SUPPLEMENTARY MATERIAL

Reduction of nitrobenzene to aniline by $\mathrm{CO} / \mathrm{H}_{2} \mathrm{O}$ in the presence of palladium nanoparticles

Agnieszka Krogul-Sobczak,* Jakub Cedrowski, Patrycja Kasperska \& Grzegorz Litwinienko
Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Pasteura 1, Poland.
*Corresponding author. e-mail address: akrogul@ chem.uw.edu.pl

TABLE OF CONTENTS

Title
Figure S1. TEM images of raw PdNPs/DMAP and histogram of particle size distribution. page Figure S2. TEM images of centrifuged PdNPs/DMAP and histogram of particle size distribution. $\mathrm{S}-2$ Figure S3. TEM images of raw PdNPs/4EtPy and histogram of particle size distribution S-3 Figure S4. TEM images of centrifuged PdNPs/4EtPy and histogram of particle size distribution. S-3 Figure S5. TG curves for centrifuged PdNPs stabilized by 4MePy, DMAP, and 4EtPy. S-4 Figure S6. TG curves for centrifuged and dried PdNPs stabilized by 4MePy, DMAP, and 4EtPy. S-5 Figure S7. XPS Pd 3d spectra of: A) nanoparticles from raw solution, B) NPs centrifuged and suspended in ultrapure water, C) NPs dried and re-suspended in ultrapure water. S-6-7 Calculation of the surface of PdNPs. S-7

Figure S1. TEM image made for nanoparticles from raw solution. Left panel: TEM image of the PdNPs stabilized by 4-(dimethylamino)pyridine ($\mathrm{PdNPs} / \mathrm{DMAP}$). $\mathrm{Pd}: \mathrm{NaBH}_{4}$ molar ratio $=1: 2, \mathrm{c}_{\mathrm{NaBH} 4}=1 \%$. See the Experimental Section for synthesis conditions. Right panel: histogram (evaluated from more than 300 NPs) of size distribution (3.2 ± 0.5).

Figure S2. TEM image made for nanoparticles centrifuged and suspended in distilled-deionized water (ddw). Left panel: TEM image of the PdNPs stabilized by 4-(dimethylamino)pyridine (PdNPs/DMAP). Pd:NaBH 4 molar ratio $=1: 2, \mathrm{c}_{\text {NaBH } 4}=1 \%$. See the Experimental Section for synthesis conditions. Right panel: histogram (evaluated from more than 300 NPs) of size distribution (3.6 ± 0.4).

Figure S3. TEM image made for nanoparticles from raw solution. Left panel: TEM image of the PdNPs stabilized by 4-ethylpyridine (PdNPs/4EtPy). $\mathrm{Pd}: \mathrm{NaBH}_{4}$ molar ratio $=1: 2, \mathrm{c}_{\mathrm{NaBH} 4}=1 \%$. See the Experimental Section for synthesis conditions. Right panel: histogram (evaluated from more than 300 NPs) of size distribution *(4.0 ± 0.5).

Figure S4. TEM image made for nanoparticles centrifuged and suspended in ddw water. Left panel: TEM image of the PdNPs stabilized by 4-ethylpyridine (PdNPs/4EtPy). $\mathrm{Pd}: \mathrm{NaBH}_{4}$ molar ratio $=1: 2, \mathrm{c}_{\mathrm{NaBH} 4}=1 \%$. See the Experimental Section for synthesis conditions. Right panel: histogram (evaluated from more than 300 NPs) of size distribution (4.1 ± 0.6).

Figure S5. TG curves (nitrogen, 10K/min) for centrifuged PdNPs stabilized by: 4MePy (A), DMAP (B), and 4EtPy (C).

Figure S6. TG curves for centrifuged and dried PdNPs stabilized by: 4MePy (D), DMAP (E), and 4EtPy (F).

Figure S7A, 7B. See full description on the next page.

Figure S7. XPS Pd 3d spectra of: A) nanoparticles from raw solution, B) NPs centrifuged and suspended in ultrapure water, C) NPs dried and re-suspended in ultrapure water.

Calculation of the surface of PdNPs.

Assuming the spherical shape of PdNPs, its surface $\left[\mathrm{m}^{2} / \mathrm{g}\right]$ was calculated from the following formula:
surface of PdNPs $=\frac{\text { surface of single PdNP }}{\text { mass of single PdNP }}\left[\frac{\mathrm{m}^{2}}{g}\right]$
where:
mass of single $\mathrm{PdNP}=$ volume of single $\mathrm{PdNP} \times$ density of Pd
where:
volume of single $\mathrm{PdNP}=1.33 \times 3.14 \times\left(0.5 \times \text { diameter of single } \mathrm{PdNP} \times 10^{-7}\right)^{3}[\mathrm{~cm}]^{3}$

