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Abstract: A novel approximate solution for catalyst effectiveness factors is presented. It is based on 

carefully selected approximate reaction rate profiles, instead of typical assumption of composition 

profiles inside the catalyst. This formulation allows analytical solution of the approximate model, 

leading to a very simple iterative solution for effectiveness factor for general nonlinear reaction 

stoichiometry and arbitrary catalyst particle shape. The same model can be used with all practical 

Thiele modulus values, including multicomponent systems with inert compounds. Furthermore, 

the correct formulation of the underlying physical model equation is discussed. It is shown that an 

incorrect but often-used model formulation where convective mass transfer has been neglected may 

lead to much higher errors than the present approximation. Even with a correctly formulated 

physical model, rigorous discretization of the catalyst particle volume may have unexpectedly high 

numerical errors, even exceeding those with the present approximate solution. The proposed 

approximate solution was tested with a number of examples. The first was an equimolar reaction 

with first order kinetics, for which analytical solutions are available for the standard catalyst particle 

geometries (slab, long cylinder, and sphere). Then, the method was tested with a second order 

reaction in three cases: 1) with one pure reactant, 2) with inert present, and 3) with two reactants 

and non-stoichiometric surface concentrations. Finally, the method was tested with an industrially 

relevant catalytic toluene hydrogenation including Maxwell-Stefan formulation for the diffusion 

fluxes. In all the tested systems, the results were practically identical when compared to the 

analytical solutions or rigorous finite volume solution of the same problem. 
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1. Introduction 

Calculation of effectiveness factors for catalyst particles is one of the most classical problems in 

Chemical Reaction Engineering [1-4]. It combines reaction kinetics with transport phenomena in a 

nonlinear manner, making the solution far from trivial [5-7]. On one hand, catalyst development aims 

towards increasingly active catalysts, but on the other hand, relatively large catalyst particles are 

desired to minimize pressure drop in fixed beds or enhance catalyst separation in slurry reactors. 

These two desires lead to situations, where reaction rates near catalyst surface will be very different 

from that inside the particles. Therefore, it cannot be foreseen that this problem loses its importance. 

Numerical solution of precise composition and reaction rate profiles in catalyst particles is in 

principle rather straightforward with current computational resources, even when combined with 

full reactor models [8], although calculation of effectiveness factors with very high precision is more 

challenging than often appreciated. When combined with identification of reaction kinetic 

parameters, process flowsheet optimization, or model based process control, computational effort 

becomes an important issue. There are always competing interests for increasing process model 

sophistication. Whenever the full process model can be solved with sufficient accuracy but with 
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reduced computational effort, more details can be included elsewhere to improve the overall 

predictive power of the model. 

Although mutual interactions between diffusion and reaction are traditionally addressed, 

another mass transfer mechanism, namely convection, is more often than not forgotten from the 

problem formulation, although its importance has been addressed in some very classical textbooks 

and publications [1,4,9]. Moreover, most of the numerical approximations found from the literature 

were based on physical models neglecting convective mass transfer [10–17]. This leads to a situation 

where the resulting error is not only due to mathematical approximation of the underlying 

differential equation (which is typically minimized by elegant mathematical manipulations), but in 

the reaction-diffusion model itself, which does not take into account all the relevant physical 

phenomena. The latter error can be much higher than the numerical approximation error. 

In the classical numerical solutions found in the literature, the reaction rate is usually considered 

to depend on the concentration of one component only. Furthermore, these solutions are often 

kinetics-dependent, i.e., the order of reaction needs to be explicitly stated before applying the method 

[7,10,18]. However, in reactive systems, the component concentrations are heavily coupled due to the 

reactions, and usually, these systems cannot be properly described without considering every 

chemical component simultaneously. Many reactions catalyzed by a solid surface also follow reaction 

kinetics without a clear reaction order, such as the Langmuir-Hinshelwood model. 

In this contribution, a novel method for effectiveness factor prediction is proposed. It is based 

on assumed reaction rate profiles instead of traditional composition profile approach used in most 

high-order numerical methods [5,7]. This novel approach allows analytical solution of the 

approximate problem, and with a carefully selected reaction rate profile, effectiveness factor 

predictions with comparable or in some cases even higher accuracy than much more rigorous 

numerical composition profile solutions. The proposed method is equally suitable for any reaction 

rate regime, catalyst shape, and reaction stoichiometry. 

2. Model Development 

Mathematically, material balances within catalyst particles can be modeled with the following 

reaction-diffusion-convection (RDC) Equation: 

 
    









c

t r r
r N Rm

m  
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where the parameter m is a geometry factor which takes value 0 for slab, 1 for cylindrical, and 2 for 

spherical geometry. The geometry factor can be generalized for other non-standard particle shapes 

as proposed by [19,20]. See also [21] for analysis of commercial catalyst shapes. The shape parameter 

can be estimated from: 

1
V

A
Lm 

 
(2) 

where L is the characteristic length for the chosen geometry. This is the slab half thickness, the 

cylinder radius, or the sphere radius for slab, cylindrical, and spherical geometry, respectively. A is 

the catalyst particle surface area and V is its volume. Non-integer values may also be used for other 

than standard geometries. A reasonable approximation may be obtained if the A/V ratio of a non-

standard geometry is used along with the smallest half thickness for L. [20,22,23] 

Boundary conditions for the reaction-diffusion-convection model are symmetrical at the center 

(/r = 0 at r = 0) and known catalyst surface compositions (c = cL at r = L). Additionally, an obvious 

requirement is that the solutions are finite everywhere [2]. 

In this contribution, we were interested in steady state solutions, and time derivatives were set 

to zero. Typically, the time scales for composition profile development are much faster than other 

relevant time scales in the reactors, except in some rare cases, such as when analyzing particle scale 

origins of detrimental reaction runaway [24].  
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The mass transfer flux (relative to external reference coordinates) consists of diffusive flux 

(relative to molar average velocity frame) and convective flux. The mass transfer flux can be written 

in the following way: 

   
 

 N c D
x

r
N xt t  



  
(3) 

The first part on the right hand side describes diffusive and the second convective flux. Nt is the 

sum of all individual mass transfer fluxes. For the diffusive part, there are also alternative 

formulations besides the mole fraction gradient for the driving force. These could be incorporated in 

the present model, but were left out here to avoid excessive complications in the model derivation 

[25]. Convective flux within the pores typically originates from pressure gradients caused by non-

equimolar reactions, and could be modeled, e.g., with the dusty gas model [1]. However, in cases 

with closed catalyst volumes, the pressure gradients were not easily determined and they were 

probably relatively low. Therefore, it was better to formulate the model in such a way that pressure 

gradients were assumed negligible, and the equation of state connecting molar volume, local 

compositions, temperature, and (constant) pressure was valid everywhere within the catalyst particle 

[26]. 

As is typical in the literature with diffusion inside porous catalyst particles, the diffusion 

coefficients were assumed to contain porosity and tortuosity effects as well as a constriction factor. 

The effect of surface diffusion could be included in the model in a similar manner if a reliable model 

was available for it. In case of very narrow pores, diffusion coefficients should be calculated based 

on Knudsen diffusion; otherwise, bulk fluid coefficients should be used [1,3]. One often-neglected 

restriction is that the diffusion fluxes must sum up to zero, as diffusion describes molecular 

movement with respect to the average molar flow. This limitation should be incorporated in the 

matrix if diffusion coefficients [D]. Unfortunately, with effective diffusion models, this limitation is 

typically violated [25,26]. 

When spatial derivatives of diffusion coefficients and total concentration are assumed negligible 

as compared to the other terms (corresponding to the linearized theory of mass transfer, or Toor-

Stewart-Prober assumption), we end up with the following reaction-diffusion-convection equation: 
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(4) 

Reaction term (R) is an arbitrary function of compositions. It can also depend on other state 

variables such as temperature and pressure; however, since in this contribution they were assumed 

constant, their effect was assumed to be included in the reaction rate coefficients. Note that this RDC 

equation is specified for all but one component. The last component mole fraction profile is obtained 

from the obvious fact that the mole fractions sum up to unity. 

2.1. Reaction Rate Profile Approximation 

Classical numerical solutions to the reaction-diffusion equation are based on polynomial 

approximations for the composition profiles [5,7]. These solutions typically neglect convective part 

for mass transfer, which could be significant in case of non-equimolar reactions. From a mathematical 

point of view, erroneous numerical solution can be seen when mole fractions do not up to one, or 

when the solution is written in terms of component concentrations instead of mole fractions, the 

resolved concentrations within the catalyst particle do not satisfy the equation of state. The total flux 

at any point of the catalyst could be calculated by integrating reaction rates from the catalyst particle 

center up to that point. Another option is to solve the model so that total flux is calculated based on 

the requirement for mole fractions summing up to one. This transforms the model into algebraic-

differential equation; however, since nonlinear reaction kinetics already calls for an iterative solution, 

this does not change the final nature of the equations to be solved. The third option is to calculate 

total flux explicitly based on diffusion fluxes of any of the reacting components and reaction 
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stoichiometry; however, this approach easily leads to poorer convergence of the whole set of 

nonlinear equations although the number of iterated variables would be less. 

In this contribution, the reaction rates were assumed to be of the following polynomial form: 

(R) = R(c) = R(r) = (a) + (b)rn (5) 

These rates are the true formation or consumption rates for each component (including 

stoichiometry), not reaction extent rates. Although the reaction rate expression is explicitly written 

based on the location instead of concentrations, parameters a, b, and n depend on concentrations; 

thus, the applied expression takes concentration dependency into account. 

This functional form is quite flexible for approximate description of various reaction rate profiles 

found in practical situations. Nearly constant reaction rate profiles can be observed when the 

diffusional mass transfer compensates concentration changes caused by the reaction. Low values of 

parameter n describe these systems well, and the constant term (a) dominates the reaction rate profile. 

If the reaction rate is rapid compared to the diffusional mass transfer, the limiting reagent is 

consumed near the surface, leading to steep profiles also for the reaction rates. In these cases, 

parameter n is high, and the second term of the reaction rate profile approximation dominates. This 

may also be formulated so that constant reaction rate can be found in systems with low values of 

Thiele modulus, while steep reaction rate profiles can be found in systems with high values of Thiele 

modulus [4,9]. 

After assuming a profile for the reaction rate as a function of location (independent variable) 

instead of composition (dependent variable), the RDC model transforms into a linear differential 

equation also in cases of nonlinear reaction kinetics. This allows for an analytical solution. The 

remaining problem is to find the three unknown reaction rate profile parameters (a, b and n) in such 

a way that the reaction rate profile is as close as possible to the true solution. Parameter n is a single 

scalar specific to the reaction, and parameters a and b are vectors (scalars for each component). 

For the simplified model, we made some further assumptions. The last three terms on the right 

hand side (the convection terms) are assumed spatially invariant: 

   ctct xN
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(8) 

where (xc) is a vector of average convective mole fractions and Ntc is the average total flux for the 

convective term. Average convective mole fractions are calculated here with the following empirical 

formula: 

      
f

xfx1f
x 0L
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(9) 

where: 
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(10) 
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Reasonable results could be obtained also with other convective compositions, e.g., by using 

surface compositions; however, the previous weighted average proved to be somewhat better in 

preliminary tests. Total flux Nt is also assumed constant for the approximate method to simplify the 

solution. Its calculation is discussed later. 

After these approximations, we end up with: 
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Based on the previous discussion, the vector: 

    0Lc
tc xxx1m
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(12) 

was assumed constant along the spatial coordinate to simplify the solution. [B] is a combined notation 

for [D]−1/ct.  

As discussed earlier, the last component diffusion flux needs to be calculated from the restriction 

that the diffusion fluxes sum to zero. In the present approximate formulation, this was obtained by 

calculating effective diffusion coefficient for the last component so that average diffusion fluxes in 

the catalyst sum to zero: 

  

nc,0nc,L
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xx
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
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(13) 

The previous reaction-diffusion-convection equation can be solved, e.g., with the I-factor 

method [6] or by finding a suitable trial solution. In any case, the solution for composition profiles 

for nc − 1 components is: 

       x
2n
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where: 
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(16) 

where (cx) is a constant of integration. The solution for the above set of equations was obtained as 

follows. We used the center as a collocation point, i.e., the differential equation was satisfied with x0 

at the center. This fixed the constants of integration to the center mole fractions, i.e., (cx) = (x0). The 

reaction rate was calculated at the two known points, namely at the surface and at the center, as: 

(R0) = R(x0) = (a) (17) 

and: 

(RL) = R(xL) = (R0) + (b)Ln (18) 

Thus, the parameters a and b are obtained as: 
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(a) = (R0) and (b) = L−n (RL − R0) (19) 

The surface mole fractions, and thus surface reaction rates, are known, because the surface 

conditions are the boundary conditions for the model. The center mole fractions are iterated and used 

to calculate the center reaction rates. 

Since the mole fractions at the catalyst surface are known, the final equations from where the 

center compositions can be solved is: 

       0
2n

2
2

1L xLpLpx  

 
(20) 

After solving for the center point mole fractions (x0), the mass transfer fluxes at the surface can 

be calculated by integrating the reaction rate profiles as: 
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(22) 

Additional constraint needed to solve the average total flux in the convective part is obtained by 

requiring that the mole fractions at the center sum up to unity:  

1x i,0   
(23) 

The center mole fractions can be found with a numerical solution of the nonlinear algebraic set 

of equations. A reasonable approximation results by using linearized reaction rate with analytical 

solutions without convection; however, in practice, starting with slightly perturbed surface 

compositions leads to very rapid convergence as well. 

Finally, the effectiveness factors for each component can be calculated from the overall reaction 

rate as: 

1mn
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(24) 

This value is not necessarily needed in practical reactor modeling, as mass transfer fluxes at the 

surfaces of the catalyst particles are already available for reactor material balances. These 

effectiveness factors are used in this paper to compare the present approximation with analytical 

solutions if available, or rigorous numerical solutions in more general cases. For those components 

that do not take part in the reaction (i.e., inert components), the predicted effectiveness factor is not 

defined. It is interesting to note that the above definition for effectiveness factor reduces to the known 

asymptotic values for high Thiele modulus values with first order equimolar reaction: 




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1m
i

 
(25) 

if the reaction rate power n is replaced by the Thiele modulus. We will also find this asymptotic 

behavior later in numerical tests. 

2.2. Choosing the Reaction Rate Profile 
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The reaction profile was assumed to be of a polynomial form with two terms. One is a constant, 

and the other is raised to a power depending on the relative reaction rate. It is expected that high 

values for this parameter will be encountered at high Thiele modulus values, and smaller values at 

low Thiele modulus values. 

As the power n depends on the steepness of the reaction rate profile near the catalyst surface, its 

value can be obtained by setting reaction rate profile gradient at the surface equal to the linearized 

reaction rate multiplied by the composition profile gradient at the surface. The composition profile 

gradient is obtained with the present solution to the RDC equation (Equation (13)). This can be 

expressed as: 

dr

dx

dx

dR

dr

dR


 
(26) 

After inserting all the terms at the catalyst surface conditions: 

  1n
i2i1

Li1n
i Lp2nLp2

dx

dR
Lnb  

 
(27) 

For the selection of appropriate reaction rate profile, convective part in p1 (k in Equation (14)) 

was neglected to allow for explicit solution, although it was not neglected in the underlying RDC 

model. When the values for p1 and p2 were inserted, the non-linear terms (Ln) cancel out favorably, 

leaving us a quadratic polynomial for n to be solved. The solution is: 
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where the larger root was chosen for a physically meaningful solution. Maximum of the predicted ni 

values for each component is selected, with a minimum set to n = 2. 

In the previous equation, the following terms were defined: 
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and: 
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(30) 

The latter is a square of the Thiele modulus for multicomponent systems in case of a first order 

reaction. Here, it was defined for each component separately. In this formulation, the reaction 

stoichiometry will be included in the modulus: it is based on the true formation rate of a component 

of interest, not the extent of reaction rate. With this approach, scaling of the stoichiometric ratios does 

not affect numerical values of the modulus. Diffusional interactions were also accounted for with 

non-diagonal elements of [B] [25]. For other than first order reactions, the present definition deviated 

from the original definition of the Thiele modulus by a constant factor, appearing due to 

differentiation of nonlinear reaction rates. However, in all cases, the present definition is directly 

proportional to the classical definition of Thiele modulus, and thus expresses the same physical ratio. 

It can be seen from Equations (25)–(27) that when reaction rates were very high near the catalyst 

surface as compared to the center (high Thiele modulus values), the reaction rate profile exponent n 

became equal to the Thiele modulus. This can also be expressed so that at the diffusionally limited 

regime, the reaction rate is proportional to the distance from the catalyst center raised to a power 

equal to the Thiele modulus. 

2.3. Finite Volume Solution 
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In order to validate the present approximation in general non-linear cases where analytical 

solution is not available, a reference solution with finite volume method was used. The finite volume 

method was formulated by dividing the catalyst particle into a number of control volumes following 

the catalyst particle symmetry as “shells”. The balance equations are constructed as follows: diffusion 

fluxes for nc-1 components at the control volume boundaries were calculated with central differences 

(compositions known at the center points of the control volumes, but fluxes needed at the boundaries) 

as: 

   
   
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(33) 

where at the center of the particle, fluxes are set to zero due to symmetry. Here, subscript j refers to 

the control volume number and i to component number. 

Steady state material balances are then obtained from: 

       0VRNANA jj2/1j2/1j2/1j2/1j    
(34) 

Additionally, mole fraction summation equations for each control volume are needed: 

1x
nc

1i
i,j 

  

(35) 

This set of equations (nc material balances and one summation equation) was solved for each 

control volume. The variables to be solved were the mole fractions of each component in each control 

volume, and total flux at each control volume boundary. 

The effectiveness factors for finite volume method were obtained by first discretizing the particle 

radial coordinate with 100 and 200 equal size control volumes, and solving for mole fractions and 

total flux in each control volume. Effectiveness factor for each case was calculated by summing up 

each control volume reaction rates, and using Richardson extrapolation to these two discretized 

solutions for estimating the final effectiveness factor by assuming second order convergence. This 

was found to result in accurate enough effectiveness factors for our purposes when the Thiele 

modulus was not extremely high. With higher Thiele modulus values, non-uniform grid should be 

used so that smaller control volumes would be positioned near the catalyst surface where the reaction 

rates are the highest. 

3. Results and Discussion 

The predictive capability of the proposed approximate method was assessed with several 

numerical comparisons, each with different characteristic behavior. The first test was carried out with 

a first order reaction in three standard geometries for which analytical solutions are available: slab, 

cylinder, and sphere. The second test assumed elementary second order kinetics with a single 

reactant, again in the three standard geometries. This case was evaluated first by assuming that there 

was only pure reactant outside the catalyst, and then with reactant and 50% inert. The third test case 

was with elementary reaction for two reactants and non-stoichiometric surface compositions, which 

led to the depletion of one of the components and gradual change from second to pseudo-first order 

reaction as the reactants diffuse towards the catalyst particle center. The final test case was a realistic 
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hydrogenation reaction, where the catalyst size effect was tested. For the test Cases (1) to (3), equal 

diffusivities of 10−9 m2/s were used with a total concentration of 50,000 mol/m3 and particle size of L 

= 0.001 m. Reaction rate coefficient was varied in order to vary the Thiele modulus values. Precise 

values of these physical parameters were not highly important in order to draw relevant conclusions, 

as they will always be lumped together in the model. For the final test case, realistic physical 

properties for the practical system were used, along with the Maxwell-Stefan diffusion model. 

3.1. First Order Elementary Reaction A → B 

The present approximate solution was first compared to the analytical solutions for a first order 

irreversible reaction. The reaction rate expression is: 

Ar xkR   (36) 

The test was carried out in various geometries: slab, cylinder, and spherical, as functions of a 

wide range of Thiele modulus values. The analytical solutions are: 

 

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for slab (37) 
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for cylinder (38) 
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
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for sphere (39) 

In this test case, diffusional interactions are neglected: matrix [B] is diagonal, and it was further 

assumed that all the diffusion coefficients for each component were the same. Thus, the Thiele 

modulus in this case is: 

2
rBLk

 
(40) 

In Figure 1, the relative errors are shown for the three standard geometries. 

It can be seen that the approximate solution approached the analytical solution asymptotically 

both for relatively low and very high Thiele modulus values. For the intermediate regime, the 

maximum relative error was around 3% and the maximum absolute error around 0.01 for predicted 

effectiveness factors. For cylindrical geometries, analytical solution was not possible above Thiele 

modulus values above 700 due to problems in the Matlab function “besseli” (the present approximate 

solution was nevertheless found rapidly); however, already smaller Thiele modulus values proved 

that the asymptotic behavior observed in Figure 1 holds also for cylinders. 
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Figure 1. Relative errors in the effectiveness factors for the three standard geometries as functions of 

Thiele modulus. 

Interestingly, as an example, the finite volume solution required at least 320 control volumes to 

achieve comparable accuracy with the suggested approximate solution with Thiele modulus of 100 

for a spherical geometry. It took orders of magnitude more computational time to solve composition 

profiles even for a single catalyst particle compared to the approximate solution. It is highly probable 

that in practice, a much lower number of control volumes would be used to discretize the catalyst 

radius dimension than required for reasonable accuracy. This would lead to erroneous solution, 

although the control volume or other similar discretized solutions are expected to be “rigorous”. 

In Figure 2, the profile power n is shown for spherical geometry. Powers for all geometries are 

very close to each other. 

 

Figure 2. Reaction rate profile power as a function of Thiele modulus for spherical geometry. 

The asymptotic behavior of reaction profile power discussed earlier can be again seen from 

Figure 2. At high Thiele moduli, the reaction rate profile parameter n approaches Thiele modulus 

values. 

Effect of particle geometry was also studied for this case. Intermediate Thiele modulus value (10 

in this case), for which the relative error in the approximate method is the largest, was selected as a 

test case in order to emphasize potential discrepancies. The shape parameter was varied between −1/5 
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to 5, as suggested by [27]. As there is no analytical solution for the full range of shape factors, the 

finite volume solution was used as the reference. The results are shown in Figure 3. 

 

Figure 3. Effectiveness factor as a function of particle shape factor with Thiele modulus value of 10 

for the finite volume (FV) and the present approximate solutions. 

It can be seen that the present approximation predicts effectiveness factors very accurately over 

a very wide range of particle shape factors. 

3.2. Second Order Reaction 2A → B 

The second case was a simple second order elementary reaction with the following reaction rate: 

2
ArxkR 

 
(41) 

Although this case may seem to be close to the first test case, the reaction was non-equimolar 

inducing total convective flux towards the catalyst center. In this case, total flux increased 

effectiveness factor as net convection towards catalyst center carries reactants further along with 

diffusion. In Figure 4, the effectiveness factors predicted by the finite volume method and the 

corresponding effectiveness factors predicted by the present approximate solution are shown as 

functions of Thiele modulus. Here, the classical definition of Thiele modulus [4] was used for x-axis 

instead of definition by Equation (27). Maximum error in the effectiveness factors were 0.028 for slab 

and cylinder and 0.038 for sphere. For comparison, the effectiveness factors calculated with the finite 

volume method but neglecting convective mass transfer are shown. This was done so that the total 

fluxes in the finite volume solution were set to zero and the last material balance was replaced by the 

summation equation. Without this replacement, the finite volume model did not converge. However, 

it must be noted that the RDC equation was not satisfied for the last component after this 

modification. The maximum error in the effectiveness factor when neglecting total flux was around 

0.11, and it was the same for all geometries. Results for the slab geometry are shown to keep the graph 

simple. It can be seen that the present approximation follows the rigorous solution closely, with the 

error being much smaller compared to the error caused by a regrettably common assumption of 

negligible convective flux. 

Further tests were carried out with the same reaction scheme as before; however, specifying 

surface compositions as 50 mol % reactant A and 50 mol % of inert. This deviates from the previous 

case since inert is accumulating in the catalyst interior due to convective flux; its convective flux 

towards the center was balanced by a diffusion flux out. This behavior (solution of composition 

profiles with the FV model) with Thiele modulus of 10 and m = 2 (spherical geometry) are shown in 

Figure 5. 
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Figure 4. Effectiveness factors for second order elementary reactions in three geometries with finite 

volume and approximate method. Effectiveness factor for slab when convective flux is neglected is 

shown for reference. 

 

Figure 5. Composition profiles for second order elementary reaction 2A → B with inert compound. 

The maximum errors in effectiveness factors calculated with the proposed approximate solution 

with a wide range of Thiele modulus values were 0.027, 0.027, and 0.034 for slab, cylinder, and sphere, 

respectively.  

3.3. Second Order Reaction A + B → C 

In this case, the reaction rate expression is: 

BAr xxkR   (42) 

If concentrations of A and B outside the particle are the same, the results are equivalent to the 

case 2A → B. However, if the mole fractions of A and B are not equal outside the catalyst particle, the 
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reaction remains practically of second order near the surface, but in cases of high reaction rates 

becomes a pseudo-first order deeper in the catalyst where the limiting component has been almost 

fully consumed. In order to study this behavior, the surface mole fractions were set to 0.6 for A and 

0.4 for B. Results are shown in Figure 6. Maximum errors in the effectiveness factors in this case were 

0.035, 0.024, and 0.019 for the slab, cylinder, and sphere, respectively. 

 

Figure 6. Effectiveness factors for second order elementary reaction A + B → C with non-

stoichiometric feed in three geometries with finite volume and approximate method. Effectiveness 

factors for slab when convective flux is neglected is shown for reference. 

3.4. Effect of Catalyst Size on Toluene Hydrogenation 

The final test case is hydrogenation of toluene inside porous catalyst particles. This case is just 

an illustration when the present model was applied to a real case where kinetic expression is known; 

any other industrially relevant case could have been selected as well.  

The kinetics of this reaction were given by [28] (Model I, heterogeneous reactor model, 

dissociative adsorption of hydrogen, temperature equal to the reference temperature of 100 °C), and 

they follow Langmuir-Hinshelwood kinetics. The stoichiometry of this reaction is: 

C7H8 + 3H2 → C7H14 (43) 

The reaction rate per total solid catalyst mass is: 

  35.0

HHAA

HAHA1
m

1cKcK3

ccKKk
R




 

(44) 

where k1 = 2.1 mol/(s kg); KA = 2.5 × 10−4 m3/mol; KH = 3.69 × 10−2 m3/mol. 

Here, A refers to the aromatic compound (toluene) and H to hydrogen. The dimension of Rm 

was mol/(s kg catalyst). The density of catalyst was 1300 kg/m3 and porosity 0.5, so that total reaction 

rate per volume of fluid inside catalyst was: 






1
RR C

m

 
(45) 

Cylindrical catalyst particles were assumed in this study. The cylinders were assumed long 

compared to the diameter, so that we have m = 1 for the geometry parameter. The surface mole 

fractions were assumed to be 0.1 for hydrogen, 0.7 for toluene, and 0.2 for methylcyclohexane. 
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Binary diffusion coefficients were estimated with Wilke-Chang method [29]. Those binary 

diffusion coefficients where hydrogen should have been assumed as a solvent were neglected, and 

the binary diffusion coefficient matrix was assumed symmetrical. The binary diffusion coefficients 

were: 

DHA = DAH = 1.32504 × 10−8 m2/s (46) 

DHS = DSH = 1.21466 × 10−8 m2/s (47) 

DAS = DSA = 5.18374 × 10−8 m2/s (48) 

where subscript S refers to the saturated product (C7H14). Maxwell-Stefan diffusion coefficient matrix 

[D] was calculated as in [25]. For the discretized control volume model, mole fractions from each 

control volume were used separately; however, for the simplified method based on reaction rate 

profiles, mole fractions at the particle surface were used. In this way, we avoided updating the 

diffusion coefficient matrix during the iteration. This is consistent with suggestions for the Maxwell-

Stefan approach for the film model [30]. The average total concentration for this system was assumed 

to be constant, 9000 mol/m3. 

Predicted effectiveness factors with the proposed approximation as well as finite volume 

method are shown in Figure 7. 

 

Figure 7. Effectiveness factors for toluene hydrogenation case as functions of particle size. 

It can be seen that the present model approximates effectiveness factors extremely well. The 

maximum absolute error in the predicted effectiveness factor was 0.013 and relative error 4% with a 

very wide range of catalyst diameters studied. The real hydrogenation process was possibly partially 

limited by diffusion in catalyst within industrially relevant catalyst size ranges, as also noted by [28]. 

Hence, it is important to have a reasonable estimate for the effectiveness factors in practical reactor 

simulations. The approximate method proposed in this work gives opportunity to do this in an 

efficient manner. 

4. Conclusions 

An approximate method for solving reaction-diffusion-convection problems within catalyst 

particles was developed in this work. The underlying idea behind the present approximation was 

that the reaction rate profile as a function of location was assumed instead of the traditionally 

assumed composition profiles. This allowed a simple analytical solution of the reaction-diffusion-

convection equation with the approximate profiles. The reaction rate profile was found by setting the 

reaction rate gradients at the catalyst surface equal to the linearized reaction kinetics. Intrinsic 

chemical kinetics were also used for the reaction rate profile coefficients. 
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The present method was compared with available analytical solutions as well as with rigorous 

finite volume solution, first in a number of ideal reaction schemes and then with an industrially 

important catalytic reaction for toluene hydrogenation. It was shown that the present approximation 

was capable of describing a variety of multicomponent reactions in various catalyst geometries with 

excellent accuracy. Furthermore, it was shown that significant errors could result from neglecting the 

convective flux in the model for non-equimolar reaction stoichiometries. Thus, improper but common 

model formulation was expected to lead to more erroneous results than the approximate solution 

proposed here. 

Funding: This research received no external funding. 

Conflicts of Interest: The author declares no conflict of interest. 

Abbreviations 

a parameter in reaction profile (mol/m3s) 

A area (m2) 

B support variable, B = D−1/ct (ms/mol) 

b parameter in reaction profile various 

c concentration (mol/m3) 

ct total concentration (mol/m3) 

D diffusion coefficient (m2/s) 

J diffusion flux (flux relative to molar average velocity frame) (mol/m2s) 

k convection variable (mol/m3s) 

KA, KH reaction rate constants (adsorption coefficients) (m3/mol) 

kr reaction rate constant (mol/kgs) 

L diameter of the reactive region (radius or half thickness) (m) 

m geometry factor ( ) 

N mass transfer flux (flux relative to stationary coordinates) (mol/m2s) 

n parameter in reaction profile ( ) 

nc number of components ( ) 

Nt total flux (mol/m2s) 

r length dimension (m) 

R, R0, RL reaction rate, reaction rate at the center, reaction rate at the surface (mol/m3s) 

t time (s) 

V volume (m3) 

Vm molar volume (m3/mol) 

x, x0, xL mole fraction, mole fraction at the center, mole fraction at the surface ( ) 

xc convective mole fractions ( ) 

ϕ Thiele modulus, as defined by Equation (27) ( ) 

η effectiveness factor ( ) 

[ ] square matrix various 

( ) column matrix various 
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