Supplementary Materials: Tuning Sn-Cu Catalysis for Electrochemical Reduction of CO₂ on Partially Reduced Oxides SnOx-CuOx-Modified Cu Electrodes

Qianwen Li, Mei Li, Shengbo Zhang, Xiao Liu*, Xinli Zhu, Qingfeng Ge and Hua Wang*

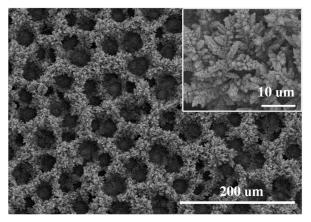


Figure S1. The SEM image of Cu foam.

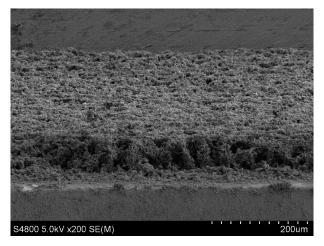


Figure S2. The cross-sectional views of Cu/SnO₂.

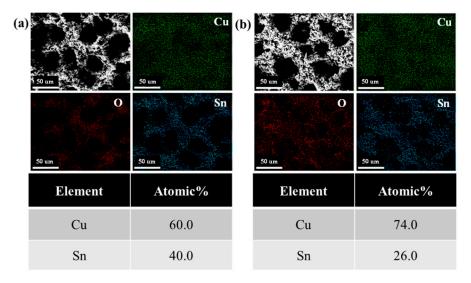


Figure S3. SEM elemental mapping for (a) Cu/SnO₂ and (b) A-Cu/SnO₂ before pre-reduction. The table is EDX analysis identifying.

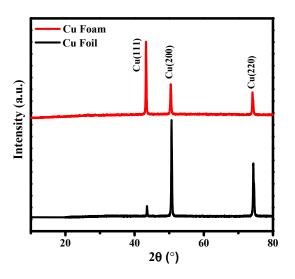


Figure S4. XRD patterns of Cu Foil and Cu foam.

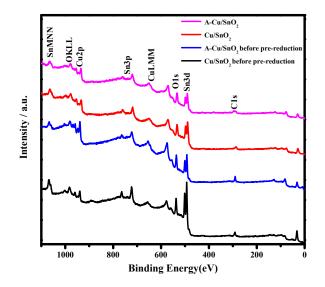
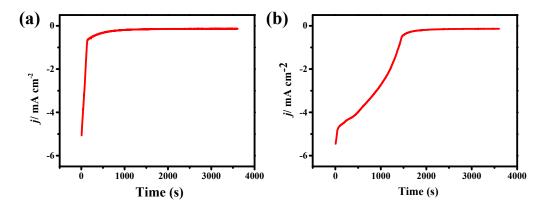
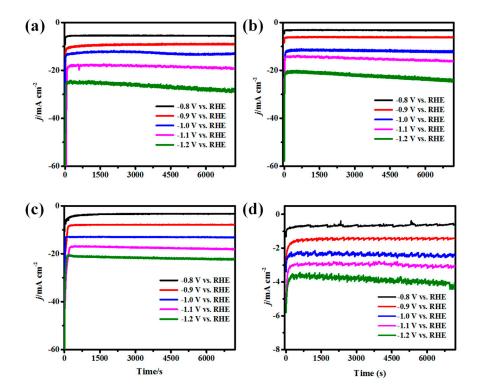




Figure S5. XPS survey spectra of Cu/SnO₂, A-Cu/SnO₂ before and after pre-reduction.

Figure S6. The I-t curves of pre-reduction of for (a) Cu/SnO₂ and (b) A-Cu/SnO₂ at -0.5 V vs. RHE in 0.1M KHCO₃ purged with CO₂ gas.

Figure S7. The I-t curves during CO₂ electroreduction of (**a**) Cu foam, (**b**) Cu/SnO₂, (**c**) A-Cu/SnO₂, (**d**) Sn plate at different voltages in 0.1 M KHCO₃ purged with CO₂ gas.

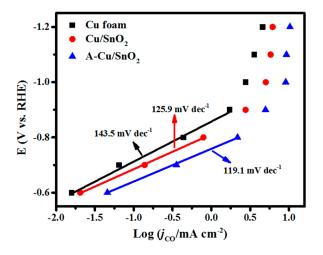
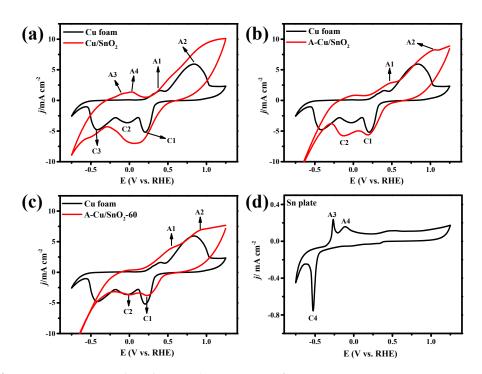



Figure S8. CO partial current density Tafel plots for Cu foam, Cu/SnO2 and A-Cu/SnO2.

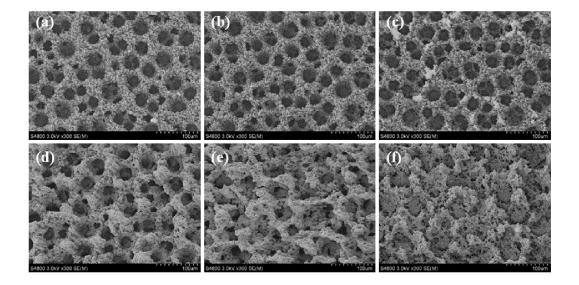
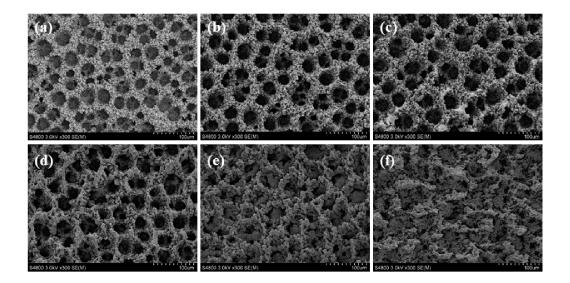


Figure S9. CV curves of Cu foam and (**a**) Cu/SnO₂, (**b**) A-Cu/SnO₂, (**c**) A-Cu/SnO₂-60 (SnO₂ deposition time: 60 min) and (**d**) Sn plate in N₂-saturated 0.1 M KHCO₃ solution, scan rate = 10 mV/s.


The surface redox potentials of the electrodes were studied by CVs from -0.75 to +1.25 V vs RHE in the N₂-saturated 0.1 M KHCO₃ (Figure S7). Cu foam shows two anodic peak at -0.39 V and -0.83 V vs RHE due to the oxidation of Cu to Cu₂O and CuO, and the three cathodic peaks are attributed to CuO reduction to Cu₂O (0.19 V), Cu₂O reduction to Cu (-0.04 V) and HCuO₂⁻ reduction (-0.42 V) [1]. HCuO₂⁻ could be observed when the most positive limit of the potential scan is high enough [2]. As shown in Figure S6(d) is CV of Sn plate, Two anodic peaks correspond to the oxidation of Sn to SnO (-0.26 V) and SnO to SnO₂ (-0.11 V) and the cathodic peak which involves a larger peak current than two anodic peaks are from the combination of two processes: reduction of SnO₂ to SnO and also the reduction of SnO to Sn (-0.52 V) [3]. For Cu/SnO₂, the apparent anodic peak at -0.1 V correspond to the oxidation of Sn to SnO₂, and the peaks correspond to the oxidation of Cu to CuO was not observed. However, for A-Cu/SnO₂,

the redox feature of Sn is much reduced and of Cu is observed. It indicated Cu atoms diffuse

out and replace the SnO₂ surface [3]. In addition, when SnO₂ deposition time was prolonged to 60 min, the redox feature of Cu was still observable but reduced, attesting to Cu atoms exposed to electrode decreased with the increase of SnO₂ amount.

Figure S10. The SEM images of Cu/SnO₂ with different SnO₂ deposition time, (**a**) 0 min, (**b**) 5 min, (**c**) 15 min, (**d**) 30 min, (**e**) 45 min, (**f**) 60 min.

Figure S11. The SEM images of A-Cu/SnO₂ with different SnO₂ deposition time, (a)0 min, (b) 5 min, (c) 15 min, (d) 30 min, (e) 45 min, (f) 60 min.

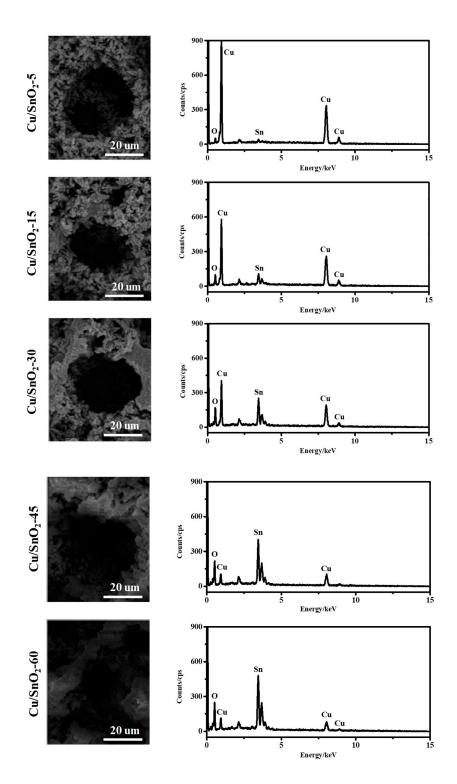
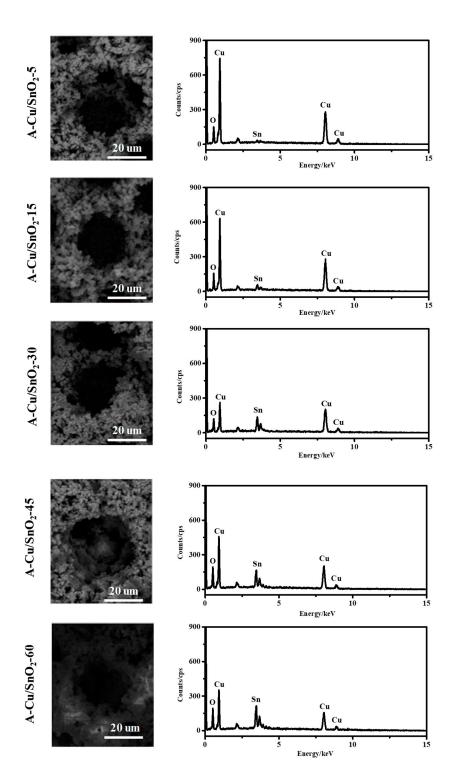
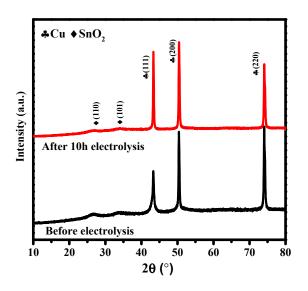
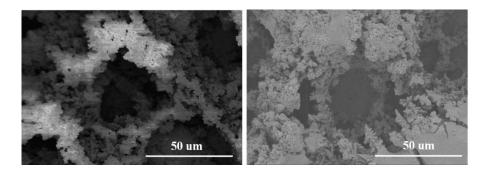


Figure S12. The EDS spectra of Cu/SnO₂-T (T represents the deposition time of SnO₂).

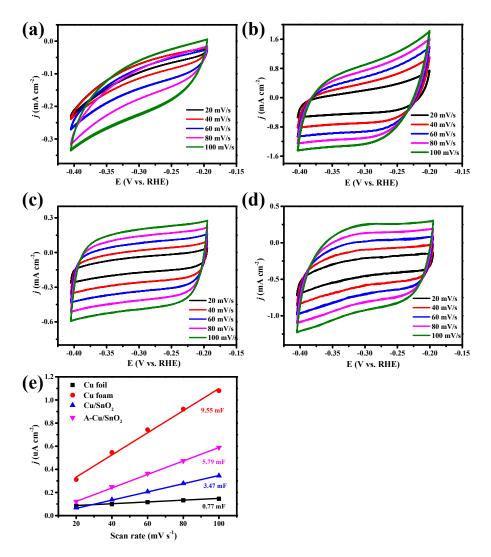

Figure S13. The EDS spectra of A-Cu/SnO₂-T (T represents the deposition time of SnO₂).

Figure S14. XRD patterns of A-Cu/SnO₂ before and after 10 h of CO₂ reduction -1.0 V vs RHE in CO₂-saturated 0.1 M KHCO₃ solution.

Figure S15. SEM images of (a) A-Cu/SnO₂ before CO₂ reduction, (b) A-Cu/SnO₂ after CO₂ reduction for 10 h at -1.0 V vs RHE.

Figure S16. Double layer capacitance (Cdl) obtained from CV measurements. CV curves of (a) Cu foil, (b) Cu foam, (c) Cu/SnO₂, (d) A-Cu/SnO₂ in CO₂ saturated 0.1 M KHCO₃ electrolyte between -0.2 V and -0.4 V vs RHE. (e) Current density difference between cathodic and anodic sweeps at -0.3 V vs RHE against scan rate (20 mV s⁻¹ to 40 mV s⁻¹). The Cdl was calculated by plotting the $\Delta j/2$ against scan rates, in which the slope was Cdl. The Δj is the difference between j_a and j_c , where j_a and j_c are the anodic and cathodic current density at the midpoint of applied potential range, respectively [4].

The electrochemical surface area (ECSA) of the catalyst can be determined by Equation (1).

$$ECSA = R_f S$$
(1)

Where S is the geometric area of the smooth metal electrode, R_f is the roughness factor, which is calculated from the ratio C_{dl} for the working electrode and the corresponding smooth metal electrode. Therefore, the ECSAs of Cu foam, Cu/SnO₂ and A-Cu/SnO₂ are calculated to be 12.4 cm⁻², 4.5 cm⁻² and 7.5 cm⁻², respectively. It indicates that the introduction of SnO₂ reduces the ECSA and the annealing treatment increases the ECSA, which affects the steady-state current density of electrodes (Figure S13).

Table S1. The content of Cu and Sn of Cu/SnO ₂ and A-Cu/SnO ₂ obtained from ICP-AES.

Catalysts	Cu (wt%)	Sn (wt%)
Cu/SnO ₂	56.54	1.79
A-Cu/SnO ₂	59.19	1.88

The inductively coupled atomic emission spectroscopy (ICP-AES) were taken using a Varian VISTA-MPX equipped with a charge coupled device (CCD) detector. Samples were dissolved in aqua regia (the volume ratio of concentrated HNO3 to concentrated HCl is 1:3). Then samples were diluted with deionized water and adjusted pH to 5~6 with 0.1 M NaOH aqueous solution prior to measurements. Cu standard solution (100 ppm) and Sn standard solution (100 ppm) were used and diluted for calibration measurement.

Table S2. Summary of atomic percent of Cu/SnO2 and A-Cu/SnO2 before and after prereduction obtained from XPS and SEM-EDX elemental mapping.

Samples	Х	(PS	SEM-EDX		
Cu/SnO ₂ before	Cu	10.1	47.3		
	Sn	32.1	31.5		
pre-reduction	0	57.8	21.2		
	Cu	17.1	57.9		
Cu/SnO ₂	Sn	23.8	27.7		
	0	59.1	14.4		
A Cu/Ca D hafara	Cu	25.8	59.0		
A-Cu/SnO2 before pre-reduction	Sn	18.5	20.7		
	0	55.7	20.3		
	Cu	26.0	74.1		
A-Cu/SnO ₂	Sn	10.1	18.6		
	0	63.9	7.3		

Current density (j/mA cm ⁻²)	Cu foam	Cu/SnO2	A-Cu/SnO2	Sn plate
-0.8 V vs. RHE	-5.7	-3.3	-3.7	-0.7
-0.9 V vs. RHE	-10.7	-6.3	-7.9	-1.4
-1.0 V vs. RHE	-13.4	-11.9	-12.9	-2.3
–1.1 V vs. RHE	-18.8	-14.4	-16.9	-2.9
–1.2 V vs. RHE	-25.3	-19.8	-21.0	-3.7

Table S3. The current density at different potentials obtained from Figure S13 on (**a**) Cu foam, (**b**) Cu/SnO₂, (**c**) A-Cu/SnO₂ and (**d**) Sn plate.

Table S4. Mass fraction and atomic fraction of Cu, Sn, O on the surface of the electrode with different deposition time of SnO₂ detected by SEM-EDS.

Catalanta	Deposition	Wt. %		Atom %			Atom	
Catalysts	time	Cu	Sn	0	Cu	Sn	0	ratio of Sn:Cu
	5	89.52	6.31	4.17	81.78	3.09	15.13	0.04
	15	68.46	22.04	9.5	58.02	10.01	31.97	0.17
Cu/SnO ₂	30	44.37	39.38	16.25	34.13	16.23	49.64	0.48
	45	13.35	62.08	24.57	9.26	23.07	67.67	2.49
	60	12.35	63.94	23.71	8.77	24.34	66.89	2.78
	5	81.91	5.18	12.9	60.27	2.04	37.69	0.03
	15	73.77	12.61	13.62	54.80	5.02	40.18	0.09
A-Cu/SnO ₂	30	52.62	30.24	17.17	38.41	11.82	49.77	0.31
	45	45.82	35.86	18.31	33.26	13.95	52.79	0.42
_	60	37.91	41.8	20.29	26.91	15.90	57.19	0.59

References

- 1. Teo, W.Z.; Ambrosi, A.; Pumera, M. Direct electrochemistry of copper oxide nanoparticles in alkaline media. *Electrochem. Commun.* **2013**, *28*, 51-53.
- 2. Procaccini, R.; Schreiner, W.H.; Vázquez, M.; Ceré, S. Surface study of films formed on copper and brass at open circuit potential. *Appl. Surf. Sci.* **2013**, *268*, 171-178
- 3. Li, Q.; Fu, J.; Zhu, W.; Chen, Z.; Shen, B.; Wu, L.; Xi, Z.; Wang, T.; Lu, G.; Zhu, J.; Sun, S. Tuning Sncatalysis for electrochemical reduction of CO₂ to CO via the core/shell Cu/SnO₂ structure. *J. Am. Chem. Soc.* **2017**, *139*, 4290-4293.

4. Zhao, Y.; Wang, C.; Wallace, G.G. Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO₂ to CO. *J. Mate. Chem. A* **2016**, *4*, 10710-10718.