

Article

Supplementary Materials Point-defect-rich carbon sheets as the high-activity catalyst toward oxygen reduction and hydrogen evolution

Wenjing Yuan ⁺, Fuhua Zhang ⁺, Yaoyao Wu , Xiaotao Chen , Chihhsiang Fang and Chuanhao Li *

Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; yuanwj7@mail.sysu.edu.cn; zhangfh5@mail2.sysu.edu.cn; wuyy69@mail2.sysu.edu.cn;

chenxt68@mail2.sysu.edu.cn; fangch29@mail2.sysu.edu.cn

* Correspondence: lichuanh3@mail.sysu.edu.cn

† These authors contributed equally to this work.

1. Formation mechanism of graphene-like mesoporous carbon sheets

The formation mechanism of graphene-like mesoporous carbon sheets are illustrated in Scheme 1. Calcium gluconate is encapsulated by ethanol, which is decomposed easily in situ production a lot of CO₂ via burning ethanol, and these CO₂-bubbles play a key role for the formation of graphene-like mesoporous carbon sheets. At this point, calcium gluconate will change from solid state to molten state. A large number CO₂-bubbles was formed at different locations in the interior of precursor, which build a series of channels by extrusion process from the interior to precursor-air interface. Where there are CO₂-bubbles, there will be no carbon precursor. Therefore, the carbon precursor is only existed in the gaps of CO₂-bubbles, resulting in the formation of graphene-like mesoporous carbon sheets.

2. Electron transfer number and H₂O₂ yield

The electrocatalytic oxygen reduction reaction pathway of sample was evaluated by RRDE measurement. The electron transfer number (n) and H_2O_2 yield can be calculated from the following the Eq. (1) and Eq. (2):

$$n = 4 \times \frac{I_D}{I_D + I_R / N} \tag{1}$$

$$H_2 O_2(\%) = 200 \times \frac{I_R / N}{I_D + I_R / N}$$
(2)

Here, *I*_D, *I*_R and *N* are the disk current, ring current and collection efficiency of the Pt ring, respectively [1].

3. RHE Calibration

All potentials were converted to the reversible hydrogen electrode (RHE) scale based on the Nernst equation [2]:

$$E_{RHE} = E_{Ag/AgCl} + 0.2046 V + 0.059 pH$$
(3)

4. Tafel plot

Tafel slopes were calculated by fitting the linear portions of Tafel plots to the Tafel equation[3]:

$$\eta = b \log J + a \tag{4}$$

Where, η , *b*, *J* and *a* are the overpotential, Tafel slope, current density, and empirical coefficient.

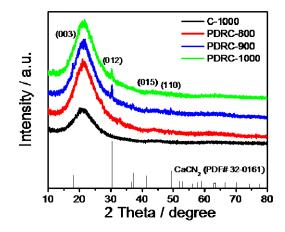


Figure S1. XRD patterns of C-1000, PDRC-800, PDRC-900 and PDRC-1000.

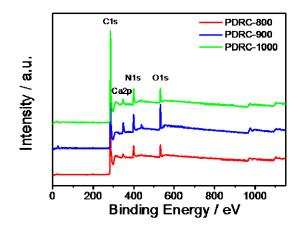


Figure S2. XPS data of PDRC-800, PDRC-900 and PDRC-1000.

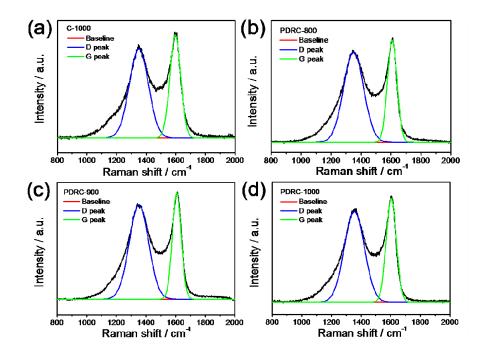


Figure S3. Raman spectra of (a) C-1000, (b) PDRC-800, (c) PDRC-900 and (d) PDRC-1000.

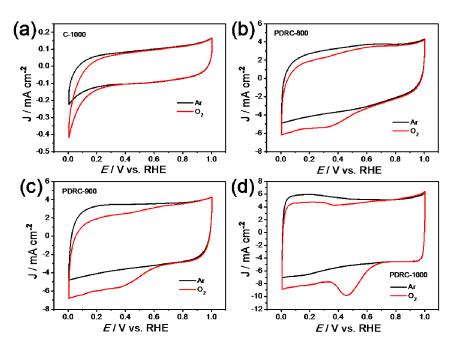
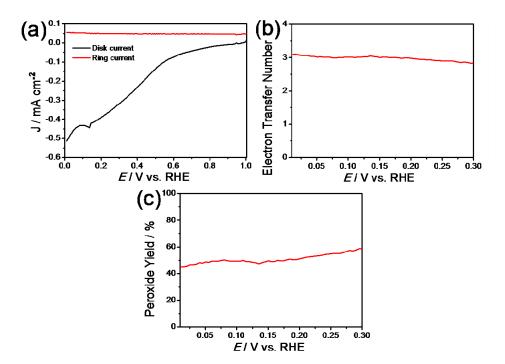
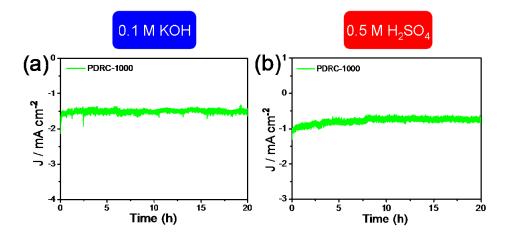




Figure S4. CV curves of (a) C-1000, (b) PDRC-800, (c) PDRC-900 and (d) PDRC-1000 (scan rate 150 mV s⁻¹) in Ar- or O₂-saturated 0.5 M H₂SO₄.

Figure S5. (a) RRDE voltammograms, (b) the *n* value and (c) H_2O_2 yield of C-1000 in O₂-saturated 0.5 M H₂SO₄.

Figure S6. The stability measurements of PDRC-1000 electrode over 20 h in (a) alkaline and (b) acidic media, respectively.

Table S1.	The atomic	% of C, O, N	and Ca of sam	ples from XPS data.
-----------	------------	--------------	---------------	---------------------

Samples	C (at %)	O (at %)	N (at %)	Ca (at %)
PDRC-800	79.59	9.6	10.11	0.7
PDRC-900	68.04	14.42	13.12	4.42
PDRC-1000	79.21	7.69	11.82	1.28

Table S2. The atomic % of the different N-bond types from XPS data.

PDRC-800	4.21	3.65	2.25
PDRC-900	6.41	5.70	1.01
PDRC-1000	5.49	4.68	1.65

Table S3. The summary table of the samples used and their main properties.

Samples	Treatment	BET surface area (m ² g ⁻¹)	Content of N (at %)
C-1000	Ar, 1000 °C	620	0
PDRC-800	NH3, 800 °C	809	10.11
PDRC-900	NH3, 900 °C	1034	13.12
PDRC-1000	NH3, 1000 °C	1158	11.82

References

1. Yang, Y.; Lun, Z.; Xia, G.; Zheng, F.; He, M.; Chen, Q. Non-Precious Alloy Encapsulated in Nitrogen-Doped Graphene Layers Derived from MOFs as an Active and Durable Hydrogen Evolution Reaction Catalyst. *Energ. Environ. Sci* **2015**, *8*, 3563-3571.

2. Ferrero, G. A.; Preuss, K.; Fuertes, A. B.; Sevilla, M.; Titirici, M. M. The Influence of Pore Size Distribution on the Oxygen Reduction Reaction Performance in Nitrogen Doped Carbon Microspheres. *Journal of Materials Chemistry A* **2016**, *4*, 2581-2589.

3. Li, D. J.; Maiti, U. N.; Lim, J.; Choi, D. S.; Lee, W. J.; Oh, Y.; Lee, G. Y.; Kim, S. O. Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction. *Nano Letters* **2014**, *14*, 1228-1233.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).