will be composed of many different triglycerides formed by
different fatty acids. Moreover, diglycerides and monoglycerides will be the main substrates in certain
moments of the modification. Even in hydrolysis reactions, where titration of the released acids is not
recommended to avoid soap formation, the pH will decrease throughout the reaction [23]. That way,
neither the nature of the substrate is constant and unique, nor will the experimental conditions be fixed.
Thus, it is not easy to find an “optimal” enzyme that may be the best one in all situations. In these
cases, it has been shown that the combined use of several lipases permits not only better yields but also
higher initial reaction rates and more lineal reaction courses (in some cases one enzyme eliminates an
inhibitor of the main enzyme) [16-23]. Usually, this has been obtained using mixtures of individually
immobilized lipases [16-23].

If a combilipases is going to be utilized, lipase coimmobilization must be considered.
Coimmobilization of different lipases may have advantages in these reactions, as this avoids any time
lag in the sequential full modification of oils because lipases are immobilized on the same particle and
intermediate products do not need to diffuse to other enzyme particle [24-26].

However, enzyme immobilization is not a trivial matter in biocatalysts design. Any immobilization
protocol should make a heterogeneous biocatalyst easy to separate from the reaction medium [27].
Furthermore, a proper enzyme immobilization protocol may improve many enzyme properties,
like enzyme stability, activity, selectivity or specificity, purity, or inhibition problems [28-33]. Thus,
coimmobilization of several enzymes may be disadvantageous, as the same immobilization protocol
may not be the optimal one for all involved enzymes. This way, some of the immobilization potential
to improve enzyme properties may be lost for some of the involved enzymes [34-36]. However, this
may be not so hard a problem to solve when coimmobilizing lipases. In lipase immobilization, there is
a protocol that has revealed itself as an almost ideal method for the immobilization of most lipases [37]:
the use of hydrophobic supports permits lipase immobilization via interfacial activation of the lipase
versus the support surface [38], enabling the one step immobilization, purification, stabilization,
and even hyperactivation (the open form of the lipase is stabilized) of the lipase [39,40]. Enzyme
thermal stabilization using this protocol is higher even than that achieved using multipoint covalent
immobilization in thermal inactivations [41-44].

However, a second problem of enzyme coimmobilization remains: after the inactivation of the
least stable enzyme, all immobilized enzymes must be discarded [34-36]. Using hydrophobic supports,
lipase desorption may be achieved using detergents and the support may be reused, but more often
than not all lipases will be released from the support, and we may discard one enzyme with full
activity [37]. This may be solved if we used a heterofunctional glyoxyl-acyl support and the most stable
enzyme is covalently bound to the support after a first immobilization via interfacial activation [45,46].
These heterofunctional supports have been used with diverse lipases, showing that they permit the
first immobilization via interfacial activation (glyoxyl groups are not able to immobilize monomeric
enzymes at pH 7) [47] and, later, the covalent attachment of the already immobilized enzymes by
alkaline incubation on the glyoxyl groups may be achieved. This fully avoids the release of the enzyme
and, in most cases, permits enzyme stabilization, mainly in the presence of organic cosolvents [37,45,46].
After reduction of the support, the enzyme/enzymes with a lower stability is/are immobilized on the
biocatalyst via interfacial activation (the support chemical reactivity is gone). That way, these unstable
and inactivated enzymes may be released from the biocatalyst using detergents, while the other stable
and active enzymes will remain attached to the support and may be reused.

This coimmobilization strategy has been reported using the lipase B from Candida antarctica
(CALB) (a very stable enzyme) [48] and Lecitase Ultra (LU) (a phospholipase) [49] and the lipase
from Rhizomucor miehei (RML) [50-52]. As explained above, one requirement of the strategy is that
the enzyme covalently attached to the support must be the most stable one under the operational
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conditions. In the previous paper, a fixed inactivation condition (one thermal inactivation at a pH 7)
was used to evaluate the enzymes stabilities, and combilipases were always formed by the same pair
of coupled enzymes (CALB-LU or CALB-RML).

In this new research, we analyze the possibility of co-immobilizing the lipases from Pseudomonas
fluorescens (PFL), and RML and the phospholipase LU. These enzymes are very interesting ones, utilized
in many biocatalytic reactions [50,51,53,54]. All of them have been immobilized on octyl agarose and
glyoxyl-octyl agarose with good results [45,55].

Now, we will try to exploit the strategy to prepare coimmobilized combilipases to show that it
may be compatible with different inactivation causes (provided that the least stable enzymes remain
much less unstable than the other enzyme under all conditions), and that the covalently attached
enzyme may be coimmobilized each time with a different less stable enzyme. That is, the versatility of
the protocol will be enlarged and the applications ranged will grow.

To this end, first the stability of the different lipases to be coimmobilized will be compared
under different conditions. Then, the most stable lipase will be immobilized on glyoxyl-octyl. After
alkaline incubation to get some covalent bonds, the biocatalyst will be reduced to eliminate the
chemical reactivity of the support. Then, one of the least stable enzymes will be coimmobilized with
the covalently immobilized enzyme but only via interfacial activation. After checking the effect of
detergents on the stability of the most stable and covalently attached enzyme, the biocatalyst will be
incubated under conditions where the least stable enzyme is inactivated but the most stable is left
untouched. After this inactivation incubation, the inactivated enzyme will be released by detergent
incubation. This will allow one to reuse the most stable enzyme, and to coimmobilize via interfacial
activation other different, less stable enzymes. The combi-biocatalyst may be submitted to several
inactivation cycles under different conditions. This reuse of the most stable enzyme (covalently
attached) and changes of both inactivation conditions and the coimmobilized pair of enzymes will be
repeated for several cycles.

2. Results and Discussion

2.1. Immobilization on Octyl-Agarose and Comparison of Stabilities of RML, LU, and PFL

Figure 1 shows the immobilization courses of RML, LU, and PFL on octyl agarose. LU and
RML increased the activity by a factor of 5, while in the case of PFL this increase in enzyme activity
after immobilization is scarce (around 10%). This increase in lipase activity upon immobilization on
octyl-agarose has been previously described and is related to the stabilization of the open form of the
lipases [37].

To decide the enzyme or enzymes that should be covalently immobilized on glyoxyl-octyl agarose
and the range of conditions where the combilipases permit the reuse of the most stable one with full
activity, it was necessary to compare the stability of the three biocatalysts under all desired conditions.
This will also show the best couple of enzymes for each inactivation condition (it is convenient to find
conditions where one remains almost 100% active while the other enzyme has lost more than 50% of
the initial activity).

Lipase stabilities were higher at pH 5 than at pH 7 (except for RML), and all enzymes showed
their lowest stabilities at pH 9. Thus, at pH 7 and 5 the enzymes were inactivated at 55 °C and at pH 9
they were inactivated at 42 °C. Figure 2 shows the inactivation courses of octyl-LU, octyl-RML, and
octyl-PFL at pH 5, 7, and 9 under the selected temperatures. PFL was the most stable one under all
conditions, maintaining 100% of the initial activity at pH 7 and 9 under conditions where the other 2
enzymes retained less than 50% of the initial activity. LU was the biocatalyst with the lowest stability
at pH 5 and 7, while RML was the one with a lower stability at pH 9. At pH 5, a lower temperature
was assayed (50 °C), as even PFL suffered a slight inactivation at 55 °C. Under these conditions, PFL
maintained its activity intact while RML showed more than 80% activity after 2 h of inactivation but
LU lost a significant percentage of enzyme activity.
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Figure 1. Immobilization course Pseudomonas fluorescens (PFL) (A), Rhizomucor miehei (RML) (B), and
Lecitase Ultra (LU) (C) in octyl agarose beads. The experiments were performed using an enzyme
loading of 1 mg/g of support as described in Methods. Solid squares: reference, solid circles: supernatant;
and empty triangles: suspension.
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Figure 2. Inactivation profiles of different lipase biocatalysts incubated under different conditions.
Other specifications are described in methods. 55 °C, pH 7 (A); 55 °C, pH 5 (B); 50 °C, pH 5 (C); and
42 °C, pH 9 (D). Solid circles: octyl-PFL; solid triangles: octyl-RML; and solid squares: octyl-LU.

Following our objective, these inactivation results suggested that PFL should be the enzyme
to be covalently attached to the support, and RML or LU could be coimmobilized with it just via
interfacial activation, enabling one to maintain the immobilized PFL as almost fully active when the
other enzymes were almost fully inactive. At pH 5, RML stability was too high to be coimmobilized
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with PFL and recover intact the activity of PFL after a 50% inactivation of RML; thus, the couple
PFL/RML was not adequate at this pH value. However, at pH 7 and 9 both LU and RML were clearly
less stable than PFL. Thus, except at pH 5, PFL covalently immobilized on glyoxyl-octyl could be
coimmobilized with any of the other enzymes and the full PFL activity recovered after the inactivation
of the coimmobilized enzyme. At pH 5, 50 °C was required to inactivate LU while keeping full activity
for PFL.

However, in many instances the combilipases may be used in the presence of organic solvents.
Thus, the stabilities of the three biocatalysts in the presence of 30% of different organic solvents at 25 °C
were assayed (Figure 3). Again, PFL was always the most stable biocatalyst but only LU was clearly
inactivated using this moderately low concentration of acetonitrile, dimethylformamide, or dioxane
(Figure 3). To get a significant inactivation of immobilized RML, using dioxane and acetonitrile, the
temperature was increased to 30 °C or the solvent concentrations were increased by 40%, to obtain
conditions that permitted one to inactivate all immobilized enzymes except the PFL preparation.
Figure 4 confirms that PFL retained its activity almost unaltered under all these conditions, except
when combining 30% dioxane and 30 °C, while LU and RML lost more than 50% of their activities.
That means that using RML and LU coimmobilized with covalently immobilized PFL on glyoxyl-octyl
could be possible to reuse a fully active PFL when the other enzymes were significantly inactivated.
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Figure 3. Inactivation profile of different lipase preparations incubated in the presence of 30% (v/v) of
different cosolvents. Acetonitrile (A); 1,4-dioxane (B); and dimethylformamide (C). The experiments
were performed at pH 7 and 25 °C as described in Methods. Solid circles: octyl-PFL; solid triangles:
octyl-RML; and solid squares: octyl-LU.

Thus, it seems that the best option to prepare a combilipase for its use under any experimental
condition, with the possibility of reusing the most stable enzyme, was to covalently immobilize PFL on
glyoxyl-octyl agarose and coimmobilize the other two enzymes in the reduced biocatalyst.
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Figure 4. Inactivation profiles of different lipase preparations incubated under different conditions.:
in the presence of 40% (v/v) acetonitrile at 25 °C (A); in 30% (v/v) acetonitrile at 30 °C (B); in 40%
(v/v) 1,4-dioxane at 25 °C (C); and 30% (v/v) 1,4-dioxane at 30 °C (D). The experiments were carried
out at pH 7. Other specifications are described in Methods. Solid circles: octyl-PFL; solid triangles:
octyl-RML; and solid squares: octyl-LU.

2.2. Effect of Detergent on PFL-Glyoxyl-Octyl Stability

It has been described that the desorption of the inactivated enzymes immobilized via interfacial
activation may be achieved after their incubation in 4% Triton for 1 h [52]. This will be not possible if
the covalently immobilized enzyme is inactivated by the detergent. Thus, we checked if this detergent
had any negative effect on the activity of the covalently immobilized PFL, and we did not find any
significant enzyme activity decrease even after more than 1 day of incubation in 4% Triton X-100
(Figure 5). That meant that it was possible to coimmobilize PFL immobilized on reduced glyoxyl-octyl
agarose and LU or RML, and release LU and RML from the biocatalyst by incubation in 4% Triton-X100
without any negative effect for the covalently immobilized PFL.

One of the problems that may exist with this strategy is the presence of some leftover Triton X-100
molecules on the support or the enzyme even after washing the biocatalysts to eliminate the inactivated
enzymes and the residual detergent. This could have some negative effect on enzyme stability [52].
Thus, the stability of the immobilized PFL after incubation in 4% Triton X-100 and the corresponding
washing was compared with that of a biocatalyst not incubated in detergent, and we did not find
any difference in terms of enzyme stability (Figure 6). Similar studies were performed comparing the
stabilities of LU and RML immobilized on supports that have been incubated in detergent solution
or clean supports, with similar results (Figure 6). This means that all Triton X-100 molecules were
eliminated from the supports and biocatalyst or that they have no effect on the enzymes stabilities.
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Figure 5. Effect of the incubation in 4% Triton X-100 on the activity of glyoxyl-octyl-PFL biocatalyst.
The lipase preparation was incubated in 4% (v/v) of Triton X-100 at pH 7 and 25 °C. Experiments
were performed as described in Methods. Empty circles: glyoxyl-octyl-PFL (control); solid circles:
glyoxyl-octyl-PFL in presence of Triton X-100.
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Figure 6. Effect of incubation in the presence of 4% Triton X-100 of the supports and washing as
described in methods on the stability of glyoxyl-octyl-PFL at 70 °C, pH 7 (A). Reduced glyoxyl-octyl
was submitted to the same protocols, and then RML (B) or LU (C) were immobilized. Inactivation
was performed at 55 °C and pH 7. Experiments were performed as described in Methods. Empty
symbols: enzyme immobilized in supports without incubation with Triton X-100 (control); solid
symbols: enzyme immobilized on support incubated in Triton X-100 and washed with distilled water
as described in methods.

2.3. Preparation of Combi PFL-RML and Combi PFL-LU

Figure 7 shows the coimmobilization of RML and LU with reduced glyoxyl-octyl PFL. The
immobilization is quite rapid and produces some hyperactivation of the enzymes, but lower than
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when immobilizing the enzymes individually, very likely because PFL will be immobilized on the
external section of the support pores. However, hyperactivation still showed a factor of 2 for LU and
of almost 3 for RML. Figure 8 shows the SDS-Page: it shows how the bands of LU or RML are visible
and how after Triton X100 incubation no bands were detected.
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Figure 7. Courses of immobilization in the production of combibiocatalysts. Activity is given per
gram of wet support used in the experiment. Experiments were carried out as described in Methods:
(A) LU immobilized on reduced glyoxyl-octyl-PFL. Solid line, empty square: LU reference; solid line,
solid square: suspension; dotted line, empty squares: supernatant; solid line, solid circle: reduced
glyoxyl-octyl-PFL reference. (B) RML immobilized on reduced glyoxyl-octyl-PFL. Solid line, empty
triangle: RML reference; solid line, solid triangle: suspension; dotted line, empty triangle: supernatant;
solid line, solid circle: reduced glyoxyl-octyl-PFL.
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Figure 8. SDS-page analysis of combi-biocatalysts PFL-RML/PFL-LU. Lane 1: molecular weight
marker, Lane 2: octyl-PFL; Lane 3: octyl-RML; Lane 4: octyl-LU; Lane 5: COMBI-PFL-RML; Lane
6: COMBI-PFL-RML washed with triton 4%; Lane 7: COMBI-PFL-LU; and Lane 9: COMBI-PFL-LU
washed with triton 4%. Experiments were performed as described in Methods.

2.4. Cycles of Enzyme Inactivation, Inactivated Enzyme Desorption, and New Enzyme Loading

Figure 9 shows several cycles of incubation under stress conditions of PFL-glyoxyl-octyl
preparation, coimmobilized in some cases with RML and in other cases with LU. The inbutation was
prolonged until the least stable enzyme was inactivated under 50% of its initial activity, then it was
desorbed from the biocatalysts, and a load of other fresh enzyme was added to the immobilized PFL to
get a new combilipase. Inactivations involve different pHs, temperatures, and organic solvents, were
we have previously verified that PFL remains fully active.
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Figure 9. Cycles of reuse of reduced glyoxyl-octyl-PFL in the preparation of combilipases after
immobilization of LU or RML and its inactivation and desorption and washing as described in Methods
section. PFL is PFL covalently immobilized on glyoxyl-octyl. First cycle: LU was immobilized on
reduced glyoxyl-octyl-PFL and inactivated at 50 °C, pH 5; second cycle: fresh RML was immobilized
on reduced glyoxyl-octyl-PFL and inactivated at 42 °C, pH 9; third cycle: fresh LU was immobilized
on reduced glyoxyl-octyl-PFL and inactivated in presence of 30% acetonitrile at 30 °C, pH 7; fourth
cycle: fresh RML was immobilized on reduced glyoxyl-octyl-PFL and inactivated in presence of 40%
acetonitrile at 25 °C, pH 7; and fifth cycle: fresh RML was immobilized on reduced glyoxyl-octyl-PFL
and inactivated at 55 °C, pH 7. After all inactivations cycles, the lipase preparations were incubated in
4% (v/v) of Triton X-100 during 1 h to desorb all lipases hydrophobic adsorbed on the support.

It is clear that PFL activity after desorption of the inactivated LU or RML was maintained
for 5 different inactivation, desorption, and new enzyme coimmobilization cycles, where the
combi-biocatalysts are incubated at different pH values and in the presence of different organic solvents.
That is, the strategy works under a broad range of conditions and permits the coimmobilization of
different enzymes.

3. Materials and Methods

3.1. Materials

Lipase from Pseudomonas fluorescens (PFL-13.2% mg of protein/mg of powder) was purchased from
Sigma-Aldrich. Palatase 20,000 L (lipase from Rhizomucor miehei (RML)—2.9 mg of protein per mL)
and Lecitase Ultra (LU), a chimeric phospholipase (21.85 mg of protein per mL), were kindly donated
by Novozymes (Spain). Triton X-100, p-Nitrophenyl butyrate (p-NPB), sodium (meta) periodate, and
sodium borohydride >98% were also purchased from Sigma-Aldrich. Octyl-Sepharose CI-4B beads
were obtained from GE healthcare. All other reagents and solvents were of analytical grade.

3.2. Methods

3.2.1. Immobilization of Lipases on Octyl-Agarose Beads

Lipase from Pseudomonas fluorescens (PFL), lipase from Rhizomucor miehei (RML), and Lecitase
Ultra (LU) were immobilized on octyl agarose by interfacial adsorption. To this goal, 1 g of support
was added to 10 mL of lipase solution (containing 0.1 mg/mL) in sodium phosphate 5 mM at pH 7.
Finally, the biocatalysts were filtered, washed with excess of distilled water, and stored at 4 °C.

3.2.2. Coimmobilization of Lipases

In this strategy, the most stable lipase was immobilized on glyoxyl-octyl agarose support,
containing 20 umol of aldehydes per g of wet support. First, the most stable lipase was immobilized by
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interfacial activation, using 5 mM sodium phosphate buffer at pH 7 (1 mg of protein per g of support).
In the procedure, 1 g of glyoxyl-octyl agarose was added to 10 mL of 0.1 mg/mL lipase solution and the
immobilization process was carried out at room temperature. The immobilized lipase was filtered and
washed with abundant distilled water. Then, the lipase immobilized on glyoxyl-octyl agarose was
incubated at pH 10.5 for 20 h at 25 °C to get some covalent bonds [56]. Then, the support was reduced
using 1 mg of sodium borohydride per mL of suspension. The suspension was stirred for 30 min at
25 °C. Then, the covalent immobilized biocatalyst was filtered, washed with distilled water, and stored
at4°C.

In the sequential formation of combi-biocatalyst, the least stable lipase was immobilized on
reduced covalently immobilized biocatalyst, using sodium phosphate buffer 5 mM, pH 7. Then, the
combi-biocatalyst was filtered, washed with distilled water, and stored at 4 °C.

3.2.3. Determination of Enzymatic Activity and Protein Concentration

The enzymatic activity was measured using p-nitrophenyl butyrate (p-NPB) substrate. 50 uL of
substrate (50 mM in acetonitrile) was added to 2.5 mL of 25 mM sodium phosphate at pH 7, and the
reaction was started by adding 50-100 uL of enzyme solution or suspension (free or immobilized). The
product, p-nitrophenol, released during the hydrolysis of p-NPB, was measured at 348 nm. Protein
concentration was determined using Bradford method [57], and bovine serum albumin was used
as standard.

3.2.4. Immobilized Lipase Inactivations

The stabilities of immobilized lipases were performed at different pH values (50 mM of sodium
acetate at pH 5, Tris-CLH/NaOH at pH 7, and sodium bicarbonate-carbonate at pH 9,) using different
temperatures (42-55 °C) to find those that permitted a rapid and reliable least stable enzymes
inactivations. In addition, the stability of immobilized preparations was investigated in the presence
of 30—40% of different solvents in 50 mM Tris-HCl/NaOH at pH 7 different temperatures. The stability
of some preparations in presence of 4%(v/v) Triton X-100 (in 50 mM Tris-CIH/NaOH at pH 7) at 25 °C
was also studied.

Periodically, samples were withdrawn, and their activities were determined employing the p-NPB
hydrolysis. The profile of enzyme inactivation was built using as 100% the initial activity of the
respective lipase preparation.

3.2.5. Desorption of Lipases from the Support

To eliminate the least stable enzyme from the support, the combi-lipase was incubated in 4% (v/v)
of Triton X-100 in 50 mM Tris-CIH/NaOH at pH 7 for 1 h. Following that, the biocatalyst was washed
five times with 10 volumes of Triton X-100 (4%-v/v) and 50 times with 10 volumes of distilled water to
remove all detergent molecules.

3.2.6. SDS-Page Electrophoresis

The SDS-Page analysis was performed using a Miniprotean tetra-cell (Biorad) electrophoresis
unit. 12% polyacrylamide resolution gel and 5% polyacrylamide concentration gel were used for
electrophoresis [58]. The samples were re-suspended in the rupture buffer (4% v/v SDS () and 10% (v/v)
mercaptoethanol ) for a final protein concentration of 1-2.5 mg/mL. Then, the samples were boiled for
5 min, enabling the release of all enzymes not covalently attached on the support [59], and 13 uL of
supernatant of the samples were loaded in the gel. Then, protein bands were detected by cromassie
brilliant blue method, using low molecular weight marker protein (LMW-SDS Marker—GE Healthcare
Life Sciences—14.4-97 KDa) as standard.
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4. Conclusions

Immobilized PFL was more stable than immobilized RML or LU under a wide range of conditions,
maintaining its activity unaltered when the other biocatalysts were almost fully inactivated. The use
of glyoxyl-octyl enabled one to covalently immobilize PFL after its immobilization via interfacial
activation, and after reduction to eliminate the support chemical reactivity, to coimmobilize this
enzyme with LU or RML. After incubation with Triton X-100, LU and RML was released from the
support. As PFL-glyoxyl-octyl was not affected by incubation in 4% Triton X-100, it was possible to
submit the coimmobilized enzymes (PFL/RML or PFL/LE) to incubation under stress conditions, where
LU or RML were inactivated but PFL activity was almost fully maintained, release the inactivated
enzyme, and load a new enzyme on the reduced PFL-glyoxyl-octyl. Thus, we have shown that the
strategy is compatible with changes in the enzymes coimmobilized with the covalently and more stable
immobilized enzyme, and with different causes for enzyme inactivation.
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