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Abstract: Catalyst design and surface modifications of magnetic nanoparticles have become attractive
strategies in order to optimize catalyzed organic reactions for industrial applications. In this work,
silica-coated magnetic nanoparticles with a core-shell type structure were prepared. The obtained
material was successfully functionalized with sulfathiazole groups, which can enhance its catalytic
features. The material was fully characterized, using a multi-technique approach. The catalytic
performance of the as-synthesized material was evaluated in (1) the oxidation of benzyl alcohol to
benzaldehyde and (2) the microwave-assisted alkylation of toluene with benzyl chloride. Remarkable
conversion and selectivity were obtained for both reactions and a clear improvement of the catalytic
properties was observed in comparison with unmodified γ-Fe2O3/SiO2 and γ-Fe2O3. Noticeably, the
catalyst displayed outstanding magnetic characteristics which facilitated its recovery and reusability.
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1. Introduction

The use of recyclable and reusable heterogeneous nanocatalysts for the development of more
efficient industrial processes has become a vital need as well as a highly valuable and sustainable
option [1,2]. The enhancement of the nanoparticle features for heterogeneous catalysis has crucial
importance and, therefore, has attracted the interest of the scientific community in the past years. [3]
In particular, magnetic nanocatalysts have emerged as remarkable supports which can be further
modified with different functionalities for several catalytic process, having as well good stability,
magnetic properties and, consequently, simple magnetic separation from chemical reactions [3,4]. In
this regard, iron oxides have received greater attention due to their broad range of applications. Besides
their low cost, these materials can be employed as adsorbents [5,6], battery electrodes [7] as well as in
biomedicine [8] and in targeted drug delivery [9].

Numerous magnetic core-shell architectures have been developed for use in catalysis [10].
The preparation of multinuclei magnetic iron oxide core embedded by different shells such as a
polymer or silica beads has been reported [11]. Specially, silica shells can be modified simply by
immobilizing various organic molecules [12]. 2-Sulfanilamidothiazole, also known as sulfathiazole,
(STZ) is an efficient organosulfur compound commonly employed as short-acting sulfa-drug and
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antimicrobial [13,14]. Nonetheless, the incorporation of such molecule in nanomaterials for catalytic
applications has hardly been described in literature.

The scientific community is facing important challenges related to the synthesis of immobilized
nanocatalytic systems with advanced features including low preparation cost, high activity, selectivity,
stability, efficient recovery and good recyclability. The efficient preparation of such materials and the
enhacement of their catalytic properties could have a crucial role for the development of sustainable
oxidation processes at an industrial scale. In particular, alcohol oxidations have been involved in most
industrial steps for the production of pharmaceuticals, perfumes, dyes, and agrochemicals [15,16].
Low yields and poor selectivity have been the main drawbacks associated with catalytic oxidation
reactions. Recently, the selective oxidation of benzyl alcohols to benzaldehyde by using iron oxide-based
nanocomposites [17], ionic liquid-modified MIL-100(Fe) [18], developed copper(I)/TEMPO catalysts
(TEMPO = 2,2,6,6-tetramethylpiperidinyl-N-oxyl) [19,20], photocatalytic oxidation by homogeneous
CuCl2 [21], metal-free systems [22], photoactive VO@g-C3N4 [23] and Co oxide nanoparticles [24],
among others have been reported.

In addition, aromatic alkylation reactions have been also widely investigated due to their versatility,
allowing the preparation of a broad range of compounds as important intermediates, fragrances,
agrochemicals and pharmaceuticals. In this study, we reported the preparation and characterization
of sulfathiazole-functionalized magnetically separable γ-Fe2O3-nanoparticles (MNPs-STZ) and its
application for the selective oxidation of benzyl alcohols to the corresponding benzaldehyde derivative,
as well as for the alkylation of toluene with benzyl chloride (Scheme 1).
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Scheme 1. Oxidation of benzyl alcohol to benzaldehyde and microwave-assisted alkylation of toluene
with benzyl chloride by using γ-Fe2O3/SiO2-sulfathiazole (STZ).

2. Results and Discussion

An unprecedented γ-Fe2O3/SiO2-STZ core-shell nanoarchitecture was designed by a multistep
strategy involving the covalent attachment of sulfathiazole derivatives on the surface of functionalized
γ-Fe2O3, as can be observed in Scheme 2. According to the first and second steps, a magnetic
phase of iron oxide and a SiO2 shell have been formed, which will allow, respectively, the simple
recyclability of the material and its further modification in order to incorporate in the structure
different functionalities with catalytic properties. In a third step, γ-Fe2O3/SiO2 was treated with
3-chloropropylmethoxysilane, consequently giving rise to 3-chloro-propylmethoxysilane-γ-Fe2O3/SiO2
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through the formation of covalent bonds. Finally, nucleophilic substitution of chlorine by sulfonamides
groups resulted in superparamagnetic γ-Fe2O3/SiO2-STZ nanocatalyst. Such hypothesis was confirmed
by a full characterization of the nanomaterial obtained using a multi-technique approach.
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Scheme 2. Multistep strategy for the preparation of γ-Fe2O3/SiO2-STZ.

The morphology of γ-Fe2O3/SiO2-STZ was investigated by scanning electron microscopy (SEM)
experiments. No clear evidence was observed for the formation of core-shell structures by SEM
analysis (Figure 1A) of γ-Fe2O3/SiO2-STZ, instead a silica-iron oxide composite material appears
to be synthesized [12]. As shown in Figure 1A, an SEM image of γ-Fe2O3/SiO2-STZ nanomaterial
exhibited a homogeneous distribution of quasi-spherical particle agglomerates with a mean radius of
15 nm (Figure 1C). Elemental composition of the sample was investigated by energy-dispersive X-ray
spectroscopy (EDX) analysis, as shown in Figure 1B. Fe, O, C, Si, Cl, N, S were identified by using
the aforementioned analysis (Table 1). In particular, the presence of N and S clearly corroborated the
successful functionalization of the modified nanoparticles with the STZ group. Nonetheless the peak
associated with Cl indicated just a partial nucleophilic substitution of chlorine by sulfonamide.

The crystalline structure of the γ-Fe2O3/SiO2-STZ catalyst was identified by XRD measurements.
XRD patterns displayed several diffraction peaks at 30.62◦, 35.92◦, 43.48◦, 54.00◦, 57.62◦ and 63.36◦,
corresponding to the (220), (311), (400), (422), (511) and (440) crystalline planes of maghemite,
respectively (Figure 1C) [25]. This result clearly confirmed the magnetic features of the catalyst
core, which will allow its simple recovery and reusability. Through XRD analysis, employing the
Williamson–Hall formalism, maghemite crystallite size was also obtained in the range of 9.3–9.4 nm.
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Figure 1. (A) Scanning electron microscope (SEM) image, (B) energy-dispersive X-ray spectroscopy
(EDX) spectrum, (C) Particle size distribution and (D) X-ray diffraction (XRD) patterns of
γ-Fe2O3/SiO2-STZ.

Table 1. Elemental distribution (atomic %) of γ-Fe2O3/SiO2-STZ.

Sample Fe O Si C Cl S N Total

γ-Fe2O3/SiO2-STZ 42.1 36.6 1.78 16.88 0.3 0.64 1.65 100

Thermogravimetric analysis further corroborates the presence of supported sulfathiazole in the
core-shell γ-Fe2O3/SiO2-STZ. TGA analysis of Fe2O3/SiO2 has been previously reported by our group
displaying a negligible weight loss [12]. In turn, a progressive weight loss of 8.6% was observed from
100 ◦C to 800 ◦C. Around 200 ◦C, DTA analysis (Figure 2, green line) displayed a slight endothermic
band, related to unbounded/physisorbed solvents [26]. In addition DTA experiments showed two
exothermic peaks at 340 ◦C and 420 ◦C, associated with the decomposition of sulfathiazole and
3-chloro-propylmethoxysilane, respectively.
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Fourier transform–infrared (FT–IR) experiments of the obtained materials were performed.
Nonetheless, no clear information was obtained from this analysis, most likely due to the low STZ
loading in the γ-Fe2O3/SiO2 material (Figure S1). Besides TGA results, STZ successful immobilization
was also supported by EDX analysis which revealed the presence of Fe, O, C, Si, Cl, N and S.
Particularly, the presence of N and S clearly corroborated the successful functionalization of the
modified nanoparticles with the STZ group.

In order to determine the acid properties of the material as well as to distinguish between Lewis
and Brønsted acid sites, pyridine (PY) and dimethyl pyridine (DMPY) titration experiments were
performed. It was assumed that DMPY selectively titrates Brønsted sites (methyl groups hinder
coordination of nitrogen atoms with Lewis acid sites) while PY titrates both Brønsted and Lewis
acid sites in the materials. Therefore Lewis acidity was determined as the difference between the
amounts of PY (total acidity) and DMPY (Brønsted acidity) adsorbed [27]. The surface acidity of the
γ-Fe2O3/SiO2-STZ catalyst resulted in being 265 µmol g−1, with a major contribution of Lewis acid
sites (72%, 190 µmol g−1) and a minor percentage of Brφnsted acidity (28%, 75 µmol g−1).

The magnetic properties of γ-Fe2O3/SiO2-STZ were analyzed by VSM experiments (Figure 3). The
saturation magnetization of the prepared nanocore-shell structure was 58.2 emu g−1, corroborating
its outstanding magnetic characteristics, which allow its magnetic separation as can be observed in
Figure 3, Inset [28].

The catalytic performance of γ-Fe2O3/SiO2-STZ nanocatalyst was investigated in the oxidation of
benzyl alcohol to benzaldehyde, employing H2O2 as oxidant agent (Table 2). A parametric analysis
was performed by analyzing the influence of the catalyst amount and the oxidant agent volume.
Figure 4A shows that by increasing the amount of nanocatalyst from 10–25 mg, the conversion increased.
Nonetheless, when the catalyst amount increased to 50 mg, no considerable change in conversion was
observed, and in turn selectivity values decrease. Therefore, 25 mg was selected as the optimal catalyst
amount. Figure 4B reports the catalytic results of the benzyl alcohol oxidation by using different
oxidant agent quantities. From 0.1 to 0.2 mL of H2O2, an increment of conversion values with negligible
change in selectivity was observed. However, by increasing the H2O2 volume to 0.5 mL, the selectivity
drastically decrease, with the consequent formation of over-oxidation products. Thus, 0.2 mL of H2O2

was chosen as optimum value.
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Table 2. Results of the oxidation of benzyl alcohol.

Entry Catalyst Conversion
(mol%)

Selectivity
(mol%)

1 Blank (no catalyst) <10 <10
2 γ-Fe2O3 37 >99
3 γ-Fe2O3/SiO2 39 >99
4 γ-Fe2O3/SiO2-STZ 95 97

Reaction condition: benzyl alcohol (1 mmol), H2O2 (0.2 mL), catalyst (25 mg), 80 ◦C, 2 h.
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Figure 4. Effect of the reaction parameters on the catalytic performance ofγ-Fe2O3/SiO2-STZ (A) Catalyst
amount, (B) H2O2 volume (reaction condition: benzyl alcohol (1 mmol), 80 ◦C, 2 h).

In addition, blank experiments in the absence of catalyst, as well as employing γ-Fe2O3/SiO2

and γ-Fe2O3, were accomplished in order to bring out the critical change in the catalytic features
after functionalization with sulfathiazole groups. The designed catalytic material (γ-Fe2O3/SiO2-STZ)
exhibited remarkable results in terms of conversion (95%) and selectivity (97%), in comparison with
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the unmodified γ-Fe2O3/SiO2 γ-and Fe2O3, suggesting that sulfathiazole groups endow the magnetic
core with outstanding catalytic features.

The designed catalyst was used in the oxidation of several benzyl alcohol derivatives (Table 3),
including electron-donating and electron-withdrawing substitution on the aromatic ring, with groups
such as –NO2, –Cl, –CH3 or –OCH3. The oxidative conversion of the investigated molecules
demonstrated the great versatility of the catalytic system for its application to a broad range of
substrates. The proposed mechanism for the benzyl alcohol oxidation is shown in Scheme S1. The
oxidation process is based on a surface modification of the active sites by functional sulfathiazole,
which decomposes the H2O2 to produce hydroxyl radicals and hydroxyl anions [29–31].

Table 3. Catalytic oxidation of different benzyl alcohol derivatives by γ-Fe2O3/SiO2-STZ.
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2 4-chlorobenzyl alcohol 4-chlorobenzaldehyde 98 96
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4 4-methoxybenzyl alcohol 4-methoxybenzaldehyde 97 97
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a General reaction conditions: a substrate (1 mmol), H2O2 (0.2 mL), catalyst (γ-Fe2O3/SiO2-STZ, 25 mg), solvent
(acetonitrile, 4 mL), 2 h at 80 ◦C.

In order to study the stability and reusability of the catalytic material, γ-Fe2O3/SiO2-STZ was
recovered, washed with ethanol, and dried at 60 ◦C. Subsequently, the catalyst was reused in the
oxidation of benzyl alcohol and the aforementioned process was repeated 4 times. After the fourth
use, the nanocatalyst conserved a good catalytic behavior, obtaining 85% of conversion and 89% of
selectivity, as shown in Figure 5.
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In addition to the recycling results, a heterogeneity test was conducted to support the heterogeneous
nature of the catalyst. For this purpose, the reaction was carried out under identical reaction conditions
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using γ-Fe2O3/SiO2-STZ (1 mmol benzyl alcohol, 0.2 mL hydrogen peroxide, 25 mg catalyst, 4 mL
acetonitrile, 80 ◦C, 1 h) to reach a 55% conversion. The catalyst was then removed using a simple magnet
from the reaction mixture and the filtrate (after removal of the catalyst) was left to react for additional
6 h upon the addition of fresh substrate and hydrogen peroxide. The observed conversion after 6 h
was 58%, supporting the heterogeneous nature of the reaction since the recovered catalyst (employed
in another reaction run) provided >90% conversion at almost complete selectivity to benzaldehyde
after 2 h reaction.

Finally, the functionalized composite γ-Fe2O3/SiO2-STZ was tested in the alkylation of toluene
with benzyl chloride (Table 4) [32,33]. A proposed mechanism has been included in the supporting
information file (Scheme S2). As well, the catalytic activity of γ-Fe2O3/SiO2 and γ-Fe2O3 was also
investigated. γ-Fe2O3/SiO2-STZ displayed the best catalytic performance with conversion values
higher that 99% and a selectivity of 50% to the para-substituted product.

Table 4. Catalytic activity of γ-Fe2O3/SiO2-STZ in the microwave assisted alkylation of toluene with
benzyl chloride.

1 
 

 

Material
Conversion

(mol%)
Selectivity (mol%)

Meta Ortho Para

γ-Fe2O3 70 29 34 37
γ-Fe2O3/SiO2 75 27 33 40

γ-Fe2O3/SiO2-STZ >99 5 45 50

Reaction conditions: 0.025 g catalyst, 0.2 mL of benzyl chloride, 2 mL of toluene, 300 W (reaction temperature
120 ◦C).

The results obtained for both reactions are comparable to data reported in the literature.
Remarkably, the prepared material displayed an outstanding versatility, resulting to be effective
in both alkylation and oxidation reactions. Such versatility is one of the main advantages of the
prepared material in comparison with most of the reported materials [34,35].

3. Experimental

3.1. Preparation of γ-Fe2O3

Magnetic iron oxide nanomaterial was synthesized according to procedure reported by our group
based on a simple coprecipitation methodology [12]. Iron precursors were prepared by dissolving
FeCl3·6H2O (1.09 g) and FeCl2·4H2O (0.4 g) in a 2 M HCl (4 and 2 mL, respectively) solution. The
obtained mixture was vigorously stirred (800 rpm) for 15 min. Subsequently, 50 mL of a 0.7 M NH4OH
solution was slowly added under stirring to the precursor’s mixture, in order to achieve a 9–11 pH
range. The obtained solid was washed three times with water and ethanol. Finally, the sample was
dried at 100 ◦C for 12 h and further calcined at 300 ◦C for 3 h.
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3.2. Preparation of γ-Fe2O3/SiO2

Maghemite nanoparticles (1 g) were dispersed in ethanol (40 mL) and stirred for 1 h at 40 ◦C.
Subsequently, 5 mL tetraethyl orthosilicate (TEOS) was added to the reaction vessel and the mixture
was continuously stirred during 24 h. The silica-coated nanoparticles were collected by an external
magnet, washed three times with ethanol and diethyl ether, and finally dried at 100 ◦C for 12 h
under vacuum.

3.3. Preparation of 3-Chloropropyl Trimethoxysilane-γ-Fe2O3/SiO2

1 g of γ-Fe2O3@SiO2 was dispersed in 40 mL of dried toluene by sonication during 45 min.
3-chloropropyl trimethoxysilane (0.5 mL) was added to the dispersed γ-Fe2O3@SiO2 and the mixture
was stirred at 105 ◦C for 24 h. The functionalized γ-Fe2O3/SiO2 was separated by an external magnet,
washed three times with diethyl ether and dichloromethane, and dried under vacuum.

3.4. Preparation of γ-Fe2O3/SiO2-STZ

1 g of 3-chloropropyl trimethoxysilane-γ-Fe2O3/SiO2) was mixed with 40 mL of ethanol and
sonicated for 45 min. Subsequently, 1 g of sulfathiazole was added under mechanical stirring and
the mixture was heated up to 80 ◦C for 24 h. Afterwards, the obtained solid was collected using a
magnet, washed with diethyl ether (3 × 20 mL) and dichloromethane (3 × 20 mL) and dried at room
temperature for 24 h.

3.5. Materials Characterization

The obtained nanomaterial was fully characterized by several techniques, including X-ray
diffraction (XRD) analysis, N2 adsorption-desorption measurements, energy-dispersive X-ray (EDX)
analysis and scanning electron microscopy (SEM), pyridine (PY) and 2,6-dimethylpyridine (DMPY)
titration, a vibrating sample magnetometer (VSM) study, and thermogravimetric analysis (TGA).

XRD analysis was performed in the Bruker D8 Advance Diffractometer with the LynxEye detector
(Bruker AXS, Billerica, Massachusetts, USA). The XRD patterns were recorded in a 2θ scan range from
10◦ to 80◦. Bruker Diffrac-plus Eva software, supported by Power Diffraction File database, was used
for phase identification. In addition, SEM–EDX images were acquired in the JEOL-SEM JSM-7800
LV scanning microscope (JEOL, Dearborn Rd, Peabody, USA). TGA analysis was performed on a
Perkin-Elmer thermal analyzer (Perkin-Elmer, Madrid, Spain), by heating the sample up to 800 ◦C at
10 ◦C min−1 under nitrogen atmosphere.

Pyridine (PY) and 2,6-dimethylpyridine (DMPY) titration experiments were carried out at 300 ◦C,
via gas phase adsorption of the basic probe molecules applying a pulse chromatographic titration
methodology. The catalyst (≈0.025 g) was fixed inside a tubular stainless steel microreactor (4 mm
internal diameter) by Pyrex glass wool. A cyclohexane solution of titrant (0.989 M in PY and 0.686 M
in DMPY, respectively) was injected into a gas chromatograph through the microreactor. The injected
base was analyzed by gas chromatography with a flame ionization detector and using an analytical
column of 0.5 m length, containing 5 wt% of polyphenylether in the Chromosorb AW-DMCS in 80/100.
VSM study was performed by using the vibrating sample magnetometer (VSM)-LAKESHORE (Model:
7404, Lake Shore Cryotronics, Westerville OH, USA).

3.6. General Procedure for the Oxidation of Benzyl Alcohol to Benzaldehyde

Benzyl alcohol (0.1 mL, 1 mmol), γ-Fe2O3/SiO2-STZ (25 mg) as catalyst, and acetonitrile (4 mL) as
solvent were added into a necked flask and then H2O2 (50 wt%, 0.2 mL, 4 mmol) as oxidant agent
was slowly dropped under stirrer and reflux conditions. The reaction mixture was kept at 80 ◦C
and its progress was monitored by gas chromatography (GC) with a flame ionization detector (FID)
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(AgilentTechnologies, GC6890N, (Agilent, Santa Clara, California, USA). The conversion and selectivity
values were calculated as follows: (Equations (1) and (2))

Conversion (%) =

[
Cinitial −Cfinal

Cinitial

]
(1)

Selectivity (%) =
Cproduct

[Cinitial −Cfinal]
× 100 (2)

where Cinitial and Cfinal are the concentrations of reactant before and after the reaction, respectively,
and Cproduct is the concentration of product, as determined by gas chromatography.

3.7. General Procedure for the Alkylation Reaction of Toluene with Benzyl Chloride

Catalytic alkylation of toluene (2 mL) with benzyl chloride (0.2 mL) was performed using 25 mg
of catalyst. The reaction was carried out assisted by microwave irradiation using the standard “open
vessel” method (300 W, CEM-DISCOVER) at 90–100 ◦C for 3 min. Finally the reaction mixture was
cooled down and filtered for further chromatographic analysis.

4. Conclusions

The successful synthesis of a sulfathiazole-modified γ-Fe2O3/SiO2 core-shell nanoarchitecture
was achieved by a multistep strategy. The γ-Fe2O3/SiO2-STZ obtained exhibited interesting acid and
magnetic features, which make it a potential candidate for its use in catalysis. Therefore, the catalytic
performance of the prepared material was investigated in oxidation and alkylation reactions. In
particular, γ-Fe2O3/SiO2-STZ showed 95% of conversion and 97% of selectivity in the oxidation of
benzyl alcohol to benzaldehyde, while it displayed conversion values higher than 99% in the alkylation
of toluene with benzyl chloride. The magnetic properties of the catalyst allowed its simple recovery
and reuse without a considerable loss of activity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/4/348/s1:
Scheme S1: Illustration of the proposed mechanism for the oxidation reaction, Scheme S2: Proposed mechanism
of the alkylation reaction; Figure S1: Fourier transform–infrared (FT–IR) spectra of the prepared materials.
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