Supporting Information: An Enzyme Cascade Synthesis of Vanillin

Tobias Klaus ¹, Alexander Seifert ¹, Tim Häbe ¹, Jürgen Pleiss ¹, Bettina M. Nestl ¹ and Bernhard Hauer ^{1,*}

- ¹ Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, Universitaet Stuttgart, Allmandring 31, 70569 Stuttgart, Germany, tobias.klaus@curevac.com (T.K.), seifert@lfb.fr (A.S.), tim.haebe@ernaehrung.uni-giessen.de (T.H.), <u>Juergen.pleiss@itb.uni-stuttgart.de</u> (J.P.), bettina.nestl@itb.uni-stuttgart.de (B.M.N.)
- * Correspondence: bernhard.hauer@itb.uni-stuttgart.de; Tel.:+49-711-685-64523

Table S1. Initial screening results for the conversion of 3-methylanisole (1) catalysed by all 24 variants plus wild type of the CYP102A1 minimal mutant library. Lysate of empty vector expression (pET-22b(+), pET-28a(+)) was used as a negative control and showed no conversion.

Amino Acid at Position		87				
		Α	F	Ι	L	V
328	Α	++	a +	+	+	+++
	F	++	++	++	+	+++
	Ι	++	++	++	++	+++
	L	+	+++	++	-	+++
	V	+	++	++	-	+++

-, no conversion; +, conversion < 5%; ++, conversion < 25%; +++, conversion > 25%; a CYP102A1 wild type.

		Total				
CYP102A1 Variant	2	3	6	9	10	Conversion (%)
wild type	-	-	<1	-	-	<1
A328L	<1	2.7 ± 0.2	26.6 ± 2.5	<1	-	31.0 ± 2.8
F87V	<1	<1	12.5 ± 0.2	<1	-	14.9 ± 0.3
F87V/A328F	2.2 ± 0.2	1.2 ± 0.1	16.5 ± 1.3	7.1 ± 0.4	-	26.9 ± 2.0
F87V/A328I	6.2 ± 0.5	<1	5.6 ± 0.3	4.9 ± 0.3	-	16.9 ± 1.1
F87V/A328L	9.1 ± 0.2	1.6 ± 0.1	23.2 ± 0.4	12.0 ± 0.8	13.5 ± 0.8	59.3 ± 1.8
F87V/A328V	4.9 ± 0.5	<1	23.1 ± 0.9	3.0 ± 0.5	2.1 ± 0.1	34.1 ± 2.0
F87V/A328L/ L437A	1.6 ± 0.1	<1	3.1 ± 0.2	4.7 ± 0.2	-	9.5 ± 0.5
F87V/A328L/ L437F	1.7 ± 0.2	<1	5.7 ± 0.9	7.3 ± 1.0	<1	15.5 ± 2.3
F87V/A328L/ L437I	20.0 ± 0.9	<1	14.0 ± 0.7	7.4 ± 1.3	19.3 ± 0.5	61.3 ± 2.9
F87V/A328L/ L437V	22.3 ± 2.0	<1	10.5 ± 1.0	7.0 ± 0.8	18.5 ± 2.7	58.9 ± 5.3
R47L/Y51F	<1	_	1.5 ± 0.1	_	_	1.6 ± 0.1
R47L/Y51F/ A328L	<1	1.2 ± 0.1	12.5 ± 1.3	<1	_	14.8 ± 1.5

Table S2. Results of the conversion of 3-methylanisole (1) with all investigated variants of CYP102A1.

R47L/Y51F/F87V	2.1 ± 0.1	1.6 ± 0.1	35.1 ± 3.1	1.2 ± 0.1	2.0 ± 0.3	42.5 ± 3.7
R47L/Y51F/F87V/A3 28F	2.1 ± 0.3	1.3 ± 0.2	26.1 ± 3.5	5.1 ± 0.4	5.8 ± 1.4	40.3 ± 5.8
R47L/Y51F/F87V/A3 28I	10.4 ± 1.1	<1	9.5 ± 0.8	6.9 ± 0.5	1.6 ± 0.3	28.8 ± 2.7
R47L/Y51F/F87V/A3 28L	4.9 ± 0.5	<1	13.9 ± 0.9	9.7 ± 0.3	7.9 ± 0.9	37.4 ± 2.6
R47L/Y51F/F87V/A3 28V	5.0 ± 0.3	<1	24.0 ± 0.8	3.0 ± 0.1	2.1 ± 0.2	34.9 ± 1.4
R47L/Y51F/F87V/A3 28L/L437I	13.5 ± 0.4	<1	10.1 ± 0.5	7.7 ± 0.2	17.8 ± 0.8	50.4 ± 1.8

-, not detected or <0.05%; **2**, 3-methoxybenzyl alcohol; **3**, 4-methylguaiacol; **6**, 4-methoxy-2-methylphenol; **9**, *m*-cresol; **10**, methylhydroquinone. Samples were analysed by GC-FID. Negative controls showed no conversion.

Table S3. Results of the conversion of 4-methylguaiacol (3) with R47L/Y51F-variants of CYP102A1.

CYP102A1 Variant	Conversion to Product 4 (%)		
R47L/Y51F	-		
R47L/Y51F/A328L	-		
R47L/Y51F/F87V	<1		
R47L/Y51F/F87V/A328F	1.6 ± 0.1		
R47L/Y51F/F87V/A328I	3.0 ± 0.3		
R47L/Y51F/F87V/A328L	<1		
R47L/Y51F/F87V/A328V	4.5 ± 0.3		
R47L/Y51F/F87V/A328L/L437I	3.1 ± 0.6		

-, not detected or <0.05%. Samples were analysed by HPLC. Negative controls showed no conversion.

Conversion		Total				
Time (h)	2	3	5	6	9	Conversion (%)
0	-	-	-	_	_	-
0.25	-	_	-	< 0.5	_	< 0.5
0.5	_	_	-	< 0.5	_	< 0.5
1	-	_	-	< 0.5	_	< 0.5
2	-	< 0.5	-	0.9 ± 0.1	-	1.0 ± 0.1
3	< 0.5	<0.5	< 0.5	3.6 ± 0.4	< 0.5	4.3 ± 0.4
4	< 0.5	<0.5	0.5	6.4 ± 0.1	< 0.5	7.6 ± 0.2
6	< 0.5	<0.5	0.8	8.1 ± 0.2	< 0.5	9.7 ± 0.3
8	< 0.5	<0.5	0.9 ± 0.1	9.2 ± 0.8	< 0.5	10.8 ± 1.0
12	< 0.5	_	1.1 ± 0.1	9.9 ± 1.3	< 0.5	11.7 ± 1.4

Table S4. Results of the in vivo conversion of 3-methylanisole (**1**) with a combination of the CYP102A1 variant A328L and the vanillyl alcohol oxidase (VAO) variant F454Y.

-, not detected or <0.05%; **2**, 3-methoxybenzyl alcohol; **3**, 4-methylguaiacol; **5**, vanillin; **6**, 4-methoxy-2-methylphenol; **9**, *m*-cresol. Samples were analysed by GC-FID. Negative controls showed no conversion.

Figure S1. Regions in CYP102A1 variant F87V/A328I active site cavity where 4-methylguaiacol (**3**) was frequently observed during molecular dynamics (MD) simulations. The orange molecule shows the starting position, green—the region close to the haem center and blue—the pocket formed by the β_1 sheet and the A' helix. The substrate access channel is indicated by a red arrow. (**B**) is zoomed in on (**A**).

Figure S2. Distance of 4-methylguaiacol **(3)** carbon atoms from the activated oxygen of the haem in a 100 ns MD run. The molecule approaches the haem oxygen to a distance < 4 Å (C7) where it stays stable for 90 ns. Lines show a moving average of 20 data points.

Figure S3. Representation of four exemplary MD simulations from a pool of 15 MD simulations. The distance between all possible hydrogen bond donors and acceptors of 4-methylguaiacol (3) and the side chain of Y51 (green, red and magenta lines) and R47 (all remaining lines) are shown. A hydrogen bond is considered present at a hydrogen bond donor to acceptor distance \leq 3.5 Å. Lines show a moving average of 20 data points.

0.0-

Figure S4. GC–MS analysis chromatogram (A) and fragmentation patterns of reference compound (B) (0.05 mM vanillin) and sample (C) (after 12 h conversion time) of the in vivo biotransformations.