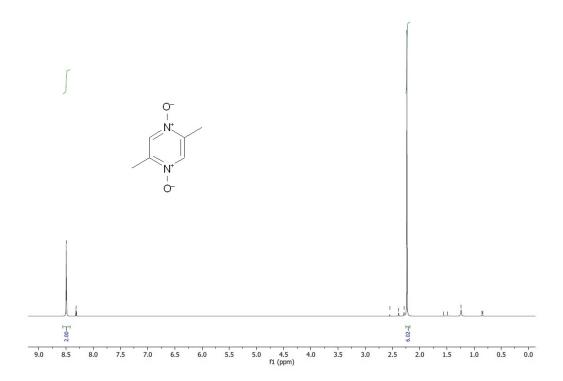
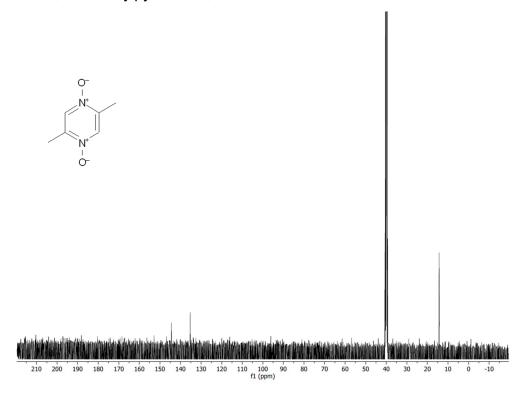
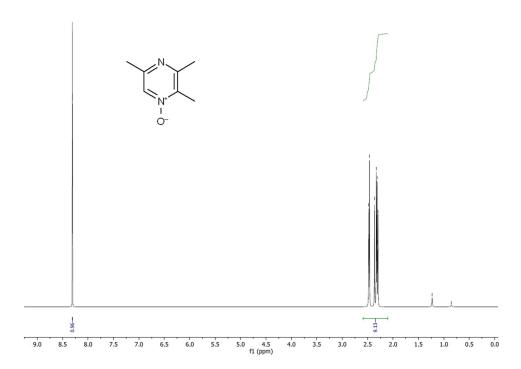
Analytical data for synthesized products

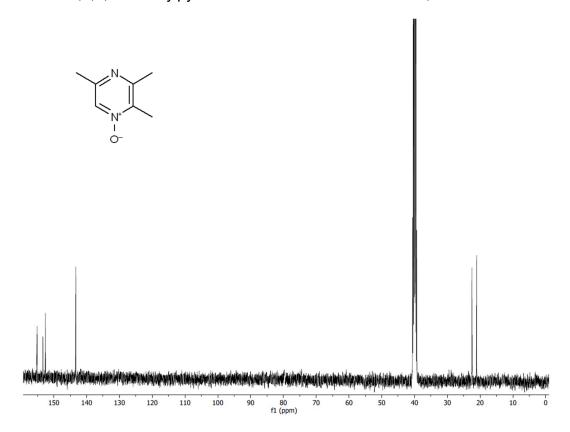

2,6-Dimethylpyrazine-1,4-dioxide was isolated as a white solid. 1H NMR (400 MHz, DMSO-d₆): δ = 2.26 (s, 6H, CH₃), 8.50 (s, 2H, CH). ¹³C NMR (100 MHz, DMSO-d₆): δ = 14.3, 135.3, 144.4.

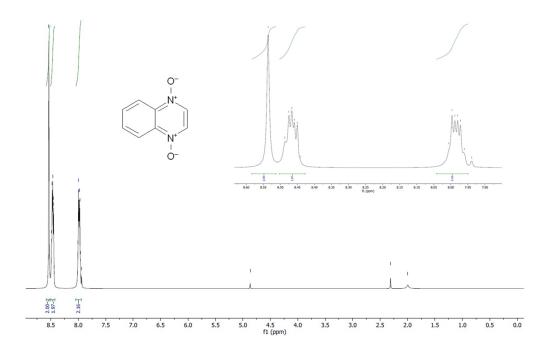
2,3,5,-Trimethylpyrazine-1-oxide was isolated as a brown liquid. ¹H NMR (400 MHz, DMSO-d₆): δ = 2.30–2.48 (m, 9H, CH₃), 8.31 (s, 1H, CH). ¹³C NMR (100 MHz, DMSO-d₆): δ = 21.0, 22.4, 22.5, 143.3, 152.6, 153.3, 155.1.


Quinoxaline-1,4-dioxide was isolated as an orange solid. ¹H NMR (400 MHz, DMSO-d₆): $\delta = 7.95$ —8.05 (m, 2H, CH), 8.43—8.52 (m, 2H, CH), 8.54 (s, 2H, CH). ¹³C NMR (100 MHz, CCI₃D): δ = 120.6, 130.4, 132.2, 138.6.

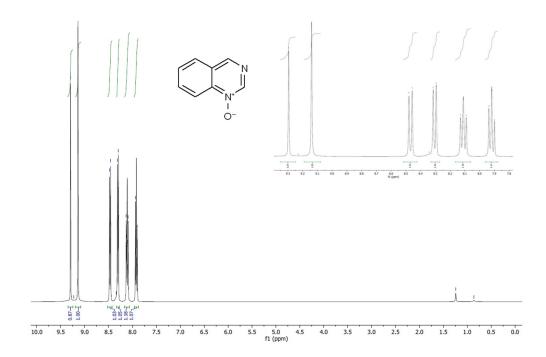
Quinazoline-1-oxide was isolated as a white solid. ¹H NMR (400 MHz, DMSO-d₆): $\delta = 7.89$ —7.95 (dd, J = 7.9, 7.2 Hz, 1H, CH), 8.07—8.14 (dd, J = 8.1, 7.8 Hz, 1H, CH), 8.30 (d, J = 8.2 Hz, 1H, CH), 8.47 (d, J)= 8.7, 1H, CH), 9.14 (s, 1H, CH), 9.31 (s, 1H, CH). 13 C NMR (100 MHz, DMSO-d₆): δ = 118.3, 128.6, 130.7, 135.4, 143.4, 147.4.


2,6-Dimethylpyrazine-1,4-dioxide 1H NMR 400 MHz, DMSO-d $_6$

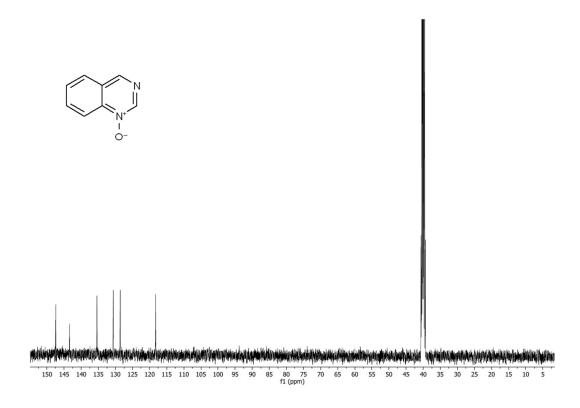

2,6-Dimethylpyrazine-1,4-dioxide ^{13}C NMR 100 MHz, DMSO-d₆


2,3,5,-Trimethylpyrazine-1-oxide ^1H NMR 400 MHz, DMSO-d $_6$

2,3,5,-Trimethylpyrazine-1-oxide ^{13}C NMR 100 MHz, DMSO-d₆



Quinoxaline-1,4-dioxide ¹H NMR 400 MHz, DMSO-d₆



Quinoxaline-1,4-dioxide ^{13}C NMR 100 MHz, CCl₃D

Quinazoline-1-oxide ¹H NMR 400 MHz, DMSO-d₆

Quinazoline-1-oxide ¹³C NMR 100 MHz, DMSO-d₆

