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Abstract: We review and generalize a recent theoretical framework that provides a sound
physicochemical basis to describe how volume and surface diffusion are affected by adsorption
and desorption processes, as well as by catalytic conversion within the space defined by the irregular
geometry of the pores in a material. The theory is based on two single-dimensional mass conservation
equations for irregular domains deduced for the volumetric (bulk) and surface mass concentrations.
It offers a powerful tool for analyzing and modeling mass transport across porous media like zeolites
or artificially build materials, since it establishes how the microscopic quantities that refer to the
internal details of the geometry, the flow and the interactions within the irregular pore can be
translated into macroscopic variables that are currently measured in experiments. The use of the
theory in mass uptake experiments is explained in terms of breakthrough curves and effective mass
diffusion coefficients which are explicitly related to the internal geometry of the pores.

Keywords: generalized macro-transport theory; adsorbent and non-adsorbent membranes; bulk and
surface diffusion; heterogeneous catalysis; mass transfer and effectiveness factor

1. Introduction

The Shaphiro–Brenners’s theory for macrotransport processes was an outstanding contribution to
the understanding of macrotransport processes in applied chemistry. The theory offered simplified
equations with effective transport coefficients suitable to reduce the time and computational necessities
for predicting the optimal conditions of different experimental or technological situations. The theory
was inspired on the classical Taylor–Aris dispersion problem, in which the three-dimensional diffusion
of a particle in the presence of a flow in a pipe is reduced to a single dimensional problem along the
longitudinal coordinate of the pipe [1,2]. The main consequence of this contraction or projection of the
mathematical description implies that the microscopic structure of the system is incorporated in the
value or possible dependence of the corresponding transport coefficients, like the diffusivity, on the
essential parameters of the problem. That is, after the microscopic structure is suitably abstracted, the
local “microscopic” transport coefficients become “macrotransport” coefficients. In this way, the theory
emphasizes the fact that the macroscopic character of well known three-dimensional transport
equations, for instance, the diffusion equation with its boundary conditions, implies an inherently
complex and heterogeneous system that cannot be ignored. The enormous merit of the theory is that it
offers a rigorous mathematical formulation for doing this contraction of the description along with the
incorporation of chemical aspects related with chemical kinetics [3].
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The Shaphiro–Brenners’s macrotransport processes theory focuses on the effect of flow in regular
domains, as the Taylor–Aris problem set. Nonetheless, in real life regular geometries are scarce.
Most practical situations involving mass or charge transport across membranes or porous media
involve irregular domains and, therefore, require a more general treatment than the one offered by the
original macrotransport processes theory. For instance, the mass transport inside confined geometries
addressed interesting problems that should be studied in order to improve our understanding of several
processes occurring on Biology, Chemistry and many industrial applications ranging from metallurgy
to food processing [4–6]. Some of the most important examples of this type of transport occurs in
biological membranes, zeolites, carbon nanotubes, transformation of hydrocarbons, soil filtration,
chemical reactors and artificial thin films. A few examples are mentioned in Refs. [7–10].

Most experimental techniques related with porous materials pertain to the macro-scale, defined in
terms of the global characteristic length of the system like, for instance, a reaction cell [11–14]. In those
techniques, the quantities of flowing reagents and products are measured at the ends of the material.
These properties have to reflect several processes taking place at the micro-scale, defined in terms of
the transversal characteristic length of the pores, the real length and other internal properties [15–20].
The relation between the microscopic details of the shape of the pores and the longitudinal effective
mass transport across porous materials can be established accurately when the pores are long enough
compared with their average width [21]. When this assumption holds, the microscopic scale description
based on the three-dimensional diffusion equation can be simplified onto a coarse grained description
along the main transport direction, that is, onto a one dimensional diffusion equation having effective
transport coefficients [22–25].

Some of the advantages that follow from this coarse graining of the description are technical,
like the reduction of computing time when solving the time evolution equations with their
corresponding (non-equilibrium) boundary conditions. However, also interesting physical chemistry
concepts emerge from this contraction of the description. Concepts like entropic forces as a result of
entropic restrictions, or effective reaction velocity constants and their influence on the overall behavior
of the system allow to have simplified interpretations of the processes involved that are consistent
with the microscopic details, in similar form as other branches of physics, like in the case of statistical
mechanics and thermodynamics [26–29].

The present article generalizes to three dimensionsa novel approach to this problem that was
recently formulated for the case of non-regular domains in two dimensions [16,18,21,30,31]. In this
alternative or generalized macrotransport process theory, the non-regularity of the geometry of the
pores is explicitly taken into account when the description is contracted. It leads to contributions
correcting the transport coefficients and the effective chemical rates that may be very useful in
practical applications, especially when the perspective on 3D printing is emerging as a very promising
membrane fabrication technique [32].

This new approach enriches the view offered by the Shaphiro–Brenners’s theory for
macrotransport processes, and can lead to an improvement of the theoretical description and
understanding of several processes taking place in constrained transport problems. It makes accessible
the connection between the microscopic details of the geometrical and chemical structure of the pore
with the result of macroscopic experiments. This will be illustrated by considering a series of examples
that show the main features and richness of the theoretical description and its capacities to design
technological devices able to perform, optimally, specific functions.

This work is organized as follows. In Section 2 we will present the main features of the generalized
macrotransport process theory for irregular geometries and then, in Sections 3 and 4 we will extend
it to the case when adsorption–desorption kinetics takes place at the pores surface and to the case
when the adsorbed phase can diffuse on the surface, respectively. The case of heterogeneous catalysis
is considered in Section 5, and the effective diffusion coefficient of adsorbent and non- adsorbent
membranes is studied in the Section 6. In Section 7 we discuss how our theory can be used together
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with experiments, in order to infer some general characteristics of pores from uptake experiments.
Finally, the Summary and Conclusions are presented in Section 8.

2. A Generalized Macrotransport Process Theory for Irregular Domains

Consider the transport of a gas of a pure substance across a pore like the one illustrated in Figure 1.
The molecules of the gas may interact among them and with the walls of the pore and, in general,
they may be adsorbed and desorbed. At the local level and with isothermal conditions the spatial and
temporal evolution of the state of the gas of a pure substance can be characterized by the following
general mass balance equation inside the pore [33]

∂C
∂t

+∇ · j = G(r, φ, z, t), (1)

where C(r, φ, z, t) represents the concentration of molecules in mol·cm−3 (or ·cm−2 in the 2D case) and
G(r, φ, z, t) is the chemical production or consumption inside the bulk of the fluid, having dimensions
of mol·cm−2·s−1. In addition ∇ represents the gradient operator in cylindrical coordinates.

When one considers that the molecules can be adsorbed and desorbed at the pore walls, the
total diffusion current j(r, φ, z, t), having dimensions of mol·cm−2·s−1, can be written as the sum of
two contributions

j(r, φ, z, t) = jdi f f + jsur f , (2)

where jdi f f is the diffusive current in the bulk and jsur f is the surface current of material due the
existence of adsorption and desorption processes implying the transport of molecules through the
pore’s surface. The bulk diffusion follows the Fick law

jdi f f (r, φ, z, t) = −D∇C(r, φ, z, t), (3)

where D is the Fickean-diffusion coefficient [34]. The explicit form of the surface contribution,
jsur f (r, φ, z, t), will depend on the particular chemical kinetics associated with the heterogeneous
chemistry. However, in general this quantity should vanish in every internal point of the bulk domain

jsur f (r, φ, z, t) = 0 r < R(z), (4)

whereas, when evaluated at the boundaries, it takes the form

jsur f (r = R, φ, z, t) = ρ̇(z, t)n̂(R, z), i = 1, 2, (5)

where ρ̇ is proportional to the velocity of the corresponding heterogeneous chemical reaction, that is,
the input or output of material at the pore’s surface. Here, the unit vector normal to the pore surface
at position z is n̂⊥(R, z), see Figure 1. The units of ρ̇ are mol·cm−2·s−1. The detailed analysis on
the properties of the bulk and surface contributions of the total diffusion current at the boundaries,
is provided in Ref. [21].

2.1. Contraction of the Description for Diffusion Processes

The formulation of a theory for macro-transport processes in irregular domains starts by the
contraction of the 3D description offered by Equation (1) along the coordinates which are transversal to
the main transport direction. Here, for simplicity in the presentation we will assume that this direction
coincides with the z-axis, see Figure 1, and that no adsorption and desorption processes or chemical
reactions are present (jsur f = 0 and G = 0).

In this form, the average diffusion flow along the main transport direction can be obtained by using
the well known relation: Jdi f f =

∫
(jdi f f · êz)dA, with dA = rdrdφ the element of cross section area
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with normal vector along the direction of main transport z. Using Equation (3) in the last expression
we have

Jdi f f = −D
∫ 2π

0

∫ R(z)

0

∂C
∂z

rdrdφ, (6)

where we have assumed that D does not depend on r and φ. Integration over r can be done using the
Leibniz rule due to the irregular boundaries. One obtains

Jdi f f = −2πD
[

∂

∂z

∫ R(z)

0
C(R, z, t)r dr− R(z)C(R, z, t)

∂R
∂z

]
. (7)

Now, it is worth to define the averaged bulk concentration Cb(x, t)

Cb(z, t) =
1
A(z)

∫ R(z)

0
C(r, φ, z, t) rdrdφ, (8)

having the same units as C(r, φ, z, t), that is mol·cm−3. Here, we have introduced the transversal area of
the poreA(z) ≡ πR2(z). For non-twisted and large enough (L >> R) pores we can assume C(R, z, t) '
Cb(z, t), meaning that homogeneity along the radial direction is rapidly reached [21]. Thus, after
integrating and performing some algebraic manipulations at the right hand side of Equation (7),
we obtain

Jdi f f = −DA(z)∂Cb
∂z

. (9)

In similar form, the integration of the mass conservation equation (Equation (1)) over the
transversal coordinates r and φ yields

∂

∂t
[A(z)Cb] +

∂

∂z
Jdi f f = 0, (10)

where we have used Equation (8), the Leibniz rule:
∫ 2π

0

∫ R(z)
0

∂
∂z

(
jdi f f · êz

)
rdrdφ = ∂

∂z Jdi f f −
Jdi f f |r=R

dR
dz , and assumed non-adsorbing boundary conditions for the diffusion flow at the walls

of the pore: Jdi f f |r=R = 0. In the following section we will indicate how the projected description has
to be modified when adsorbing boundary conditions are considered.

In this way, by substituting Equation (7) into Equation (10) we finally obtain the evolution equation
of the averaged bulk concentration Cb(z, t) along the main transport coordinate,

∂Cb
∂t

=
1
A(z)

∂

∂z

[
D(z)A(z)∂Cb

∂z

]
. (11)

This equation is the appropriate one-dimensional mass conservation relation for a diffusion process
that originally takes place in a three-dimensional irregular domain with fixed and reflective boundaries.
It should be noticed that the presence of the position dependent transversal area A(z), introduces
important modifications to the differential operator associated with the diffusion process. Furthermore,
it is convenient to stress that, in general, the diffusion coefficient entering into Equation (11) is a position
dependent quantity, see Equation (15) below. The justification of this fact and an explicit form of this
dependence in terms of the geometry of the pore are given in the next subsection.

These differences with respect to the usual diffusion equation imply that, when one approximates
the description of a three-dimensional diffusion process with a simple diffusion equation of the form:

∂C1D
∂t

= Dm
∂2C1D

∂z2 , (12)
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then careful should be put on what the constant effective diffusivity Dm implies. An equation like
Equation (12) was rigorously derived from Equation (11) in Ref. [30], where the connection between
the molecular diffusion coefficient D and the effective membrane diffusivity Dm was given in terms of
the geometry of the pores. The final expression is consistent with the experimental inference

Dm = D0
ϕ

τ
δ, (13)

where D0 is the molecular diffusion coefficient of the particles in the bulk phase in absence of
confinement, and ϕ and τ are the porosity and tortuosity of the membrane, respectively. The symbol
δ is called the constriction factor since it quantifies, in an averaged form, the effect of the internal
corrugation of the pores on the mass flux. In particular, the inverse 1/δ is a measure of the intrinsic
resistance of a pore to the flow. The theoretical deduction of Equation (13) in Ref. [30] establishes
rigorous mathematical relations for the experimental macroscopic parameters ϕ, τ and δ, in terms of
the geometrical parameters of the pores, in such a way that they can be useful for pore design.

Figure 1. Geometry of an irregular tortuous pore of radius R(z), transversal area A(z) and length L.
Also shown are the three types of pores that will be used for numerical experiments. These experiments
will consist on the study of the bulk and surface diffusion dynamics and its interplay with the
adsorption–desorption and catalytic processes at the surface of the pore. The mathematical details of
their geometries are summarized in Appendix A, in particular the values of the geometric parameters
used in simulations are provided in Table A1.

The mass balance equation Equation (11) has many advantages since it is written in terms of the
volumetric concentration. The first one is that it is easy to connect it with the boundary conditions
which are of practical importance in the chemical reaction engineering. For example, the cases when
an external gradient is imposed on the porous material: Cb(0) 6= Cb(L), with z = 0 and z = L the
extremes of the pore, see Figure 1. Another example is when saturation conditions are imposed on
an initially empty material: Cb(0) = Cb(L) = C0 with C0 a constant. This quality of Equation (11)
is very important because in an experimental setup these conditions are usually the measurable or
controllable parameters. Therefore, the Equation (11) allows one to establish in a detailed way the
concentration profile (usually not measured) in terms only of the external condition, as long as the
internal shape of the pore is known.

2.2. The Diffusion Coefficient in the Contracted Description

The contracted description we have already presented, can be related with the
Fick–Jacobs–Zwanzig description of Brownian motion at irregular domains [22]. In this case, valid for
equilibrium situations, one should assume a very diluted gas in such a way that the probability
density is proportional to the concentration of molecules: P ∝ C. When this assumption is valid,
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the Equation (11) can be rewritten in terms of the reduced probability p: P ' p/A(z), which is a linear
density. The result is the Fick–Jacobs–Zwanzig equation

∂p
∂t

=
∂

∂z

[
D(z)A ∂

∂z

( p
A

)]
. (14)

The interesting point here is that the diffusion coefficient entering in Equation (14) is position
dependent, i.e., D = D(z). Several expressions for the functional form of this coefficient have
been obtained for the two-dimensional problem [22,23,29,35]. However, in three dimensions,
and only for illustrative purposes, it is convenient to write down the form reported in Ref. [36]
for a three-dimensional cylindrical tube:

D(z) =
D0

1 + h2
z(z) +

R2
z(z)
2

. (15)

Here h(z) is the middle line of the pore, R(z) its local width and the subscript z denotes derivation
respect to this coordinate. Therefore, in the contracted description, the diffusion coefficient is
reduced by the constriction (proportional to R2

z) and by the sinuosity (proportional to h2
z) of the pore.

These parameters are involved in the definitions of ϕ, τ and δ. For more details, see Refs. [18,30,31].

3. Adsorption–Desorption Kinetics in Macrotransport Process Theory for Irregular Domains

When the internal surface of a pore is chemically active there is a probability per unit time that
a particle which approaches to the wall becomes adsorbed or desorbed. This probability is measured
by the contribution jsur f given in Equation (5) and therefore the adsorption–desorption rate por unit
area of the pore’s surface, jsur f · n̂ = ρ̇, is proportional to the velocity of reaction ρ̇ which measures
how rapidly the particles are leaving the bulk and stay attached at the wall, and vice versa.

Assuming that the adsorbed layer does not modify in an noticeable extent the available volume
of particles diffusing in the bulk, one can proceed along the same lines of the last section in order to
obtain (see Ref. [21] for details)

∂Cb
∂t

=
1
A(z)

∂

∂z

[
D(z)A(z)∂Cb

∂z

]
+

Γ
A ρ̇ (16)

where Γ(z) is an area density, that is, a purely geometric factor which measures the local surface area of
the pore since

∫ L
0 Γ(z)dz = Asur f ; for surfaces of revolution, it has the explicit form Γ(z) = 2πR(z)γ(z),

where the length density is γ(z) =
√

1 + R2
z(z). The factor Γρ̇/A has therefore the dimensions of

mol·cm−3·s−1.
The Equation (16) accounts for the spatial and temporal evolution of the bulk concentration

of a gas inside a pore having an adsorbing irregular surface. The adsorption–desorption process is
therefore weighted by the control parameter Γ(z)/A(z), see the left panel of Figure 2. This means that
an increase in the amount of active sites over the wall of the pore [or equivalently, increasing Γ(z)]
produces in turn an increased efficiency of the adsorption–desorption process as it is expected, this is
shown in the right panel of Figure 2.

The Equation (16) is the generalization of the macro-transport processes theory to the case when
diffusion and adsorption–desorption chemical kinetics may occur. It gives a clue of how to relate the
detailed process occurring at the wall with the measurements that only consider the internal volume
of the pore. For example, if in a given system the adsorption–desorption process is the slower step of
the dynamics, then one can ignore the diffusion process and therefore Equation (16) reduces to

∂Cb
∂t

= 2γ(z)Rb(z, t), (17)
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where we have identified the reaction velocityRb (in mol·cm−3·s−1) of the respective chemical kinetics
through the expression

πR(z)
A(z) ρ̇(z) =

ρ̇(z)
R(z)

= Rb(z, t), (18)

in which we made use of the explicit form of the cross area A(z). This relation quantifies how
fast the material is adsorbed-desorbed at position z at time t over the pore surface and therefore,
is crucial for understanding the role of the geometric irregularity of the pore when quantifying the
adsorption–desorption macroscopic reaction rates. Integration over the length L of the pore yields the
macrotransport relation

dCb
dt

= Rb(t). (19)

where we have defined Cb = L−1
∫ L

0 Cb(z, t)dz and Rb = 2L−1
∫ L

0 Rb(z)γ(z)dz. This last expression
for the chemical rate is exclusively a time dependent function, but implicitly contains the details of the
internal geometry of the pores.
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Figure 2. Evolution of the non-equilibrium concentration profiles of the tortuous (black lines) and
winding pores (colour lines) in two different situations. In (a) we present the diffusion dynamics in
the absence of adsorption. Since we have designed the pores for having the same effective diffusion
coefficient Db(z), then the concentration profile evolves equally in both pores. However, in (b) we
show that the adsorption efficiency is different in both pores because it depends on the length of the
walls (proportional to their enhancement factor γ) which is larger in the tortuous pore (black lines)
than in the winding pore (colour lines). This fact causes that less particles reach the exit side of the pore
(at the right). See Appendix A for details of the simulations.

3.1. The Thiele Modulus

The Equation (16) shows that a porous material of irregular shape increases the efficiency of
an adsorption–desorption process by the combination of two factors. In first place, the corrugation
and sinuosity of the pore make slower the effective diffusion process along the longitudinal direction,
since the diffusion is reduced by a factor of D/D0 compared with a cylindrical pore. In second place,
the corrugation of the pore makes that the surface of the walls is increased by a factor Γ, augmenting in
principle the amount of active sites.

Traditionally, both factors can be taken into account in a single characteristic parameter of
a chemical reactor called the Thiele modulus, which is defined as the square root of the ratio between
the characteristic time of diffusion and the characteristic time of the adsorption–desorption kinetics [16]

Φ2 =
characteristic time of diffusion

characteristic time of adsorption
. (20)

From this definition it is possible to show how the irregularity of the pores locally increases the
Thiele modulus Φ with respect to Thiele modulus Φ0 of a cylindrical pore of radius R0 with the same
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length and no irregularities. Let us assume a first order adsorption process with velocity constant κ

(1/s), that is,
Rb(z, t) = −κCb. (21)

Then, from Equation (16) in the stationary state the expression of the Thiele modulus for a cylindrical

pore is (γ = 1): Φ0 =
√

2κ L2

D0
. The corresponding expression of the position dependent Thiele modulus

for an irregular pore can also be obtained from Equation (16). Introducing the scaled variable ζ = z/L,
in the stationary state Equation (16) becomes

∂2Cb
∂ζ2 =

(
2γκ · L2

D

)
Cb −

∂Cb
∂ζ
· ∂

∂ζ
ln |DA|, (22)

where we have used Equation (21) and made some rearrangements. Noticing that the characteristic time
of diffusion can be defined by τdi f f = L2/D and the characteristic time of adsorption by τads = (2γκ)−1,
then the local Thiele modulus Φ(z) can be defined in complete analogy with Φ0 by

Φ(z) =

√
2κγ · L2

D
, (23)

implying that

Φ(z)
Φ0

=

√
γ

D0

D
=

√
γ(z)

[
1 + h2

z(z) +
R2

z(z)
2

]
≥ 1, (24)

where in the second equality we have used Equation (15). The inequality follows from the fact that
D0/D(z) ≥ 1 and γ =

√
1 + R2

z(z) ≥ 1. Additionally, one may introduce an averaged Thiele modulus
which can be defined in the usual form

Φ =
Φ0

L

∫ L

0

√
γ(z)

[
1 + h2

z(z) +
R2

z(z)
2

]
dz. (25)

The results of the present theory seem to go deeper in the modeling and comprehension of the
processes taking place in the system than previous theories. The corrected expressions depending
on the corrugations and sinuosity of the pores, show how the internal geometry of the pore affects
the amount of material adsorbed or transferred across a membrane. This could be a very relevant
knowledge in the cases when one looks for programmed performance properties of a membrane.

Equation (22) predicts that the mass distribution inside the pore will only depend on the Thiele
modulus, which becomes corrected by the local values of the length density γ(z) and of the diffusion
coefficient D(z). From this information and taking into account the definitions of the mass transfer
coefficient and effectiveness factor a very complete description can be achieved. Very detailed examples
in two dimensions were previously analyzed in Ref. [16,21]. We will show this in the following section
for the case of conical pores.

3.2. An Application: Conic Pores

The utility of the previous results may be illustrated by considering some interesting situations
of practical interest, like nano-filtration, among others [37–41]. As an example, consider first that
the porous material is a membrane subject to a concentration difference between both ends. In this
case, the proportionality k between the net flux and the net concentration difference is called the
coefficient of mass transference and usually augments with the Thiele modulus. The Equation (22) allows
to predict that the presence of throats of specific slopes can increase the transferred material across the
membranes and, therefore, increase k in a very appreciable way. At the other hand if we are interested
in an equilibrium process where the fluid can enter at both sides of the membrane saturating the
membrane, then the internal effectiveness factor η is usually measured [16]. This parameter measures
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the ratio between the amount of gas actually adsorbed and that which would be adsorbed if all the
internal surface of the pore were exposed to the external concentration. It is known that this parameter
η usually decreases with the Thiele modulus. Once more time, the use of Equation (22) allows to
predict that the existence of bottlenecks can increase the effectiveness factor in two ways, since the
reduction of the volume caused by the funnel causes in turn accumulation of material making the
adsorption more efficient, see Figure 3.

Figure 3. Predictions for the normalized mass transfer coefficient k/k0 (left) and effectiveness factor η

(right) as a function of the pore geometry, for the four conical pores depicted in the figure using the
reduced scheme. See Appendix A.

4. Effect of Diffusion of the Adsorbed Phase over the Internal Pore Surface

When a particle is physically adsorbed at the internal surface of the pore it enters in a very
narrow region that is called the adsorption field. The length and deepness of the adsorption field is
dictated by the type of interaction between host and guest molecules of the solid porous material [42].
In this situation, and adsorbed particle can change its position by two ways. One of them is a simple
desorption process which can be described with the same models than adsorption as before, or by
other way, it can move along the surface of the pore. This second mechanism is called surface diffusion
and is caused by short-length interactions among the molecules and the surface. From the practical
point of view, it has been suggested that the surface diffusion coefficient is larger than the bulk
diffusion, and that can be responsible for most of the effective transport inside porous materials [43–45].
However, as the traditional models for quantifying surface diffusion usually depend of the reactor
used, it is hard to deduce general conclusions of this process [46].

In order to establish a one-dimensional description of the concentration of the adsorbed phase
along the main transport coordinate, we will assume that the pore surface is non-twisted, i.e., it is
independent of the azimuthal coordinate and therefore describable by a single parametric coordinate.
This assumption allows us to write, in the limit of zero loading, the parametric coordinate [31]

q(z) =
z∫

0

√
1 + R2

z(z)dz. (26)

The coordinate q(z) can be understood as a measure of the real length traveled by the molecules
in the main transport direction. The significance is clear when analyzing the case of a conic pore,
see Figure 4a. The diffusion over the surface of the cone is approximately equal to the diffusion over
the two dimensional domain indicated in Figure 4b, where the effective length of this domain is

defined by L̃ =
L∫

0

√
1 + R2

z(z)dz.
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Hence, the projected concentration of adsorbed molecules along the coordinate q is s(q, t), having
dimensions of mol·cm−1 along the surface. This concentration satisfies a one-dimensional mass balance
equation which comes from the projection of the corresponding two dimensional diffusion equation
along the coordinate q(z). This equation is similar to the so-called generalized Fick-Jacobs equation,
see Ref. [18,31]

∂s
∂t

=
∂

∂q

[
Ds w

∂

∂q

( s
w

)]
+ gs, (27)

where w = 2πR(q) is the width of the two dimensional domain, and gs (in mol·cm−1·s−1)
quantifies the interchange of molecules between the adsorbed phase and the bulk by means of the
adsorption–desorption process. Equation (27) is relevant because it provides a clear physical meaning
to the surface diffusion coefficient Ds as the proportionality constant between the current density
of molecules and the concentration of adsorbed molecules when measured only along the surface.
Therefore, this diffusion coefficient can be directly deduced, independently of the type of reactor, from
the measurements of the mean square displacement in the limit of zero loading.

From the experimental point of view, the details about the spatial and temporal distribution of
the adsorption process are usually ignored. Thus, the theoretical description is done by assuming
a general mechanism for the adsorption–desorption kinetics from which one adjusts the chemical rates
in terms of the internal concentrations measured. However, these bulk and surface concentrations
are known in terms of the internal volume of the pore and, therefore, are measured in mol by unit of
internal volume. In this way, for practical purposes, it is necessary to express Equation (27) in terms of
volumetric concentrations and of the bare coordinate z, instead of the effective coordinate q. Let us
define the concentration of the adsorbed phase Cs (in mol by unit of volume) through the relation

Cs =
γ

A s, (28)

where the length density γ takes into account the re-scaling due to the projection over the effective
defined coordinate q. Substituting the last relation into Equation (27) and using the geometric
relation Equation (26), we obtain the single dimensional diffusion equation for the concentration
of the adsorbed phase Cs

∂Cs

∂t
=

1
A

∂

∂z

[
4πDs

A
γ w

∂

∂z

(
A

γ w
Cs

)]
+ γRs, (29)

where Rs = rs/A, and we used the expression for the transversal area A = πR2. The Equation (29)
quantifies the concentration distribution of the adsorbed phase as the result of the surface diffusion
and the interchange of particles with the bulk phase. In the case when the projection of the dynamics
is performed from a two dimensional channel [31], the corresponding mathematical form of the
one-dimensional diffusion equation is very similar to the generalization of the Fick-Jacobs equation
given in Equation (16). The difference is the form of quantifying the effective mass flux of both
diffusive processes.

A striking effect predicted by the above equation is that a macroscopic stationary state can be
reached in such a way that the surface and bulk dynamics compensate each other. This effect is shown in
Figure 5, where we show this coupling in a sinusoidal pore in the presence of Langmuir adsorption [47].
The presence of inhomogeneities on the surface concentration slaved to the form of the pore induce
non-vanishing gradients, that is, induce bulk and diffusion currents developing in opposite directions
along z. The result is the apparent formation of condensation-diffusion cells inside the pore [31].
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Figure 4. Projection approximation of the diffusion over the surface of a conical pore. (a) The
effective length q appears due to the projection over the cone. (b) The motion along the q coordinate is
approximately equal to the motion inside a two-dimensional funnel pore. The semicircular dotted lines
indicate the exact form of the surface. For large pores as initially assumed L >> R, the error made by
our approximation is negligible.
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Figure 5. Langmuir adsorption dynamic inside the tortuous (black lines) and winding (color lines)
pores in the presence of surface diffusion. In (a,b) figures the solid-lines correspond to the long-time
(equilibrium) bulk concentration Cb(x) and diffusion current Jb(x), the dashed-lines to the long-time
(equilibrium) surface concentration Cs(x) and diffusion current Js(x) and the dotted-lines to the
long-time (equilibrium) total concentration C = Cb + Cs and current J = Jb + Js. At long times
the particles in the bulk tend to be distributed homogeneously inside the pore while in (c) the
coverage fraction θ(x) shows that the adsorbed particles tend to segregate producing an accumulation
in the wider regions of the pore. This interesting effect suggests the existence of bulk-surface
exchange counter-fluxes in the interior of the pores, even when macroscopic equilibrium is reached.
See Appendix A for simulation details.

5. Heterogeneous Catalysis

In previous sections we have presented a theoretical framework that describes the spatial and
temporal evolution of the concentration of molecules along axisymmetrical irregular pore whose
shape is known, and in which heterogenous reactions and surface diffusion take place. The theoretical
framework is summarized by Equations (16) and (29), which separate the processes occurring in
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the bulk from those in the adsorbed phase because the diffusion in each case has different origins
and magnitudes.

In both equations, the irregularity of the pore geometry enters through the geometric parametersA
and γ, which represent the cross area and the length-density of the walls, respectively. Therefore, if the
reaction of adsorption and desorption is known, as well as the bulk and surface diffusion coefficients
in the limit of zero concentration, then Equations (16) and (29) allow, in principle, to describe in detail
the concentration of any fluid inside the pore.

However, in practice the parameter γ(z) is frequently unknown, and therefore the effect of the
adsorption–desorption kinetics on the overall transport across the pore or the membrane is only
assessed in average form. Thus, in this situation it is convenient to approximate the parameter γ(z) in
terms of an average enhancement factor: γ = L−1

∫ L
0 γ(z)dz, and introduce an operational definition for

γ. For a previous discussion on this subject, see Ref. [18,31]
An operational definition γ can be introduced in terms of the ratio between the reaction velocity

constant inside the pore with respect to that of a flat surface. Thus, γ can be expressed in terms
of the net bulk reaction velocity R̃ = γR, where R was defined through Equations (17) to (19).
Assuming that the chemical kinetics has an overall characteristic velocity constant κ, like for instance
in Equation (21), then we have: R̃ = −γκCb. Thus, as an approximated average measure of the
enhancement factor of the reaction due to the fact that the reactions take place into a pore, we may
propose the relation

γ ' κ̃/κ, (30)

where κ̃ is the effective velocity constant inside the pore, and κ is the velocity constant in a flat surface.

5.1. An Example: The Isomerization Reaction

In this subsection we will illustrate the capabilities of the theory by considering a simple
isomerization reaction at the internal surface of the pore [14]. In this example, schematically represented
in Figure 6, the particles of A enter the pore with concentration CA

b . Some are adsorbed at the wall
forming the reactive AS with concentration CA

s :

A + S
kA−−⇀↽−−
k−A

A · S , (31)

and therefore with reaction velocity

R̃Ads = κ̃ads

(
CA

b CS − KadsCA
s

)
, (32)

where CS = C0
s − CA

s − CB
s denotes the concentration of vacant sites in the Langmuir-Hinshelwood

approximation, and Kads is the equilibrium constant associated with the adsorption–desorption process
of species A. Afterwards, the catalytic reaction transforms the reactive AS into the isomer B attached to
the wall, BS, with concentration CB

s :

A · S
kS−−⇀↽−−

k−S
B · S , (33)

with the corresponding reaction velocity

R̃Cat = κ̃cat

(
CA

s − KcatCB
s

)
, (34)

where Kcat is the equilibrium constant associated with the catalytic reaction at the surface of the pore.
Finally, the isomer B is desorbed and transported out of the pore, with concentration CB

b , that is:

B · S
kS−−⇀↽−−

k−S
B + S , (35)
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for which the reaction velocity is given by

R̃des = κ̃des

(
CB

s − KdesCB
b CS

)
, (36)

where Kdes is the equilibrium constant associated with the desorption-adsorption process of the
isomer B.

The dynamics of the catalytic process can therefore be described by the following two sets of
evolution equations for the bulk and surface concentrations. For the reactive A we have

∂CA
b

∂t
=

1
A

∂

∂x

[
DbA

∂CA
b

∂x

]
− R̃Ads, (37a)

∂CA
s

∂t
=

1
A

∂

∂x

[
4πDs

A
γ w

∂

∂x

(
A

γ w
CA

s

)]
+ R̃Ads − R̃cat. (37b)

The equations for the isomer B are in turn

∂CB
b

∂t
=

1
A

∂

∂x

[
DbA

∂CB
b

∂x

]
+ R̃Des, (38a)

∂CB
s

∂t
=

1
A

∂

∂x

[
4πDs

A
γ w

∂

∂x

(
A

γ w
CB

s

)]
− R̃Des + R̃cat. (38b)

Different predictions on the behavior of the reactive and product concentrations can be obtained
depending on the slower step in the chain of processes of the heterogeneous catalysis. In Figure 7 we
show the results of the catalytic model in which the distribution of active sites over the pore surface
is inhomogeneous. In fact only three portions of active sites were considered with the aim to show
that the concentration of molecules at the surface is inhomogeneous. Two cases were considered,
with and without surface diffusion of A and B. As expected, surface diffusion helps to homogenize the
distribution and enhances the total mass transport across the pore, see Ref. [31] for more details.

Figure 6. Illustrative image of the different steps of the heterogeneous catalysis inside an irregular pore.
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Figure 7. Numerical experiments predicting the surface concentration profiles of the species A and B of
the heterogeneous isomerization reaction considered in Section 5.1. The upper line shows the tortuous
pore together with the corresponding results Figures (a,b). In (a) the black lines show to the surface
concentrations CAS(x) (dotted line) and CBS(x) (dashed line) together with the total concentration
C = CAS + CBS (solid line) when the active sites are located in the positions indicated by the gray
gridlines (corresponding to the wider positions of the pore). The color lines correspond to the same
concentrations when the active sites are located in the orange gridlines (corresponding to the narrower
positions of the pore). In (b) the corresponding diffusion fluxes as a function of time are shown.
The bottom line shows a similar situation but for the sinuous pore. Negative values of the flux indicate
that the species B leaves the pore at the left end. In (c) the solid lines (black and red) show a dramatic
change of total mass transport depending on the position of the active sites. This is related with the
also dramatic difference of efficiency of the heterogeneous isomerization reaction in this pore, see black
and blue dashed lines. The changes are also drastic with respect to the tortuous pore. The total
surface fluxes of species A and B are compared in (d). The details of the parameters used are given in
Appendix A.

6. The Effective Diffusion Coefficient of Adsorbent and Non-Adsorbent Membranes

When a fluid crosses a porous medium, the flow is reduced due to the presence of the solid
material. The causes of this reduction have been traditionally split in three factors. First, the reduction
of effective volume available for the fluid; second, the increase of the path-length that the molecules
have to travel due to the sinuosity of the pores and finally, the third factor which is related with the
decrease of the effective flux due to the corrugation of the pores.

These factors are represented by three parameters which can be measured experimentally in
uptake experiments. They are, respectively, the porosity φ defined as the ratio between the internal
and total volume of the membrane; the tortuosity τ which is the average of the square ratio of the real
path-length that the molecules have to travel and the longitudinal length of the membrane; and the
constriction factor δ of a membrane which quantifies the reduction of the flow due to the presence of
the walls. It is an experimentally well known fact that these parameters modify the effective diffusion
coefficient Dm of a membrane make up with non-adsorbent pore’s surface in the form

Dm

D0
=

φ

τ
δ ≤ 1, (39)

where the inequality comes from the fact that the geometric parameters obey the corresponding
inequalities φ, δ ≤ 1 and τ ≥ 1.

The present theory allows one to calculate with detail the form in which the irregularity of the
pore affects the effective flux inside the porous material and, therefore, it also allows to connect it with
information that can be obtained from macroscopic measurements, see Figure 8. By means of simple
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conservation arguments provided in Ref. [30], it can be proved that the constriction factor of a porous
material of non-adsorbent walls is given by

1
δNA

=

〈
D0

Db(z)A(z)

〉
〈A(z)〉. (40)

In this expression, the brackets represent the spatial average in the longitudinal coordinate z. We have
added the subscript NA to emphasize that Equation (40) is valid for non-adsorbent membranes.
Therefore, the constriction factor in Equation (40) together with the porosity and tortuosity, having their
corresponding expressions in Ref. [30], help to predict the diminution of the flow in a non-adsorbent
porous material. This expression is a general form of a previous expression intuitively obtained for the
diffusivity in Ref. [48].

Adsorbent Membranes

In most of the practical cases, however, one is interested on membranes able to carry out
adsorption–desorption processes. The interesting question now is to determine in which cases the
effective membrane diffusion coefficient Dm increases and in which decreases. The question is not
obvious to solve a priori since an enhancement of the bulk diffusion may occur by the presence
of surface diffusion effects, and the fact that the adsorption along the pore can increase the local
concentration gradient inside the pore, accelerating the entrance of more fluid to the pore.

In order to consider the influence that the adsorption process and the irregularity of the geometry
have in the measured diffusivity, one has to consider the total change in the two flows inside the channel:
The flow due to bulk diffusion and which is originated by the external concentration gradient Jb =

−Db
∂Cb
∂x , and the flow due to surface diffusion that is owing to the internal variations of concentration

in the adsorbed layer Js = − 4Ds
γw

∂
∂x

(
wCs

γ

)
. In mathematical terms, the reduced scheme we have used

in Equations (16) and (29) allows to show that the total flow per unit of area is

Jt = −Db
∂Cb
∂x
− 4Ds

γw
∂

∂x

(
wCs

γ

)
. (41)

As the total flow can be written macroscopically only on terms of an effective diffusion coefficient
Dt, and the total concentration Ct = Cb + Cs as Jt = −Dt(x) ∂Ct

∂x , simple comparison of this equation
with Equation (41) allows to obtain Dt if the isotherm of the system Cs(Cb) is known. In this case and
if the adsorption/desorption process is the rate limiting step in the catalytic reaction, it is possible to
calculate the rate conversion factor λ = ∂Cs

∂Cb
. With this information, the local effective diffusivity of the

particles inside a pore of adsorbent walls is [18]

Dt(x) = Db(x)
1

1 + λ(x)
+

4Ds(x)
γ2(x)

λ(x)
1 + λ(x)

. (42)

Since λ > 0 for most of the known isotherms, the last equation establishes that the effective
diffusivity of the fluid inside the pore is proportional to the bulk and surface diffusion coefficients
Db and Ds, and it can be enhanced or diminished depending on the intensity of the adsorption
rate λ(Cs, Cb). There are two facts that Equation (42) confirms: first, the effective diffusivity of
particles depends upon the position along the pore; secondly, the diffusivity depends upon the internal
concentration of bulk and adsorbed particles. More importantly, this internal diffusivity can be
predicted if D0 and Ds are known in the limit of zero loading.

In these terms, the conservation principles used for obtaining the constriction factor δ in
Equation (40) for a non-adsorbent membrane, can be easily generalized for an adsorbent one, and the
more general expression for this parameter is just:

1
δ
=

〈
D0

Dt(z) A(z)

〉
〈A(z)〉. (43)
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Figure 8. Concentration profiles in three pores depicted above, where an homogeneous adsorption
process takes place along the pore with equal concentrations at both ends. In (a1) we show the
predictions of the concentration profiles for a tortuous pore (green) when adsorption and bulk diffusion
takes place at different times. Black lines show the predictions by Equations (16) and (29) whereas solid
color lines (green) show the prediction by the most elemental one-dimensional diffusion Equation (12)
having no-corrections from the geometry of the pore. In (a2) we show a similar comparison in
the presence of surface diffusion. The comparisons in (b1,b2) correspond to the cylindrical pore
(blue) and show that, only in this case, the approaches are equivalent, as expected. Comparisons in
(c1,c2) correspond to the winding pore (red). Remarkable differences between tortuous and winding
pores emerge from this simulation study, in particular in the case when surface diffusion is present.
Cylindrical and tortuous pores have very similar behavior whereas the tortuous pore introduces large
deviations with respecto to the elemental description of the concentration profile. See Appendix A for
details of the parameters used in the simulations.

This constriction factor in the effective diffusion coefficient of a membrane in Equation (39),
depends on the concentration of the adsorbed phase and therefore, it depends on the loading.
This means that if the curves Dm versus loading θ are known, one can establish the relative
importance of the surface diffusion and the irregularity of the pore in the efficiency of the adsorption
process [18]. Since our reduced model in Equations (16) and (29) allows to obtain with detail the internal
concentration, it enables to establish how these curves change in terms of the corrugation of the pore
and in terms of the intensity of the surface diffusion, this will be illustrated in the following section.

7. How to Use This Theory in Uptake Experiments

In previous sections we have shown how the speed and efficiency of the mass transport process
through a membrane are related to the shape of the pores which make up the membrane. If the shape
of the pores is known, then by using the average transport equations Equations (16) and (29) it is
possible to predict with a good degree of approximation, the amount and distribution of the material
adsorbed as well as its concentration in the bulk.

Nonetheless, most practical situations impose the inverse problem, that is, the necessity of finding
out some general qualitative characteristics of the pores of a material from, for instance, uptake
experiments. Without pretending to be exhaustive in this issue, in the present section we will illustrate
how this structural or geometrical information can be extracted from experiments by fitting the
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obtained data with the numerical solution of the Equations (16) and (29). In order to do this, we will
consider two examples.

7.1. Breakthrough Curve and Internal Pore Geometry

As a first example, consider the experiment of a fluid adsorbed on a column of a porous material
in which the pores have, approximately, the same geometric shape and an homogeneous distribution
of adsorption sites. In this experiment a fluid penetrates the column from one side and diffuses
towards the exit side. If the fluid is partially adsorbed at the surface of the pores, then the rapidity
with which the bulk concentration at a certain height of the column reaches its saturation value
may be different depending on the shape of the pores. This follows from the fact that the effective
diffusivity of the membrane depends on the balance between the bulk and the surface concentrations.
These concentrations are implicit functions of the adsorption velocity inside the column which, in turn,
is partially determined by the geometry of the pores and the distribution of the active sites.

The process already described can be understood with the help of a breakthrough curve, in which
the concentration at a certain point is measured as a function of time. The important data are the
initial time, at which the increase in concentration begins, and the slope of the curve which is critically
determined by the balance between the characteristic times associated with the volumetric diffusion
and the reaction of adsorption.

Figure 9 shows the numerical solution of Equation (16) for a simple adsorption process at the
surface of the pore. Each curve represents the same diffusion-adsorption dynamics for a winding
(black lines) and a tortuous (color lines) pores, see details in the caption of the figure and in Appendix A.
A significative difference among the breakthrough curves of materials having straight (or near straight)
pores is clear, when compared with those emerging from membranes in which the pores have important
constrictions or sinuosities. Therefore, small changes on the geometry can be detected in principle in
these experiments.

Figure 9. Breakthrough curves obtained from solving Equation (16) for a simple linear adsorption
process given by ρ̇ = −raCb(z) with ra the adsorption rate and D0 the diffusion coefficient. The pores
considered are the winding (black lines) and tortuous (colour lines) pores with length L = 5.
The boundary conditions consist of fluid entering at the left (Cb(z = 0) = 1), and exiting at the
right (Cb(z = L) = 0). The values of the constants (in arbitrary units) were ra = 0 and D0 = 1 for
the solid lines, ra = 0.1 and D0 = 0.75 for the dashed lines, ra = 0.4 and D0 = 0.5 for the dotted
lines, and ra = 1.0 and D0 = 0.1 for the dash-dotted lines. In order to obtain the breakthrough
curve, the temporal increasing of the concentration is measured at z = 4.5. Our theory predicts that
a small difference on the slope of these curves can be the result of purely geometrical changes, and the
constriction and sinuosity of the pores can be reflected in this type of curves. See Appendix A [16].
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7.2. Effective Diffusivity of the Membrane as a Function of the Average Load

The second example consists on a similar experiment with a porous column. However, in this
case we will consider the possibility of modifying the chemical properties of the surface of the pore by
some procedure without essentially changing its internal geometry. Depending on the active materials
added to the surface of the pores in the membrane, the density and distribution of active sites of
adsorption will be increased or reduced, thus changing the average load that the column can adsorb.

In this experiment it should be possible to measure the time evolution of the spatial profiles of the
total concentration (Ct = Cb + Cs) inside the membrane, as recent experiments in pulsed field gradient
NMR techniques have shown [34,49,50]. The resulting curves, such as those reported in Ref. [51] may
be reproduced with our theory as it follows from Figure 8.

Furthermore, since the spatial profile of the total concentration is related with the effective diffusion
coefficient of the membrane, then by changing the properties of the surface it is possible to change the
relationship between the effective diffusion coefficient of the membrane and the average adsorbed
load. Thus, from independent measurements it should be possible to establish the dependence of the
effective diffusion of the membrane in terms of the average adsorbed load.

The same can be done by using as an starting point the Equations (16) and (29). These equations
can be solved in order to find the total mass concentration within the pore as a function of position
and time. Then, by using the parameter λ = (∂Cs/∂Cb)T as well as Equations (41) through (43),
it is possible to find the effective diffusion coefficient associated with the total mass concentration,
i.e., the effective diffusion coefficient of the membrane, Dm. The Figure 10 shows the predictions for
these experiments, that is, the value of the effective diffusion coefficient as a function of the spatially
averaged load 〈Θ(x)〉x. Each frame in the figure represents an experiment with three different columns,
corresponding to pores having different geometries and the same fixed value of the surface diffusivity.
Each point of the curve represents a different value of the adsorption rate which reflects the changes in
the number of active sites within the membrane and therefore, a different load capacity.

Figure 10. Effective diffusion coefficient of a membrane as a function of the loading for the three pores
studied, and for several values of the surface diffusion coefficient. It is clear that the surface diffusion
changes the concavity of the curve and, at fixed loading, increases the efficiency of the mass transport.
See Appendix A for simulation details.

The Figure 10 provides some qualitative consequences about the relationship between the shape
of the pores and the surface diffusion. From the figure, it follows that the surface diffusion increases
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the net effective diffusivity of the particles relative to the state where the particles cannot move along
the surface. Since this seems to happen especially for intermediate or high loads, a change in the
concavity of the curve may be related to a change in the surface diffusion of the process. For high
surface diffusivities and loads, adsorbed particles slow down the total diffusion due to their mutual
interactions. The other mechanism associated with the change of the shape of these curves is directly
related with the shape of the pore. Sinuous and tortuous pores tend to reduce the effective diffusion
coefficient with respect to a straight cylindrical pore, as expected. An important consequence of this
effect is that, although both irregular pores have the same effective volumetric diffusion coefficient,
since one pore has less surface area than the other, it has a lower effective diffusion coefficient.

As concluding remarks of this section, we want to emphasize that from these two examples,
and their multiple variants, it is possible to infer that although it is not entirely possible to predict
the shape of the pores or the value of the surface diffusion coefficient solely from the results of the
averaged equations, it is possible to establish some general and qualitative characteristics about the
internal structure of the pores making up the membrane. It goes without saying that a systematic
study on this problem will be extremely interesting, and that our theory provides with a theoretical
tool to solve it.

8. Summary and Conclusions

Porous materials are of paramount importance nowadays, because the narrowness of the empty
space inside them and its enormous internal surface. These two characteristics make them very
attractive for a wide range of applications, ranging from drug delivery to oil refination and the
elaboration of proton exchange membranes. Their effectiveness is based on having very fine pores that
control the diffusion, and thereby amplify the speed of the chemical adsorption and conversion that
occur within it. Due to this relevant role, it is therefore crucial to understand how all these processes
depend on the geometry of the pores.

In this work, we generalized previous studies on the single dimensional description of the
diffusive mass transport across two dimensional pores [16,18,21,30,31] to a three-dimensional case
with axial symmetry. The key idea is that, on averaging the three-dimensional mass balance equation
along the transport direction, one obtains two single-dimensional mass conservation equations,
for volumetric bulk and surface concentrations, providing with a sound theoretical basis in order
to describe how bulk and surface diffusion are affected by adsorption and desorption processes, as
well as by catalytic conversion within the space defined by the irregular geometry of the pores of the
material. In this aspect, the theory represents a powerful generalization of the Shaphiro–Brenners’s
theory for macrotransport processes, which was formulated for regular domains and was restricted to
low concentrations. Our theoretical framework constitutes therefore a bridge between the microscopic
detail of the pore and the macroscopic measurements of the experiment, a versatility that will allow
in the future to contribute to the design of porous materials such as membranes with specifically
optimized physical-chemical properties.

Beside the virtues already mentioned and as far as we know, the present work constitutes the
first analytical approach to the study of surface diffusion in irregular porous media. The tremendous
generality of the pair of equations we have derived, Equations (16) and (29), allows to establish the
analytical expression of two coefficients widely used in the industry to determine the efficiency of
chemical reactors, namely, the mass transfer coefficient and the effectiveness factor, both of them
depending on the constriction and tortuosity of the pore. The relationships that we have established
between the geometry and these macroscopic parameters, are given through the generalized Thiele
modulus of a porous medium, as well as its relation, at the pore scale, with the effective diffusion
coefficient of a membrane, a quantity measurable in experiments. These parameters may be used to
quantify the efficiency of artificial and structured porous media, as well as in porous materials such as
some zeolites.
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Additionally, we have explained for the first time how surface diffusion increases the effectiveness
of catalysis. In practice, our study predicts how to design artificial nano-membranes based on conical
pores that optimize sieving, transfer and catalytic conversion. This allows to adjust the design of
the membrane in function of the results that the industrial applications require, which is of capital
importance nowadays, especially when the perspective on membrane 3D printing is emerging as
a very promising fabrication technique [32].

The theory we have postulated can be used as a tool for modeling the distribution and diffusivity
of particles in the bulk and on the surface of irregular pores, when the processes involved in
heterogeneous chemistry take place simultaneously. Therefore, Equations (16) and (29) constitute
a very powerful theoretical framework in the description of chemical reactors formed by membranes,
where all these processes occur simultaneously in the conversion of reactants into products through
a catalytic reaction on the surface.

The great advantage of using our theoretical framework is that the microscopic quantities
that refer to the internal detail of the flow, and the interactions within the irregular pore, can be
translated into macroscopic variables that are currently measured in experiments. This makes it of
huge practical importance.
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Appendix A

Appendix A.1 Figure 1

In order to simplify the description, in these work we have studied pores which can be reduced to
the well known two-dimensional case, whose three-dimensional equivalents are plotted in Figure 1 [21].
A two dimensional pore is constructed by two walls w1(z) and w2(z). In this case, the width and
the middle line are given by w(x) = w2(z) − w1(z) and h(z) = [w1(z) + w1(z)]/2, respectively.
The effective bulk diffusion coefficient is then given by the generalized Bradley-Zwanzig [23] diffusion
coefficient equivalent to Equation (15) in two dimensions:

D(z) =
D0

1 + h2
z(z) +

w2
z(z)
12

. (A1)

The four pores of length L = 5 plotted are obtained with the data of Table A1.

Table A1. Values of the parameters used to build the four pores used in the main text.

Label w1(z) w2(z)

Tortuous 0.2 sin
(

6πz
L

)
1− 0.2 sin

(
6πz

L

)
Winding −0.2 sin

(
6πz

L

)
1− 0.2 sin

(
6πz

L

)
Straight 0 1
Conical −m z 1 + m z

In the plotted example in Figure 1, m = 0.1.
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Appendix A.2 Figure 2

Comparison of the concentration profiles inside two different pores for pure diffusion (left)
and diffusion-adsorption (right) processes. The concentration for the tortuous (black lines) and
winding (color lines) pores which have the same effective diffusion coefficient Db(z) =

D0
1+0.19 cos2( 6πz

5 )
,

have been plotted for four different times (continuous line t = 0.0, dotted line t = 5.0, dot-dashed line
t = 10.0, dashed line t = 50.0). Left: In a first process, only bulk diffusion in the two pores is taken into
account. We solved Equation (16) with D0 = 1 and ρ̇ = 0. We plot the concentration as function of time
considering that Cb(z = 0) = 1 and Cb(z = L) = 0. As expected, the pure bulk diffusive dynamics is
essentially the same in both pores. Right: In a second process, an adsorption reaction in the surface
with rate ρ̇ = −0.05 is now included. In this case, the difference of the enhancement factor (γ = 1.3)
of the tortuous pore makes the adsorption process more effective than the winding one (γ = 1.05).
This is confirmed by the fact that less concentration of particles reaches the exit side of the pore in the
winding geometry [21].

Appendix A.3 Figure 3

The mass transfer coefficient k is the proportionality constant between the flux at the entry and the
difference of concentration between the two ends of the pore [14]. Therefore, we solve Equation (16)
for the mentioned geometries with the boundary conditions C(z = 0) = C0 = 1 and C(z = L) = 0 at
the ends of the pore, and J(z = 0) = k(C0 − 0). The reference value k0 = D0/L is obtained when there
is no adsorption, and the pore is straight. In contrast, the effectiveness factor η is the ratio between the
amount of mass entering the pore, compared with the mass that would be adsorbed if the entire pore
were exposed to the external concentration (C0 = 1).

In both cases, analytic expressions can be obtained from the reduction scheme for conical pores [16]
changing the rate of the liner adsorption in Equation (16) as ρ̇ = −κCb(z, t). The four pores can be
obtained with R(z) = 1 + mz, with m = 0.5 (red), 0.2 (orange), 0 (green) and −0.2 (blue), respectively.
The length of these pores is L = 2.

Appendix A.4 Figure 5

Langmuir adsorption dynamics inside the tortuous (black lines) and winding (color lines) pores
in the presence of surface diffusion was calculated by solving Equations (37) with D0 = 1, Ds = 0.1
and the Langmuir reaction in Equation (32) with κ̃ads = 1 and Kads = 0.3. In this caseRcat = 0 and we
use periodic boundary conditions.

The solid lines in Figure 5a,b show the long-time (equilibrium) bulk concentration Cb(x) and
diffusion current Jb(x), respectively. In the same figures, the dashed-lines show the long-time
(equilibrium) surface concentration Cs(x) and diffusion current Js(x). The dotted-lines in Figure 5a,b
represent the long-time (equilibrium) total concentration Ct = Cb + Cs and current Jt = Jb + Js.
Black lines correspond to the tortuous pore, color lines to the winding pore. In Figure 5c we show
the coverage fraction θ = Cs/C0

s , with C0
s = 1 for the tortuous (black lines) and the winding (red

lines) pores.
The adsorbed particles tend to segregate producing an accumulation in the wider regions of the

pore. As it can be seen, the different diffusivities in the bulk and in the surface particles can generate
internal fluxes inside the pore, since surface and bulk particles tend to move to the narrower and wider
parts of the pore, respectively. As it is expected, this effect is more visible in the tortuous pore than in
the winding one, where both concentrations are nearly homogeneous [31].

Appendix A.5 Figure 7

Evaluation of the heterogeneous catalysis process described in Equations (37) and (38) for the
tortuous (upper row) and sinuous (bottom row) pores with flow of A entering by the left to the pore
[CA

b (z = 0) = 1, CA
b (z = L) = 0], null concentration of B at the exterior [CB

b (z = 0) = CB
b (z = L) = 0],
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and no surface concentration of B or A [CA
s (z = 0) = CA

s (z = L) = CB
s (z = 0) = CB

s (z = L) = 0].
The bulk and diffusion coefficients are D0 = 1 and Ds = 0.1. The coefficients of the different reactions
in Equations (32) , (34) and (36) are κ̃ads = κ̃cat = κ̃des = 1, Kads = Kdes = 0.3, and Kcat = 0.3.
The position of the active sites in the reduced scheme is controlled by the function f (z) which is zero
almost everywhere, except in the points zi indicated by the dashed lines in the Figure. The comparison
is done among the active sites at the gray gridlines located at: {zi} = { 5

12 , 25
12 , 15

4 } (black lines), and
those located at the orange gridlines defined by: {zi} = { 5

4 , 35
12 , 55

12}.
The pore and the respective position of the active sites is given in the first row of this figure.

Figure 7a (tortuous) and c (sinuous) show the surface steady-state concentrations of A, B [AS (dotted
lines) and BS (dashed lines)] as well as the total one concentration obtained in each case [SC (solid
lines)]. It is confirmed the increase of particles B near the active sites of catalysis. The Figure 7b
(tortuous) and d (sinuous) show the flux of A (in bulk and surface entering the pore), and the flux
of B exiting the pore. From this model study it follows that the active sites near the throats (orange
grid lines) increase the conversion process in the tortuous pore, since more particles of A are being
converted into B [31]. Surface flow behavior is more sensitive on the position of the active sites for the
tortuous pore than for the sinuous one.

Appendix A.6 Figure 8

We simulate the diffusion and adsorption processes given by Equations (37), with a Langmuir
adsorption in Equation (32) in the winding, straight and tortuous pores depicted below. In each
case, the different lines correspond to different times, showing the filling process with boundary
conditions Ct(z = 0) = Ct(z = L) = 1. The dashed lines depict the internal concentration by using
the microscopic approach, provided by the reduced model we present in Equations (16) and (29).
The parameters used were D0 = 1, κ̃ads = 0.1, Kads = 1. In the upper row Ds = 0, and in the bottom one
Ds = 1. The solid lines represent the macroscopic approach as the result of using the most elemental
one dimensional diffusion Equation (12) with the same boundary conditions, and using the effective
diffusion coefficient Dm as predicted by Equation (39) in Ref. [18]. As it can bee seen, the results
derived from all the microscopical details are well captured by the macroscopic diffusion coefficient.

Appendix A.7 Figure 9

Breakthrough curves obtained from solving Equation (16) for a simple linear adsorption process
given by ρ̇ = −raCb(z) with ra the adsorption rate and D0 the diffusion coefficient. The pores
considered are the winding (black lines) and tortuous (colour lines) pores with length L = 5.
The boundary conditions consist of fluid entering at the left (Cb(z = 0) = 1), and exiting at the
right (Cb(z = L) = 0). The values of the constants (in arbitrary units) were ra = 0 and D0 = 1 for
the solid lines, ra = 0.1 and D0 = 0.75 for the dashed lines, ra = 0.4 and D0 = 0.5 for the dotted
lines, and ra = 1.0 and D0 = 0.1 for the dash-dotted lines. In order to obtain the breakthrough
curve, the temporal increasing of the concentration is measured at z = 4.5. Our theory predicts that
a small difference on the slope of these curves can be the result of purely geometrical changes, and the
constriction and sinuosity of the pores can be reflected in this type of curves. [16].

Appendix A.8 Figure 10

Curves measuring the effective diffusion coefficient Dm as a function of the loading. Each point
in these plots corresponds to the solution of Equations (37), for the geometry and surface diffusion
coefficient indicated. The fixed parameters are D0 = 1 and κ̃ads = 0.1. For the horizontal axis, the
changes in the average loading 〈θ(X)〉X are obtained by averaging the surface concentration along the
domain. Each point corresponds to a different value of Kads which modifies the adsorption process
and the amount of particles attached to the surface. For the vertical axis, the changes in Kads modify
the ratio of adsorption λ, changing the effective diffusion coefficient in the local scale in Equation (42)
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and, therefore modifying Dm/D0 in Equation (40). For the represented case, the rate Kads was varied
between 0.01 and 1 approximately.

As it is expected, the tortuous geometry decreases the effective diffusion coefficient respect to the
straight pore, whereas the winding pore constitutes a middle case. Be aware how the surface diffusion
augments the transport properties of the pore. Therefore, our theoretical framework allows us to
estimate some qualitative aspects of a membrane, when taking as reference one with straight pores [18].
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