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Abstract: In this paper, a heterogeneous composite catalyst Cu2O/(001)TiO2 was prepared by the
impregnation-reduction method. The crystal form, highly active facet content, morphology, optical
properties, and the photogenerated electron-hole recombination rate of the as-prepared catalysts were
investigated. The performance of Cu2O/(001)TiO2 was appraised by photocatalytic degradation of
ammonia under sunlight and was compared with lone P25, Cu2O, and (001)TiO2 at the same reaction
conditions. The results showed that 80% of the ammonia concentration (120 ± 3 ppm) was removed
by Cu2O/(001)TiO2, which was a higher degradation rate than that of pure P25 (12%), Cu2O (12%),
and (001)TiO2 (15%) during 120 min of reaction time. The reason may be due to the compound’s
(Cu2O/(001)TiO2) highly active (001) facets content that increased by 8.2% and the band gap width
decreasing by 1.02 eV. It was also found that the air flow impacts the photocatalytic degradation
of ammonia. Therefore, learning how to maintain the degradation effect of Cu2O/(001)TiO2 with
ammonia will be important in future practical applications.
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1. Introduction

Ammonia is an important precursor of fine particulate matter PM2.5 in the atmosphere and
promotes the formation of haze. China has been the one of largest ammonia emitters in the world [1].
An investigation of the NH3 emission sources and contribution rate in 2006 shows that the total
ammonia emissions of China are 980 t/a, more than 96% and 45% of Europe and the USA, respectively,
and contributes to global and Asian emissions by approximately 15% and 35%, respectively; of
which, livestock manure accounts for approximately 54% of the total emissions [2]. In terms of the
global ammonia emissions, animal husbandry is clearly the major contributor for ammonia pollution,
as it accounts for 70.9% of the total [3]. The ammonia from animal husbandry may not only cause
global climate change, but can also bring disease in animals and humans, such as paralysis centralis,
endobronchitis, and others [4]. Therefore, strengthening the control of ammonia pollution of animal
husbandry has become an important task for agricultural, non-point source pollution treatment
in China.
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In the past, livestock farms adopted traditional physical methods of adsorption and ventilation
to eliminate the ammonia generated in livestock and poultry houses [5]. Although these methods
can decrease the release concentration of ammonia over time, they cannot reduce the total amount
of ammonia emissions and may aggravate the secondary ammonia pollution of the environment.
With more exacting livestock air quality requirements from public authorities, some large-scale
livestock farms have tried to erect biological exhaust air cleaning facilities to reduce ammonia, dust,
and odor emissions, so that they can get a license to build livestock houses close to small towns or
near farming households. Biological filters can clean NH3 emissions effectively, but limitations still
exist, such as unstable operation and high replacement costs [6]; the end result is that most livestock
farm ammonia emissions are not eliminated at all. Therefore, it is very important to develop a stable
and efficient degradation material to deal with the air pollution from livestock farms.

As an ideal semiconductor photocatalytic material, titanium dioxide was discovered to be able
to photodissociate water under ultraviolet irradiation by Fujishima in 1972 [7]. Since then, it has
become a promising photocatalyst because of its good chemical stability, safety, non-toxicity, strong
redox ability, and so on, and has been widely used in environmental control [8–12], exploitation of
energy resources [13,14], bioengineering [15], self-cleaning material [16], anti-microbial [17], sensor [18],
and other fields. In recent years, TiO2 was used as pigment coating to reduce ammonia emissions
under ultraviolet light [19,20], with a 90% conversion efficiency of 200 ppm NH3 converted into N2

at high temperature (673 K) [21]. In the reaction process, the degradation product of NH3 is mainly
N2, with N2O, NO2

−, and NO3
− by-products [22,23]. However, TiO2 can only respond to high energy

ultraviolet light due to its wide band gap (3.2 eV) [24], which makes the utilization ratio of TiO2

very low under sunlight with low ultraviolet content in the solar spectrum [25]. Meanwhile, the high
photogenerated electron-hole recombination rate of TiO2 leads to its catalytic activity [26]. All of
these considerations contribute to serious obstacles to TiO2 application in practice. To overcome these
shortcomings, much research has been attempted to improve the performance of TiO2 by adjusting
the exposure ratio of its highly active surface or combining the material with other semiconductors.
Adjusting the (001) facets ratio of TiO2 (anatase) has been reported to be a efficiency way to improve
the photocatalytic efficiency (Keyue Wu, [27]), but most of the available anatase crystals are primary
composed of thermodynamic stable (101) surfaces [28], whose surface energy (0.44 J/m2) is much
smaller than the (001) surface (0.90 J/m2) [29]. Another helpful way to facilitate charge separation
and improve degradation performance is coupling with other semiconductors (C3N4 [30], PbS [31],
WO3 [32], Cu2O [33], CdS [34], and others) with small band gaps; this can not only enhance the spectral
response, but also transfer photogenerated electrons from one reporter to another. Among these
semiconductors with small band gaps, the oxides of copper (CuxO) are fascinating materials due to
their remarkable optical, electrical, thermal, and magnetic properties [35], among the CuxO, Cu2O has
the advantages of simple preparation processes, low raw material price, environmental friendliness,
and a good response in the visible range. Compared with other transition metal oxides, Cu2O is a
promising green catalyst for environmental protection. As a p-type direct semiconductor [36], Cu2O
can be coupled with n-type semiconductor TiO2 into a heterostructure. This heterostructure displays
much better performance than the single material and is widely used for decomposing water [37],
solar cells [38], and degrading pollutants [39]. At the same time, some interesting materials also
need our attention. Syed et al. [40] synthesized α-Ga2O3 by a sonication-assisted method, which has
excellent photocatalytic activity is observed under solar light irradiation with an energy bandgap
reduction, due to the presence of trap states, which are located at about 1.65 eV under the conduction
band minimum. Datta et al. [41] synthesized 2D α-MoO3−x nanosheets structural with defects and
oxygen vacancies in the planar construction of molybdenum oxide nanosheets significantly increase
the active sites of the catalyst, which act as key factors to promote the hydrogen evolution reaction
(HER) performance.

In this paper, a heterogeneous composite catalyst Cu2O/(001)TiO2 was prepared by the
impregnation-reduction method and was used to degrade ammonia in a livestock house under



Catalysts 2019, 9, 267 3 of 18

sunlight for the first time, so as to realize the efficient utilization of solar energy and offer an efficient
degradation material for the field of animal husbandry.

2. Results and Discussion

2.1. Morphology Analysis of Carrier (Polyester Fiber)

Figure 1 is a scanning electron microscope (SEM) view of the carrier (polyester fiber). It can be seen
from the diagram that the carrier is folded by a lot of filaments into an interlaced three-dimensional
structure, which can provide a large number of adhesion points to the catalysts.
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Figure 1. SEM image of the carrier.

2.2. X-ray Diffraction of Catalysts

Figure 2a showed the characteristic peaks of the prepared (001) TiO2 catalyst at 2θ = 25.28,
37.80, 48.04, 53.89, 55.06, 62.68, 70.31, 75.03 corresponding to (101), (004), (200), (105), (211), (204),
(220), and (215) crystal facets, respectively, almost the same as the anatase TiO2 (JCPDS no.21-1272)
standard card [42]. The characteristic peaks of Cu2O appeared at 2θ = 29.63, 36.50, 42.40, 52.58,
61.52, 73.70, and 77.57, corresponding to (110), (111), (200), (211), (220), (311), and (222) crystal
facets, almost in accordance with the standard card of Cu2O (JCPDS no.65-3288) [43]. The composite
catalyst Cu2O/(001)TiO2 showed obvious characteristic peaks at 2θ = 25.28, 37.80, 48.04, 55.06,
62.68, corresponding to (101), (004), (200), (211), and (204) crystal facets, respectively, basically
consistent with anatase TiO2. The composite catalyst Cu2O/(001)TiO2 showed obvious characteristic
peaks at 2θ = 29.63, 42.40, 52.58, 61.52, 73.70, 77.57, corresponding to (110), (200), (211), (220), (311),
and (222) crystal facets, almost in accordance with the standard card of Cu2O. The composite catalyst
Cu2O/(001)TiO2 showed weak characteristic peaks at 2θ = 32.62, 38.73, 48.82, corresponding to
(110), (111), (202) crystal facets, respectively, almost in accordance with the standard card of CuO
(JCPDS no.89-5895). The composite catalyst Cu2O/(001)TiO2 showed the characteristic peak around
at 2θ = 43.29, maybe corresponding to (111) crystal facet of Cu (JCPDS no.04-0836). From Figure 2b,
it can be seen that there was no S element in the Cu2O/(001)TiO2 composite, which indicated that
the reaction was sufficient and CuSO4 was not contained in the product. In summary, the prepared
composite catalyst Cu2O/(001)TiO2 contains CuO and may also contain Cu.



Catalysts 2019, 9, 267 4 of 18Catalysts 2019, 9, x FOR PEER REVIEW 4 of 18 

 

 

 

(a) (b) 

Figure 2. (a) XRD patterns of Cu2O, TiO2, and Cu2O/(001)TiO2; (b) EDS patterns of Cu2O/(001)TiO2. 

2.3. Crystal Facet Analysis of Catalysts 

Figure 3a contains spacings of d = 0.352 nm and d = 0.235 nm, corresponding to the (101) and 
(001) facets of TiO2, respectively [44]. This shows that the prepared TiO2 has the high activity (001) 
facets. The Figure 3b shows d = 0.235 nm and d = 0.245 nm spacings, corresponding to the (001) facets 
of TiO2 and the (111) surface of Cu2O, respectively [45], which shows that the prepared composite 
catalyst contains the high activity (001) facets. 

 
Figure 3. HRTEM images of the catalysts. (a) (001)TiO2; (b) Cu2O/(001) TiO2. 

2.4. Raman Analysis of Catalysts 
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A1g. The ratio of peak strength at A1g to peak strength at Eg is the (001) exposure ratio of crystal 
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Figure 2. (a) XRD patterns of Cu2O, TiO2, and Cu2O/(001)TiO2; (b) EDS patterns of Cu2O/(001)TiO2.

2.3. Crystal Facet Analysis of Catalysts

Figure 3a contains spacings of d = 0.352 nm and d = 0.235 nm, corresponding to the (101) and
(001) facets of TiO2, respectively [44]. This shows that the prepared TiO2 has the high activity (001)
facets. The Figure 3b shows d = 0.235 nm and d = 0.245 nm spacings, corresponding to the (001) facets
of TiO2 and the (111) surface of Cu2O, respectively [45], which shows that the prepared composite
catalyst contains the high activity (001) facets.
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2.4. Raman Analysis of Catalysts

It can be seen in Figure 4. The peak at 144 cm−1 was marked as Eg and 514 cm−1 was marked as
A1g. The ratio of peak strength at A1g to peak strength at Eg is the (001) exposure ratio of crystal facets.
The calculated (001) facet content of prepared TiO2 is I(101)/I(004) = 29% [46], which is significantly
lower than that of the compounded, calculated to be I(101)/I(004) = 37%. The reasons for this may be
as follows:

CuSO4 + 2NaOH = Cu(OH)2 ↓ + Na2SO4 (1)
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2Cu(OH)2+ C5H11O5−CHO→ C5H11O5−COOH + Cu2O ↓ + 2H2O (2)

In the experiment, the amounts of CuSO4 and NaOH were 4.99 g and 4 g, respectively. Through the
calculation of Reaction (1), it was found that the amount of NaOH is excessive. Assuming that
all excessive sodium hydroxide existed in the whole system, the concentration range is about
0.197–0.317 mol/L. In the process of adding glucose drop by drop, the concentration of NaOH was
also decreasing gradually. It was found that NaOH and (001)TiO2 not only increased the content of
(001) facets, but also changed the morphology of the catalysts, which was consistent with the results of
Hou et al. [47].
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2.5. Catalyst Morphology Analysis

Figure 5 shows the SEM morphology images of the catalysts. From Figure 5a, it can be seen that the
prepared Cu2O crystals have no obvious agglomeration phenomenon and the size is basically uniform.
Figure 5b reveals a smooth, spherical surface; Figure 5c displays a slight agglomeration of (001)TiO2,
which forms an irregular spherical shape by extrusion. Figure 5d exhibits a flat sphere with concave
and convex surfaces; Figure 5e,f shows that the prepared Cu2O/(001)TiO2 has uniform dispersion and
different sizes; the composite (001)TiO2 was no longer a crushed sphere with a rough surface, but a
crushed sphere. This is due to the influence of residual sodium hydroxide. Raman analysis in this
experiment showed that excess sodium hydroxide was present, which indicates that the conjecture is
correct. The composite Cu2O was no longer globular, but flaky. This may be due to the influence of
(001)TiO2 on the Cu+1 crystal nucleus adhering to the (001)TiO2 surface during in situ growth, which
cannot grow in the same way as before. This resulted in the growth of new pancake-like catalysts; the
new morphology can provide a better place for the separation of photogenerated carriers.
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Figure 5. SEM images of the catalysts. (a,b) Cu2O; (c,d) (001)TiO2; (e,f) Cu2O/(001)TiO2.

2.6. Optical Characterization and Band Gap Energy

Figure 6a showed the UV-Vis absorption spectra of the catalysts. We found that the absorption of
(001)TiO2 is slightly stronger than that of Cu2O/(001)TiO2 in the range of 200–328 nm, while in the
range of 328–800 nm, the absorption enhancement of the composite catalyst Cu2O/(001)TiO2 is much
stronger than that of the (001)TiO2, which indicated that Cu2O/(001)TiO2 has strong light absorption
ability mainly in the visible range. The Diffuse Reflectance Spectra (DRS) of the catalysts were measured
and shown in Figure 6b, which is useful to study the optical properties of the materials and the band
gap. From the DRS spectra is possible the determination of Eg by applying the Kubelka–Munk method
using the following equations (Equations (3) and (4)) [48]:

F(R) = (1 − R)2/2R (3)

(hvF)~(hv − Eg)2 (4)

where, F is the Kubelka–Munk function, R is the reflectance, hv is the photon energy, and Eg is the
band gap. By plotting (hvF)1/2 for indirect allowed transitions versus hv, the Eg of the semiconductor
samples can be obtained. The energy bang gap of the different samples can be calculated by the linear
fit of the curve reported in the Figure 6c and the Eg values are determined by the intercept in the
x-axis. Reported in Table 1 are the band gap energy values of the different samples calculated with the
Kubelka–Munk method.
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Table 1. The band gap energy values of the different samples.

Samples Eg (eV)

Cu2O 2.12
(001)TiO2 2.68

Cu2O/(001)TiO2 3.14

The band gaps of Cu2O, (001)TiO2, and Cu2O/(001)TiO2 are 2.12, 2.68, and 3.14 eV, respectively,
which indicates that the composite Cu2O/(001)TiO2 is more easily excited than the single (001)TiO2,
which enhanced its activity.

2.7. XPS Analysis of Catalyst

The elements and valence states of Cu2O/(001)TiO2 were analyzed by XPS, as shown in Figure 7a.
A survey spectra of Cu2O/(001) TiO2 is seen, which contains information on C 1s, Ti 2p, O 1s, F 1s,
and Cu 2p. Figure 7b showed that the binding energies for Ti 2p 3/2 and Ti 2p 1/2 are 458.90 and
464.59 eV, respectively, because Ti existed in the structure as Ti4+ [49,50], which was favorable for charge
transfer between TiO2 and Cu2O. Figure 7c showed two characteristic peaks of O 1S in Cu2O/(001)TiO2,
lattice oxygen of catalysts at 530.11 eV, and water molecules adsorbed on the catalyst surface at
532.64 eV [51,52]. Figure 7d showed peaks near 932.90 and 952.77 eV, which are characteristic of
Cu+1 [53,54].
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Figure 7. XPS spectra of the as-prepared Cu2O/(001)TiO2 sample: (a) survey spectrum, (b) Ti 2p
spectrum, (c) O 1s spectrum and (d) Cu 2p spectrum.

2.8. Fluorescent Analysis of Catalysts

Fluorescence spectra were used to characterize the photogenerated electron-hole combination of the
photocatalysts. The higher the photogenerated electron-hole binding law, the stronger the fluorescence
intensity [55]. It can be seen from Figure 8 that the photogenerated electrons and photogenerated holes of
(001)TiO2 were greatly reduced after the introduction of Cu2O composite, which significantly improved
the degradation efficiency of the catalyst during the degradation process [56].
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2.9. Compound Mechanism of Cu2O/(001)TiO2

We will explore the reasons for the improvement of photocatalytic performance by discussing the
compound material mechanism. The conduction band position of semiconductor can be calculated by
empirical formula [57]:

ECB = χ − Ec− Eg/2
EVB = ECB + Eg

where, ECB is the conduction band energy of semiconductors, χ is the geometric average of the absolute
electronegativity of atoms in semiconductors, Ec is a constant relative to the standard hydrogen
electrode (4.5 eV), Eg is the band gap width of semiconductors, and EVB is the valence band energy of
semiconductors. The χ values of (001)TiO2 and Cu2O are about 5.86 and 5.33 eV, respectively.

The Eg values of (001)TiO2 and Cu2O were 3.14 and 2.12 eV, the ECB values of (001)TiO2 and Cu2O
were −0.21 and −0.23 eV, and the EVB values were 2.93 and 1 eV, respectively, as shown in Figure 9a.
Therefore, the electron transfer took place from the p-type semiconductor Cu2O onto the surface of
n-type semiconductor (001)TiO2, which is helpful for the separation of light carriers and the catalytic
performance of the composite catalyst, since EF of Cu2O and (001)TiO2 have differences in energy
before and after catalyst contact. When p-type semiconductor contacts with n-type semiconductor,
since the carriers type and concentration are different on both sides of the contact surface, the holes in
the p-region are diffused toward the n-region, and the electrons in the n-region are also diffused into
the p-region. This results in a decrease in the hole concentration on the side of the p-region near the
interface, and a decrease in the electron concentration on the side of the n-region near the interface,
so that there are almost no carriers that can move at the interface. Therefore, a positive space charge
is generated in the n-region, and a negative space charge is generated in the p-region. These space
charges form a self-built electric field near the interface, and the electric field direction points from
the n-region to the p-region. Under the action of this electric field, under the action of this electric
field, the carrier will drift and its direction is exactly opposite to the diffusion flow. The self-built
electric field makes part of the holes entered the n-region return to the p-region, part of the electrons
entered the p-region return to the n-region, and finally the diffusion flow and the drift flow reach an
equilibrium state, and generally there is no macroscopic flow of carriers, as shown in Figure 9c. If there
have no external electric field on either side of the p-n junction, then the entire system Fermi level
should be the same. However, the existence of the space charge region will cause a self-built electric
field in the vicinity of the interface, so that there is a potential difference near the p–n junction region,
which eventually causes the energy band to bend, as shown in Figure 9b [58].
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2.10. Degradation of Ammonia by the Catalysts

2.10.1. Controlled Test of Catalyst Carrier (Polyester Fiber Carrier)

The control experiment was conducted on the blank polyester fiber carrier (PET) that was not
loaded with any photocatalyst; the absorptive photocatalytic efficiency of the blank PET on ammonia
was measured in the presence or absence of light (Figure 10) within 120 min. Under the conditions
of both dark and light, the degradation efficiency of the PET carrier on ammonia were 8% ± 1%
respectively and the efficiency is not obviously improved, which means that the carrier of the PET
itself hardly occurs photolysis. At the same time, the degradation rate of light is slightly lower than
that of no light. It is possible that the temperature produced by light affects the stability of the gas.
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2.10.2. Degradation of Ammonia by Different Catalysts

As can be seen from Figure 11, the degradation rates of ammonia by single P25, Cu2O,
and (001)TiO2 continued to decline in the first 30 min until about 15% ± 2%. This may be due
to the fact that the sunlight itself is not pure ultraviolet light, so that the number of active sites can be
activated may be relatively less. This means that many ammonia molecules were brought to the tail gas
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treatment area without contact with the catalyst. The degradation rate of ammonia by the composite
catalyst Cu2O/(001)TiO2 maintained above 80% in the first 90 min, but decreased significantly in
90–120 min. This may be due to photocorrosion. Overall, the degradation effect of the composite
catalyst was better than that of the single catalysts P25, Cu2O, and (001)TiO2.
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2.10.3. Degradation of Ammonia by Air Flow Rate

In the process of photocatalytic reaction of ammonia, the final reaction is carried out on the surface
of photocatalyst, which generally undergoes the following continuous processes: ammonia diffuses to
the surface of photocatalytic material; ammonia diffuses from the outer surface to the inner surface
of the catalyst; ammonia molecules are adsorbed on the catalyst material; the adsorbed ammonia
undergoes photocatalytic reaction; the products produced after photocatalytic reaction are desorbed
from the surface of the catalyst; the products diffuse from the surface of the material to the outside
surface; and the products desorb from the outside surface of the material to the air.

As can be seen from Figure 12, the air flow rate was varied between 0.5 min/L, 1 min/L,
and 2 min/L. In this experiment, when other initial conditions were the same and the gas flow
rate was gradually increased, the probability of ammonia adsorbed by the material decreases in unit
time, the residence time on the catalyst surface was shortened, only NH3 adsorbed on the catalyst
surface can be degraded, so the photocatalytic reaction was insufficient, and ultimately the degradation
efficiency is reduced. Therefore, in the photocatalytic degradation of ammonia, it is very important to
control the appropriate air flow rate.
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2.10.4. Catalyst Reutilization Performance

As can be seen from Figure 13, the degradation rate of ammonia can be maintained at about 60%
after three times of use, but the degradation effect will become worse as the number of times of use
increases. This was because there was a loss of catalyst for each repeated use.
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3. Materials and Methods

3.1. Materials

Butyl titanate, anhydrous glucose, sodium hydroxide (AR, Chengdu Kelong Chemical Reagent
Factory, Chengdu, China), anhydrous ethanol (AR, Chongqing East Sichuan Chemical Co., Ltd.,
Chongqing, China), hydrofluoric acid (AR, Sichuan Xilong Chemical Co., Ltd., Chongqing, China),
anhydrous copper sulfate (AR, Tianjin Da Mao Chemical Reagent Factory, Tianjin, China) and P25
(Degussa, Qingdao, China).

3.2. Preparation of (001)TiO2 Catalyst

Anhydrous ethanol (15.20 mL) was slowly added to 17.60 mL of butyl titanate and stirred until
the solution was well distributed (designated solution A). Then, 15.20 mL of absolute ethanol was
slowly added to 90 mL of ultra-pure water; 6 mL of hydrofluoric acid was then added to this solution
(designated solution B). Next, the A solution was added to the B solution and was stirred under
medium speed at room temperature for 2 h; the TiO2 gel was allowed to sit for 2 days and then
moved to a stainless-steel reactor containing a PTFE inner container at 100 ◦C for 2 h. After cooling,
the precipitates were separated and washed alternately with ultra-pure water and absolute ethanol
for three times, drying in a 100 ◦C drying oven. After completion of a grinding process, the obtained
powder was marked as (001)TiO2.

3.3. Preparation of Cu2O/(001)TiO2 Catalyst

CuSO4 (4.99 g) was weighed and dispersed in 100 mL distilled water. Then, 12.48 g (001)TiO2

was added to form a mixture. Ultrasound was used for 20 min. NaOH (4 g) was dissolved in 20 mL
of distilled water; glucose (7.5 g) was dissolved in 75 mL of distilled water; then, the dissolved
sodium hydroxide solution was added to the mixture of CuSO4 and (001)TiO2 dropwise, forming a
blue precipitate. Then, the glucose solution was placed on a constant temperature magnetic stirrer
and stirred continuously until the solution was heated to 34 ◦C. The heated glucose solution was
added to the blue precipitation solution dropwise; then, the mixed solution was placed on a constant
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temperature magnetic stirrer and was stirred continuously, heated, and reacted until the solution
reached 70 ◦C, and kept for 15 min at that temperature. During the whole process, the solution
gradually changed from blue to dark green. Eventually, a brick-red precipitate appeared. The brick-red
precipitate solution was centrifuged and then washed repeatedly with deionized water for three times.
The brick-red substance was obtained by drying at 60 ◦C. Cu2O/(001)TiO2 was obtained by grinding
the brick-red substance into powder.

3.4. Catalyst Powder Loading

In order to prevent the powder catalyst from blowing away, polyester fiber cotton was used as a
carrier; this material has good light transmittance, is light-weight, and is easy to operate. The cotton
was treated with 5 mol/L NaOH for 2 h, was washed repeatedly with deionized water until its pH
was neutral, and was dried in a blast drying oven at 60 ◦C.

Before the catalysts from Sections 2.2 and 2.3 were dried, the treated carriers were put into the
washed catalysts solution, ran at a medium speed for 4 h in an oscillator, and were removed and dried
in a blast drying chamber at 60 ◦C.

3.5. Catalyst Characterization

The crystal phase characteristics of the catalysts were measured by X-ray diffractometry (XRD,
D8 Advance, Bruker, Rheinstetten, Germany) with Cu Kαradiation (λ = 0.154 nm) under 40 kV at a
scan speed of 6◦/min. The optical properties of the catalysts were characterized with a UV-Vis
spectrophotometer (UV-Vis, U-3010, Hitachi, Tokyo, Japan). The detailed lattice spacing of the
as-synthesized samples was evaluated by a high-resolution transmission electron microscope (HRTEM,
Tecnai G2 F20, FEI, Hillsboro, OR, USA). The crystal facet contents of the catalysts were analyzed by
using Raman spectroscopy (Raman, LabRAM XploRA INV, Horiba, France). The morphology of the
catalysts was observed by a field-emission scanning electron microscope (FE-SEM, Inspect F50, Thermo
Fisher Scientific, Waltham, USA) with an accelerating voltage of 25 kV. The elemental composition and
element valence state of samples were analyzed by X-ray photoelectron spectroscopy (XPS, EscaLab
250Xi, Thermo Fisher Scientific, Waltham, USA). The photoelectron hole recombination of samples
was evaluated by Photoluminescence emission spectra (PL, F-2700, Hitachi, Tokyo, Japan).

3.6. Experimental Equipment of Photocatalytic Ammonia Gas

As shown in Figure 14. A small air pump with a measuring range of 0–3 L/min was used as the
source of air. The air from the air pump became clean air after being treated with activated carbon and
silica gel; this clean air sent ammonia vaporized from ammonia water to the photocatalytic reaction
chamber. The sampling inlet and sampling outlet were set before and after the photocatalytic reaction
chamber, respectively, which were connected to the inlet and outlet of an INNOVA continuous detector
to reflect the changes of concentration in the whole photocatalytic process. In the photocatalytic
reaction chamber, a 300 W xenon lamp was used to simulate sunlight and a condensing reflux tube
was installed outside the light source to reduce the influence of a large amount of heat generated
by the light source on the experimental results; the remaining tail gas passed through the tail gas
treatment device. The photocatalytic reaction tube was made of a quartz tube with a length of 6 cm,
an outer diameter of 3 cm, and an inner diameter of 2.7 cm. The average load of the catalysts was
0.18 g. The remaining tail gas was treated by the tail gas treatment device.
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There are two test ports before and after the reaction tube for ammonia degradation, namely,
the sample intake and sample outtake, which are connected to INNOVA’s intake and outtake,
respectively. INNOVA is an instrument for continuously detecting ammonia concentration changes
online. The degradation rate at this moment is as follows:

The degradation rate (%) =
Cin − Cout

Cin
× 100%

where, Cin is the ammonia concentration at the inlet and Cout is the concentration of ammonia after the
photocatalytic reaction.

3.7. Photocatalytic Test

3.7.1. Controlled Test of Catalyst Carrier (Polyester Fiber)

The blank polyester fiber without any catalyst was placed in the sealed reactor. The temperature
of the reactor was about 18 ◦C. The ammonia concentration was 120 ± 3 ppm, the air flow rate was
0.5 L/min, and the 300 W xenon lamp was used as the light source for the photocatalytic reaction.

3.7.2. Degradation of Ammonia by Different Catalysts

The polyester fibers loaded with P25, Cu2O, (001)TiO2, Cu2O/(001)TiO2 were placed in the sealed
reactor. The temperature of the reactor was about 18 ◦C. The ammonia concentration was 120 ±
3 ppm, the air flow rate was 0.5 L/min, and the 300 W xenon lamp was used as the light source for the
photocatalytic reaction.

3.7.3. Degradation of Ammonia by Air Flow Rate

The polyester fibers loaded with Cu2O/(001)TiO2 was placed in the sealed reactor.
The temperature of the reactor was about 18 ◦C. The ammonia concentration was 120 ± 3 ppm,
the air flow rate were 0.5, 1, 2 L/min, separately, and the 300 W xenon lamp was used as the light
source for the photocatalytic reaction.
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3.7.4. Catalyst Reutilization Performance

The polyester fibers loaded with Cu2O/(001)TiO2 was placed in the sealed reactor. The temperature of
the reactor was about 18 ◦C. The ammonia concentration was 120± 3 ppm, the air flow rate was 0.5 L/min,
and the 300 W xenon lamp was used as the light source for the photocatalytic reaction, after the reaction,
the carrier was removed and baked at 70 ◦C for 30 min for the next reaction.

4. Conclusions

In this paper, the preparation of (001)TiO2 by the sol-gel method has been achieved and a
heterogeneous structure of Cu2O/(001)TiO2 has been prepared by the impregnation-reduction method.
XRD, SEM, PL, and other characterizations can confirm that Cu2O and (001)TiO2 were successfully
compounded together. XPS can confirm that Cu was present in the form of Cu+1. The composite
catalyst not only absorbed strongly in the visible light range, but also can be easily excited because of
its small band gap, which made up for the shortcoming of low utilization of solar light by single TiO2.
The results showed that the effect of Cu2O/(001)TiO2 composite catalyst on ammonia degradation
is obviously better than that of single P25, Cu2O, and (001)TiO2. We also found that air flow has a
very important impact in the whole photocatalytic ammonia gas. However, a great deal of dust in the
colonies, preventing catalyst loss, and light corrosion are challenges that were present in this work.
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