Supplementary Materials

Selective Production of Terephthalonitrile and Benzonitrile via Pyrolysis of Polyethylene Terephthalate (PET) with Ammonia over Ca(OH)2/Al2O3 Catalysts

Lujiang Xu^{1, 2}, Xin-wen Na¹, Le-yao Zhang¹, Qian Dong¹, Guo-hua Dong¹, Yi-tong Wang³, and Zhen Fang ^{1,*}

1 Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China

2 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, 210096, China.

College of Metallurgy and Energy, North China University of Science and Technology,21 Bohai Street, Tangshan, 063210, China.

* Correspondence: zhenfang@njau.edu.cn

Table of Contents:

Figure S1. The GC-MS spectra of pyrolysis PET with ammonia at 650 $^{\rm o}{\rm C}$

Figure S2. The NH₃-TPD spectra of fresh and used catalysts

Figure S3. The CO₂-TPD spectra of fresh and used catalysts

Figure S4. The schematic diagram of the pyrolysis system

Figure S5. The schematic diagram of the liquid feeding pyrolysis system

Table S1. The detailed chemical compositions of pyrolysis PET with ammonia at 650 $^{\circ}$ C

Table S2. C-C Bond dissociation energy of some model compounds @25 °C and @650 °C

Table S3. Elemental analyses of PET plastic and chars

Table S4. Integration parameters and their values set in mass spectrometry detector (MSD) chemstation.

Figure S1. The Chemical compositions of pyrolysis PET with ammonia at 650 $^{\mathrm{o}}\mathrm{C}$

Figure S2. The NH3-TPD spectra of fresh and used Ca(OH)2/ γ Al2O3 catalysts

Figure S3. CO₂-TPD curves of fresh and used Ca(OH)₂/ γ Al₂O₃ catalysts

Figure S4 The schematic diagram of the pyrolysis system.

Figure S5 The schematic diagram of the liquid injection pyrolysis system

No.	RT/min	Chemicals	Peak area (%)	M.W.
1	3.37	Butanoic acid, methyl ester	1.89	102.068
2	3.40	1-Butanol, 3-methoxy-	2.10	104.084
3	3.90	Ethylene glycol diglycidyl ether	0.94	174.089
4	4.05	1-Pentanamine	0.27	87.105
5	4.14	Toluene	1.80	92.063
6	4.42	Butanoic acid, 2-methyl-, methyl ester	0.77	116.084
7	6.08	p-Xylene	0.85	106.078
8	6.68	Styrene	2.62	104.063
9	8.53	Benzonitrile	5.71	103.042
10	9.97	Acetophenone	0.99	120.06
11	10.46	Dodecane	3.45	170.203
12	11.46	Benzoic acid	27.87	122.037
13	13.01	terephthalonitrile	3.72	128.037
14	14.04	Benzamide	9.08	121.053
15	14.35	Benzoic acid, 4-cyano-, methyl ester	5.60	161.048
16	14.64	Biphenyl	5.62	154.078
17	15.13	Butyl benzoate	3.99	206.131
18	15.55	Benzene, 1,2,4-triethyl-	0.71	162.141
19	16.15	1,4-Benzenedicarboxylic acid, dimethyl ester	1.07	194.058
20	16.54	Benzoic acid, 4-acetyl-, methyl ester	0.60	178.06
21	17.10	4-Cyanobenzoic acid, isopropyl ester	0.46	189.08
22	17.57	Phenol, 3-(2-phenylethenyl)-, (E)-	0.99	196.089
23	17.74	Benzophenone	0.60	182.07
24	18.16	Benzoic acid, 4-cyano-, methyl ester	0.20	161.048
25	18.61	4-Cyanobenzoic acid, butyl ester	0.48	203.1
26	18.76	9-Acridinamine	1.97	194.084
27	18.84	p-Phenylbenzonitrile	5.44	179.073
28	19.47	Anthracene	0.62	178.078
29	19.88	Ethanone, 1-[1,1'-biphenyl]-3-yl-	1.92	196.089
30	20.25	Phthalic acid, heptyl trans-hex-3-enyl ester	2.31	346.214
31	20.53	4-Phenylbenzhydrazide	0.57	212.1
32	23.05	Benzoic acid, 3-ethylphenyl ester	3.30	226.099
33	25.37	Benzaldehyde, 4-cyano-, benzoylhydrazone	0.49	249.09

Table S1. The detailed chemical compositions of pyrolysis PET with ammonia at 650 $^{\rm o}{\rm C}$

Entry	Feedstock	Chemical Structure	Bond dissociation energy (kcal/mol) @ 25 ºC	Bond dissociation energy (kcal/mol) @ 650 °C
1	Benzoic acid	ОН	87.12	58.95
2	Methyl benzoate	OCH3	85.41	56.65
3	Benzamide	NH ₂	77.20	49.05
4	benzonitrile		120.55	95.67
5	Terephthalic acid	HO OH	86.27	58.22
6	Dimethyl terephthalate	H ₃ CO OCH ₃	84.97	56.35

Table S2. C-C Bond dissociation energy of some model compounds @25 $^{\mathrm{o}}\mathrm{C}$

Table 55. Elemental analyses (76) of FET plastic						
C	Н	S	Ν	0		
62.34	4.36	0	0.04	33.26		

Table S3. Elemental analyses (%) of PET plastic

Integrator Event Name	Value	Time
Initial Area Reject	0.5% of largest peak	Initial
Initial Peak Width	0.075	Initial
Shoulder Detection	OFF	Initial
Initial Threshold	17.5	Initial
Threshod	19.0	0.001

Table S4. Integration parameters and their values set in mass spectrometry detector (MSD) chemstation.