

Supplementary material

Removal of Organic Micropollutants From a Municipal Wastewater Secondary Effluent by UVA-LED Photocatalytic Ozonation

Ana M. Chávez ¹, Ana R. Ribeiro ², Nuno F. F. Moreira ², Adrián M. T. Silva ^{2,*}, Ana Rey ¹, Pedro M. Álvarez ¹ and Fernando J. Beltrán ^{1,*}

- ¹ Departamento de Ingeniería Química y Química Física, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad, Universidad de Extremadura, Avenida de Elvas S/N, 06006 Badajoz, Spain; amchavez@unex.es (A.M.C.), anarey@unex.es (A.R), pmalvare@unex.es (P.M.A.), fbeltran@unex.es (F.J.B.).
- ² Laboratory of Separation and Reaction Engineering Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; ritalado@fe.up.pt (A.R.R.), nmoreira@fe.up.pt (N.F.F.M.), adrian@fe.up.pt (A.M.T.S).
- * Correspondence: fbeltran@unex.es, Tel.: +34-924- (F.J.B); adrian@fe.up.pt, +351-22 -041-4531 (A.M.T.S)

S1. Simplified reaction mechanisms of oxidation processes studied [1]

Photocatalytic oxidation:

$$TiO_2 \xrightarrow{hv} e^- + h^+$$
 (1)

$$h^+ + H_2 O \longrightarrow HO^{\bullet} + H^+$$
 (2)

$$e^{-} + O_2 \longrightarrow \left[O_2^{\square} ... HO_2^{\square} ... H_2 O_2 \right] \longrightarrow HO^{\square}$$
(3)

Initiation steps for HO[•] formation: reactions (2) (main pathway) and (3).

Removal of organic matter (M) and intermediates (I): reactions (4) and (5):

$$M + HO^{\Box} \longrightarrow I \tag{4}$$

$$I + HO^{\Box} \longrightarrow \left[\dots \right] \longrightarrow CO_2 + H_2O \tag{5}$$

M and I could also be removed by direct photolysis:

$$M \xrightarrow{hv} I$$
 (6)

Ozonation:

Removal of organic matter (M) and intermediates (I) by free radical and direct ozone reactions: reactions (4), (5), (7) and (8).

$$M + O_3 \longrightarrow I$$
 (7)

$$I + O_3 \longrightarrow I' \tag{8}$$

Main initiation step for HO• formation:

$$O_{3} \longrightarrow \left[O_{3}^{\square} ... HO_{3}^{\square} ... HO_{2}^{\square} ... O_{2}^{\square} ... H_{2}O_{2}\right] \longrightarrow HO^{\square}$$

$$\tag{9}$$

Photoozonation:

Reactions (4) to (9) and:

$$O_3 + H_2 O \xrightarrow{hv} H_2 O_2 \tag{10}$$

$$H_2O_2 \xrightarrow{hv} HO^{\bullet}$$
 (11)

$$H_2O_2 \xleftarrow{pk=11.3} HO_2^- + H^+ \tag{12}$$

$$O_3 + HO_2^- \longrightarrow \left[O_3^{\square} \dots HO_3^{\square} \dots HO_2^{\square} \dots O_2^{\square} \dots H_2O_2\right] \longrightarrow HO^{\square}$$
(13)

Main initiation steps for HO• formation: reactions (9), (11), and (13)

Photocatalytic Ozonation:

Reactions (1) to (13) and:

$$e^{-} + O_2 \longrightarrow O_2^{\square} \longrightarrow \left[O_3^{\square} \dots HO_3^{\square} \dots HO_2^{\square} \dots HO_2^{\square} \dots HO_2^{\square} \right] \longrightarrow HO^{\square}$$
(14)

$$e^{-} + O_{3} \longrightarrow \left[O_{3}^{\square} \dots H O_{3}^{\square} \right] \longrightarrow H O^{\square}$$
(15)

Initiation steps for HO[•] formation: reactions (2), (3), (9), (11), (13), (14), and (15) Synergism between ozone and photocatalytic oxidation due to reactions (14) and (15).

S2. Additional Tables and Figures.

	pН	DOC (mg/L)	IC (mg/L)
WW1	7.6 ± 0.2	22.2 ± 1.0	69.6 ± 1.6
WW2	7.6 ± 0.2	26.6 ± 1.0	74.2 ± 1.6

 $\label{eq:stable} \textbf{Table S1.} \ \textbf{Main characteristics of wastewater samples (WW)}.$

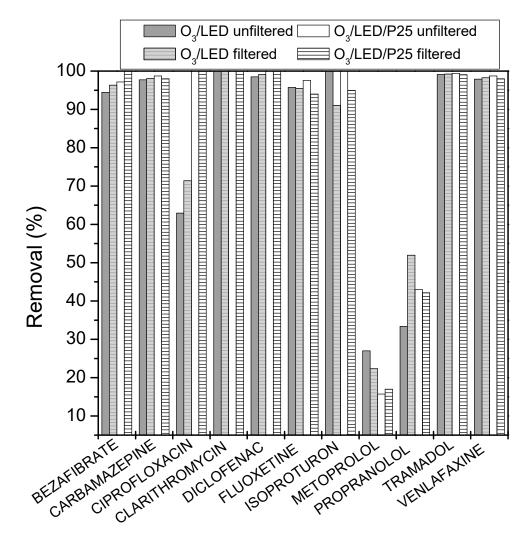
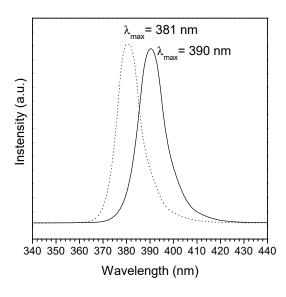

IC, inorganic carbon; DOC, Dissolved organic carbon.

Table S2. List of compounds: (i) that can be identified by the SPE-UHPLC-MS/MS method; (ii) listed in 2013/39/EU Directive and/or (iii) 2018/840/EU Decision; and (iv) detected in WW samples.


n	Detected by	Directive	Decision	Detected
Pesticides	SPE-UHPLC-MS/MS	2013/39/EU	2018/840/EU	in WW
Alachlor	Х	Х		
Atrazine	Х	Х		
Chlorfenvinphos	Х	Х		
Clofibric acid	Х			
Acetamiprid	Х		Х	
Clothianidin	Х		Х	
Diuron	Х	Х		
Imidacloprid	Х		Х	
Isoproturon	Х	Х		Х
Methiocarb	Х		Х	
Pentachlorophenol	Х	Х		
Simazine	Х	Х		
Thiacloprid	Х		Х	
Thiamethoxam	Х		Х	

Industrial Compounds	Detected by SPE-UHPLC-MS/MS	Directive 2013/39/EU	Decision 2018/840/EU	Detected in WW
Perfluorooctanesulfonic acid (PFOS)	Х	х		
UV Filter				
2-Ethylhexyl 4-				
methoxycinnamate (EHMC)				
Pharmaceuticals				
Atenolol	Х			
Atorvastatin	Х			
Azithromycin	Х		Х	
Bezafibrate	Х			Х
Carbamazepine	Х			Х

Cefalexin	Х		
Ceftiofur	Х		
Ciprofloxacin	Х	Х	Х
Citalopram	Х		
Clarithromycin	Х	Х	Х
Clindamycin	Х		
Clopidogrel	Х		Х
Diclofenac	Х		Х
Diphenhyhydramine	Х		
Enrofloxacin	Х		
Erythromycin	Х	Х	
Fluoxetine	Х		Х
Hydrochlorothiazide	Х		
Ketoprofen	Х		
Metoprolol	Х		Х
Norfluoxetine	Х		
Ofloxacin	Х		
Propranolol	Х		Х
Sulfamethoxazole	Х		
Tetracycline	Х		
Tramadol	Х		Х
Trimethoprim	Х		
Venlafaxine	Х		Х
Warfarin	Х		

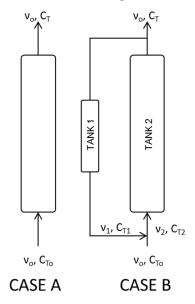

Figure S1. Comparison of removal percentage between WW1 filtered and unfiltered in different semibatch experiments. Conditions: reaction time = 10 min; gas flow rate = 150 mL·min⁻¹; P25 loading (when applied) = $0.5 \text{ g}\cdot\text{L}^{-1}$; ozone concentration = 50 mg·L⁻¹.

Figure S2. Irradiance spectra of UVA LEDs used for semi-batch (solid line) and continuous operation (dotted line).

S3. Mathematical Models

This part of the study focuses on matching the continuous system to a reactor flow model, taking into consideration two different reactor models. For this purpose, the normalized concentration of the tracer (F function) was determined from step-tracer (NaCl solution 2 g·L⁻¹) as described in section 2 of the manuscript.

Figure S3 Case A: The system behaves as one perfectly mixed reactor. Case B: The system behaves as two perfectly mixed reactors in series due to the reaction column and the recirculation column.

Case A: Perfectly mixed reactor model.

The F function is related to residence time distribution (RTD) (also known as E function) through equation (1), [1].

$$F = \frac{C_T}{C_{To}} = \int_0^t E dt \tag{1}$$

The E function for perfect mixing conditions is described as follows:

$$E = \frac{1}{t_m} e^{\left(-t_{t_m}\right)}.$$
 (2)

Then, taking into account both equations (1) and (2):

$$F = \frac{C_T}{C_{To}} = 1 - e^{\binom{-t/\tau}{\tau}},$$
(3)

where the hydraulic residence time (HRT, τ) is defined as:

$$\tau = \frac{V}{v_o} \,. \tag{4}$$

Case B: Two independent perfectly mixed reactors in series:

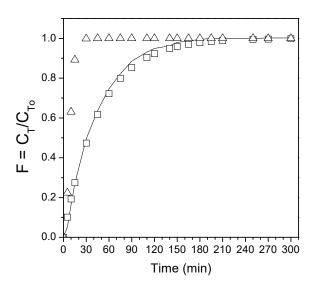
In this case, considering the scheme of the set-up, the tracer concentration at the inlet of the main column is described as:

$$C_{T_2} = \frac{C_T v_1 + C_{T_0} v_0}{v_2}$$
(5)

The outlet tracer concentration in tank 1 (CT) and tank 2 (CT1) are described as follows:

$$C_T = C_{T_2} \left(1 - e^{\left(-t/\tau_2 \right)} \right)$$
(6)

$$C_{T_1} = C_T \left(1 - e^{\binom{-t}{\tau_1}} \right), \tag{7}$$


Where, τ_1 and τ_2 being the hydraulic residence times in tank 1 and 2, respectively. Therefore, the F function can be obtained by combining equations (5), (6) and (7):

$$F = \frac{C_T}{C_{T_0}} = \frac{v_0 \left(1 - e^{\left(\frac{-t}{\tau_2}\right)}\right)}{v_2 - v_1 \left(1 - e^{\left(\frac{-t}{\tau_1}\right)}\right) \left(1 - e^{\left(\frac{-t}{\tau_2}\right)}\right)}.$$
(8)

Finally, since the packed bed reactor agrees with a perfectly mixed tank model as shown in **Figure S3**, the experimental HRT can be guessed through the linear adjustment of the neperian logarithm form of equation (3).


$$\ln\left(1 - \frac{C_T}{C_{To}}\right) = -\frac{t}{\tau} \tag{9}$$

Thus, the inverse of the negative slope gives a result of 39 min for the HRT.

Figure S4. F curve versus time from tracer experiment (solid line) and simulated F curves for the reactor set-up in case A (\Box) and B (Δ).

S4. P25R Photocatalyst Characterization: scanning electron microscopy (SEM) and wavelength dispersive X-ray fluorescence (WDXRF)

Figure S5. SEM images of fresh coated glass rings surface (A and B). Layer thickness measurements in a polished coated glass ring (C) and in a scratched coated glass ring surface (D).

Oxide -	Concentration (weight %)			
Oxide	R	P25R	O ₂ /LED/P25R	O ₃ /LED/P25R
SiO ₂	79.9	79.8	80.0	79.5
B_2O_3	13.0	13.0	13.0	13.0
Na ₂ O	3.8	3.8	3.7	3.9
Al ₂ O ₃	2.5	2.4	2.4	2.5
K ₂ O	0.65	0.65	0.68	0.69
TiO ₂	0.03	0.16	0.15	0.16
Impurities	0.07	0.14	0.05	0.24

Table S3. WDXRF results of uncoated glass rings (R), coated glass rings before treatment (P25R) and
after photocatalytic oxidation (O2/LED/P25R) and photocatalytic ozonation (O3/LED/P25R).

S5. Reference

 Beltrán, F.J., Ozone reaction kinetics for water and wastewater systems Lewis Publishers: Florida, U.S. 2004; pp. 1-358.