SUPPLEMENTARY MATERIAL

Reduction of nitrobenzene to aniline by CO/H₂O in the presence of palladium nanoparticles

Agnieszka Krogul-Sobczak,* Jakub Cedrowski, Patrycja Kasperska & Grzegorz Litwinienko

Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Pasteura 1, Poland.

*Corresponding author. e-mail address: akrogul@chem.uw.edu.pl

TABLE OF CONTENTS

Title	page
Figure S1. TEM images of raw PdNPs/DMAP and histogram of particle size distribution.	S-2
Figure S2. TEM images of centrifuged PdNPs/DMAP and histogram of particle size distribution.	S-2
Figure S3. TEM images of raw PdNPs/4EtPy and histogram of particle size distribution	S-3
Figure S4. TEM images of centrifuged PdNPs/4EtPy and histogram of particle size distribution.	S-3
Figure S5. TG curves for centrifuged PdNPs stabilized by 4MePy, DMAP, and 4EtPy.	S-4
Figure S6. TG curves for centrifuged and dried PdNPs stabilized by 4MePy, DMAP, and 4EtPy.	S-5
Figure S7 . XPS Pd 3d spectra of: A) nanoparticles from raw solution, B) NPs centrifuged and suspended in ultrapure water, C) NPs dried and re-suspended in ultrapure water.	S-6-7
Calculation of the surface of PdNPs.	S-7

Figure S1. TEM image made for nanoparticles from raw solution. Left panel: TEM image of the PdNPs stabilized by 4-(dimethylamino)pyridine (PdNPs/DMAP). Pd:NaBH₄ molar ratio = 1:2, c_{NaBH4} = 1%. See the Experimental Section for synthesis conditions. Right panel: histogram (evaluated from more than 300 NPs) of size distribution (3.2±0.5).

Figure S2. TEM image made for nanoparticles centrifuged and suspended in distilled-deionized water (ddw). Left panel: TEM image of the PdNPs stabilized by 4-(dimethylamino)pyridine (PdNPs/DMAP). Pd:NaBH₄ molar ratio = 1:2, $c_{NaBH4} = 1\%$. See the Experimental Section for synthesis conditions. Right panel: histogram (evaluated from more than 300 NPs) of size distribution (3.6±0.4).

Figure S3. TEM image made for nanoparticles from raw solution. Left panel: TEM image of the PdNPs stabilized by 4-ethylpyridine (PdNPs/4EtPy). Pd:NaBH₄ molar ratio = 1:2, $c_{NaBH4} = 1\%$. See the Experimental Section for synthesis conditions. Right panel: histogram (evaluated from more than 300 NPs) of size distribution *(4.0±0.5).

Figure S4. TEM image made for nanoparticles centrifuged and suspended in ddw water. Left panel: TEM image of the PdNPs stabilized by 4-ethylpyridine (PdNPs/4EtPy). Pd:NaBH₄ molar ratio = 1:2, $c_{NaBH4} = 1\%$. See the Experimental Section for synthesis conditions. Right panel: histogram (evaluated from more than 300 NPs) of size distribution (4.1±0.6).

Figure S5. TG curves (nitrogen, 10K/min) for centrifuged PdNPs stabilized by: 4MePy (**A**), DMAP (**B**), and 4EtPy (**C**).

Figure S6. TG curves for centrifuged and dried PdNPs stabilized by: 4MePy (D), DMAP (E), and 4EtPy (F).

Figure S7A, 7B. See full description on the next page.

Figure S7. XPS Pd 3d spectra of: A) nanoparticles from raw solution, B) NPs centrifuged and suspended in ultrapure water, C) NPs dried and re-suspended in ultrapure water.

Calculation of the surface of PdNPs.

Assuming the spherical shape of PdNPs, its surface $[m^2/g]$ was calculated from the following formula:

surface of PdNPs = $\frac{\text{surface of single PdNP}}{\text{mass of single PdNP}} \left[\frac{\text{m}^2}{g}\right]$

where: mass of single PdNP = volume of single PdNP \times density of Pd

where: volume of single PdNP = $1.33 \times 3.14 \times (0.5 \times \text{diameter of single PdNP} \times 10^{-7})^3 \text{ [cm]}^3$