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Abstract: Owing to the outstanding catalytic performance for higher alcohol synthesis, Ga-Co
catalysts have attracted much attention. In view of their unsatisfactory stability and alcohol selectivity,
herein, K-modulated Co nanoparticles trapped in La-Ga-O catalysts were prepared by the reduction
of La1−xKxCo0.65Ga0.35O3 perovskite precursor. Benefiting from the atomic dispersion of all the
elements in the precursor, during the reduction of La1−xKxCo0.65Ga0.35O3, Co nanoparticles could
be confined into the K-modified La-Ga-O composite oxides, and the confinement of La-Ga-O could
improve the anti-sintering performance of Co nanoparticles. In addition, the addition of K modulated
parts of La-Ga-O into La2O3, which ameliorated the anti-carbon deposition performance. Finally,
the addition of K increased the dispersion of cobalt and provided more electron donors to metallic
Co, resulting in a high activity and superior selectivity to higher alcohols. Benefiting from the above
characteristics, the catalyst possesses excellent activity, good selectivity, and superior stability.

Keywords: perovskite-type oxide (PTO); cobalt; gallium; potassium; higher alcohols; syngas

1. Introduction

Due to their sufficient combustion and release of less harmful substances during combustion,
higher alcohols with 2–6 carbon atoms are regarded as a kind of clean energy [1]. In addition, due
to the high octane number, higher alcohols can also be used as a high-quality fuel additive. After
separation, a series of basic chemicals with very high economic value, such as ethanol, propanol, and
butanol, can be obtained [2–4]. Currently, ethanol is mainly produced by fermentation and ethylene
hydration, while other alcohols are refined from petroleum. Obviously, in the long run, the above
synthesis routes for higher alcohol would be restricted by increasingly depleted petroleum and food [5].
Recently, the synthesis of higher alcohols from syngas has attracted much attention, while this process
is usually restricted by the low selectivity to higher alcohols and the poor stability of the catalyst.

Nowadays, four kinds of catalysts for higher alcohol synthesis (HAS) from syngas have been
reported. Among them, the Rh-based catalysts show good activity and superior selectivity to ethanol,
while the high price of Rh limits its industrial applications [6,7]. The harsh reaction conditions usually
restrict large-scale applications for Mo-based catalysts [8,9]. For modified methanol synthesis catalysts,

Catalysts 2019, 9, 218; doi:10.3390/catal9030218 www.mdpi.com/journal/catalysts

http://www.mdpi.com/journal/catalysts
http://www.mdpi.com
http://www.mdpi.com/2073-4344/9/3/218?type=check_update&version=1
http://dx.doi.org/10.3390/catal9030218
http://www.mdpi.com/journal/catalysts


Catalysts 2019, 9, 218 2 of 14

the main product is still methanol [10,11]. Fortunately, modified Fischer–Tropsch catalysts, mainly
the modified Co and modified Fe catalysts, exhibit good activity and high selectivity for HAS at
milder reaction conditions. However, the modified Fe catalysts are more beneficial to the water
gas shift reaction (WGSR), generating lots of CO2; and the typical Cu modified Co catalysts usually
show poor stability because of the phase separation of cobalt and copper [12–14]. Therefore, it has
become an important issue for researchers to explore new catalysts for HAS from syngas with better
catalytic performance.

Recently, Ga-modified Co catalysts were reported and showed excellent catalytic performance for
higher alcohol synthesis [15–17]. He et al. prepared a series of Co-Ga catalysts by using Co-Ga-LDHs
(layered double hydroxides) and found that Ga was beneficial to the non-dissociative adsorption
of CO [15,16]. Gao et al. reported that gallium oxide can reduce the reduction degree of CoO and
generate some Co2+ in the reduced catalysts, which act as non-dissociative CO adsorption sites for
HAS, resulting in the high selectivity to alcohols for the Ga-Co/AC catalyst [17]. While the stability of
Co-Ga catalysts should be further improved.

Here, considering the good activity and high selectivity on Co-Ga catalysts, K doped Co-Ga
catalysts are explored by the reduction of La1−xKxCo0.65Ga0.35O3. The results show that the addition
of K modulates the composition of La-Ga-O, enhances the dispersion of Co, and adjusts the electronic
structure of Co, and as a result the catalysts possess excellent catalytic performance. Typically,
an outstanding selectivity of 43.6% to the higher alcohols, and a stable catalytic performance during
the 200 h reaction can be obtained.

2. Results and Discussion

2.1. X-ray Powder Diffraction (XRPD)

The X-ray powder diffraction (XRPD) patterns of the three catalysts for LCG (LaCo0.65Ga0.35O3)
and LKCG-x (La1−xKxCo0.65Ga0.35O3, x = 0.1 and 0.2, where x is the K content in perovskite) (see
3.2 catalysis synthesis) are shown in Figure 1a. The diffraction peaks at 2θ = 23.2, 33.3, 40.6, 47.4 and
58.8◦ are attributed to the characteristic diffraction peaks of perovskite-type oxide (PTO). For LKCG-0.1
catalyst, with the addition of K ions into LCG, the perovskite diffraction peaks move to lower 2θ
values (seen from the illustration of Figure 1a), for that the ion radius of K+ (0.155 nm) is larger than
that of La3+ (0.136 nm) [18]. The existence of perovskite structure after calcination is beneficial to the
interaction and the even dispersion of all the elements.

For the LKCG-0.2, a new Co3O4 diffraction peak in Figure 1a can be seen. Since the amount of
K entering the perovskite is limited, when the K doping amount is more than 0.1, part of potassium
cannot incorporate into the perovskite structure and cover the surface of the catalyst in the form of
oxide [18]. The presence of K2O disrupted the dispersion of elements in the catalyst precursor, resulting
in the formation of Co3O4. It is worth noting that a part of LaCoyGa1−yO3 and La1−zKzCo1−mGamO3

should also exist accompanied by the formation of Co3O4.
Meanwhile, Ga-containing oxides among the three samples cannot be detected, indicating that

Ga entered into the structure of perovskite. The uniformly dispersed Co and Ga ions in the LKCG-0.1
catalyst are advantageous for the synergism between them, favoring the catalytic performance.

The XRPD profiles of three catalysts reduced at 750 ◦C (see 3.4 Catalysts’ Performance) are
presented in Figure 1b. As for LCG, the perovskite structure disappears and transfers to Co and
La4Ga2O9. As for the reduction of LKCG-0.1, phases of La2O3, Co, LaGaO3, and a small amount of
La4Ga2O9 can be observed. The existence of the characteristic diffraction peak of LaGaO3 and La2O3

indicated that the adding of K weakened the interaction between lanthanum and gallium. In other
words, the addition of K in the perovskite modulated the composition of La-Ga-O, resulting in the
change of La-Ga-O from La4Ga2O9 to LaGaO3 and La2O3.

Based on the above discussion in Figure 1a, parts of K cannot be doped into perovskite,
resulting co-exist of LaCoyGa1−yO3 and La1−zKzCo1−mGamO3 in LKCG-0.2. During reduction,
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La1−zKzCo1−mGamO3 would be reduced into LaGaO3 while LaCoyGa1−yO3 to La4Ga2O9, as a result,
the LKCG-0.2 are reduced to Co/LaGaO3-La4Ga2O9, as can be seen in Figure 1b.Catalysts 2018, 8, x FOR PEER REVIEW  3 of 14 
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Figure 1c shows the XRPD profiles of the three catalysts after reaction and LKCG-0.1 after 200 h
reaction. After reaction, part of La2O3 transferred to LaCO3OH and La2O2CO3, for that La2O3 and
CO2 can react to generate La2O2CO3, and the further reaction between La2O2CO3, H2O and CO2 can
generate LaCO3OH [19,20]. Since XRPD in this work was carried out ex situ, the catalysts containing
La2O2CO3 could readily absorb H2O and CO2 in air, and then LaCO3OH formed. The co-existence
of La2O3 and La2O2CO3 in the catalysts after reaction illustrated the feasibility of reaction of CO2 +

La2O3 → La2O2CO3
C→ 2CO + La2O3, which can help the catalysts eliminate carbon.

For the LCG catalyst after reaction, it should be noted that the catalyst was still Co/La4Ga2O9,
which is the same as that after reduction. La2O2CO3 and La2O3 cannot be detected, indicating the
above reaction of eliminating carbon deposition may be hard to occur due to a strong interaction
existing between lanthanum and gallium.

It should be noted that no Co2C was observed in all the used samples, suggesting that the
existence of gallium can prevent the formation of Co2C and stabilize the catalyst composition in the
process of reaction. This is in accordance with the literature, which illustrated that the existence of
gallium could improve the catalyst’s stability [21].

2.2. Temperature-Programmed Reduction (TPR)

Figure 2 and Table 1 illustrates the temperature-programmed reduction (TPR) and the hydrogen
consumptions values of LCG and LKCG-x (x = 0.1 and 0.2) catalysts. Seen from the Figure 2, all the
three catalysts contain two major hydrogen-consuming peaks, one at 400–500 ◦C and the other at
600–800 ◦C. According to the literature, the H2-consuming peak of LaCoO3 at 500 ◦C can be attributed
to Co3+ → Co2+, while that above 500 ◦C to Co2+ → Co0 [22–25]. Herein, seen from Table 1, the area
ratio of the low temperature peak to the high temperature peak (TL/TH) is 1/2. Therefore, we believe
that the peak of 400–500 ◦C in all the three catalysts is classified to Co3+ → Co2+, and the peak of
600–800 ◦C can be assigned to Co2+ → Co0. At the same time, the similar theoretical and experimental
H2-consumption also confirmed the attribution of the above reduction peak.
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Figure 2. The temperature-programmed reduction (TPR) curves of catalysts after calcination.

Compared to the TPR results of LaCoO3 in the literature, the H2-consuming peak of Co2+ → Co0

migrates to higher temperatures in the LCG catalyst, suggesting that the existence of Ga in LaCoO3

will restrain the conversion of Co2+ to Co0 and a strong effect between Co and Ga exists for LCG [16].
Seen from Figure 2, with the addition of K ions in LCG, the H2-consuming peaks at around 750

◦C moved to lower temperature, illustrating the addition of K promotes the reduction of Co2+ →
Co0. While for LKCG-0.2, a shoulder peak around 620 ◦C appeared. According to XRPD, the catalyst
contains Co3O4. Therefore, this small shoulder can be attributed to the reduction of Co2+ → Co0 in
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Co3O4. The presence of the small shoulder also confirms the XRPD results. For the other samples,
no shoulders can be observed, which indicates that all the Co ions have entered into the crystal lattice
of the perovskite.

Table 1. Theoretical and experimental H2 consumption value of the LKCG-x (x = 0.1 and 0.2) and
LCG catalysts.

Catalysts
Experimental Measure a,b Theoretical Measure

TL TH Co3+→ Co2+ Co2+→ Co

LCG 0.064 0.132 0.065 0.130
LKCG-0.1 0.067 0.133 0.068 0.135
LKCG-0.2 0.069 0.136 0.070 0.140

a Calculated from the TPR results. b The unit of H2 consumption value is mmol H2/50 mg. TL and TH represent
low and high temperature, respectively.

2.3. N2 Adsorption and Desorption Curves

Figure 3 and Table 2 show the N2 physical adsorption curves and the physical properties of the
investigated catalysts. Seen from the Figure 3, the curves are typical type II isotherms accompanying
with a H3 type hysteresis loop, which indicates that mesoporous exits in the catalysts. The presence of
mesoporous can also be seen from the pore size distribution curves.
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Figure 3. (a) The N2 physical adsorption curves and (b) Barrett–Joyner–Halenda (BJH) pore size
distribution of catalysts.

Table 2. The physical properties of all the investigated catalysts.

Catalysts SBET
(m2 g−1)

Pore Size
(nm)

VBJH
(cm3 g−1)

Crystal Size (nm) a

D Co (%) e d Co (nm) f
PTO Co b

LCG 8.6 14.9 0.03 17.4 15.9 7.3 b (6.1) c 13.2 b (15.7) c

LKCG-0.1 11.7 12.6 0.04 16.2 8.3 13.7 b (11.4) c (9.9) d 7.0 b (8.4) c (9.7) d

LKCG-0.2 15.0 9.8 0.04 13.4 7.4 15.5 b (12.6) c 6.2 b (7.6) c

a Calculated from X-ray diffraction results with the Scherrer equation. b The reduced catalysts. c The catalysts
after reaction. d The 200 h stability test. e The degree of dispersion. f The crystal size calculated by hydrogen
temperature-programmed desorption (H2-TPD).

For LKCG-x (x = 0.1 and 0.2) catalysts, with the addition of K, the hysteresis loop increases and
moves to lower P/P0, illustrating the investigated catalysts have bigger BET surface area. The larger
surface area results in the higher dispersion of metal cobalt nanoparticles (see in Table 2).
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2.4. X-ray Photoelectron Spectroscopy (XPS)

Figure 4 and Table 3 summarized the binding energies (BEs) and the X-ray photoelectron
spectroscopy (XPS) profiles of La 3d, Co 2p, and Ga 3d for the reduced LCG and LKCG-0.1 catalysts.
All XPS profiles showed almost similar peak patterns except the different value of binding energies
of each element. The binding energy of Co in the both samples is similar to that of metal cobalt,
illustrating that Co exists in the form of Co0 in the catalyst, which is the same as the XRPD results.

Catalysts 2018, 8, x FOR PEER REVIEW  6 of 14 

 

For LKCG-x (x = 0.1 and 0.2) catalysts, with the addition of K, the hysteresis loop increases and 

moves to lower P/P0, illustrating the investigated catalysts have bigger BET surface area. The larger 

surface area results in the higher dispersion of metal cobalt nanoparticles (see in Table 2). 

2.4. X-ray Photoelectron Spectroscopy (XPS) 

Figure 4 and Table 3 summarized the binding energies (BEs) and the X-ray photoelectron 

spectroscopy (XPS) profiles of La 3d, Co 2p, and Ga 3d for the reduced LCG and LKCG-0.1 catalysts. 

All XPS profiles showed almost similar peak patterns except the different value of binding energies 

of each element. The binding energy of Co in the both samples is similar to that of metal cobalt, 

illustrating that Co exists in the form of Co0 in the catalyst, which is the same as the XRPD results. 

 

Figure 4. X-ray photoelectron spectroscopy (XPS) profiles of La 3d, Co 2p and Ga 3d of the reduced 

(a) LCG and (b) LKCG-0.1. 

Table 3. The binding energies of the reduced LCG and LKCG-0.1 catalysts. 

Catalysts La 3d5/2  Co 2p3/2  Ga 3d5/2  

LCG 835.2 838.6 778.3 17.6 19.7 

LKCG-0.1 834.9 838.4 778.1 17.7 19.8 

According to the reported literature, the binding energies of La 3d5/2 are 834.4 and 837.8 eV for 

pure La2O3, 834.7 eV and 838.1 eV for LaGaO3 [26–28]. Herein, the binding energies of La 3d5/2 for 

LCG are 835.2 eV and 838.6 eV, which is larger than that of pure La2O3 and LaGaO3. The binding 

energies of Ga 3d5/2 are 17.6 and 19.7 eV, which is also a little larger than that of LaGaO3 at 17.4 and 

19.4 eV [28]. The binding energies of Co 2p3/2 is 778.3 eV, which is less than 778.5 eV for metal cobalt 

[29]. The higher binding energies of La 3d5/2 and Ga 3d5/2, and the lower binding energies of Co 2p3/2 

illustrate that an interaction among La, Ga, and Co existed. At the same time, La and Ga could donate 

elector to Co.  

Compared to the reduced LCG catalyst, it was found that the binding energy of La in LKCG-0.1 

decreased, suggesting that the doping of K modulated the interaction between La and Ga, which 

agrees with the above XRPD results. In addition, the binding energy of Co is lower, which means that 

the K could donate electron to Co. The enhanced electron for Co is beneficial for the selectivity to 

higher alcohols. 

2.5. Transmission Electron Microscopy (TEM) 

Figure 5a–h shows the transmission electron microscopy (TEM) images, the line scans profiles, 

the energy dispersive spectrometer (EDS) mapping scans image, and the elements distribution of the 

reduced LKCG-0.1 catalyst. In Figure 5a, 5–11 nm Co nanoparticles are uniform dispersed in the 

reduced LKCG-0.1 catalyst even after 750 °C high temperature reduction. In Figure 5b, the lattice 

spacing of [112] and [011] planes for La2O3, [200] and [111] planes for metal Co, [220] planes for 

La4Ga2O9 and LaGaO3 can be clearly seen. That is to say, the composition of the reduced LKCG-0.1 

catalyst is Co/La2O3-La4Ga2O9-LaGaO3, which is consistent with the XRPD. In addition, as seen from 

Figure 5b, the metal cobalt nanoparticles are encircled and located between La-Ga-O oxides. And this 

confinement effect result in the highly dispersion of Co nanoparticles in Figure 5a. 
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(a) LCG and (b) LKCG-0.1.

Table 3. The binding energies of the reduced LCG and LKCG-0.1 catalysts.

Catalysts La 3d5/2 Co 2p3/2 Ga 3d5/2

LCG 835.2 838.6 778.3 17.6 19.7
LKCG-0.1 834.9 838.4 778.1 17.7 19.8

According to the reported literature, the binding energies of La 3d5/2 are 834.4 and 837.8 eV for
pure La2O3, 834.7 eV and 838.1 eV for LaGaO3 [26–28]. Herein, the binding energies of La 3d5/2 for
LCG are 835.2 eV and 838.6 eV, which is larger than that of pure La2O3 and LaGaO3. The binding
energies of Ga 3d5/2 are 17.6 and 19.7 eV, which is also a little larger than that of LaGaO3 at 17.4
and 19.4 eV [28]. The binding energies of Co 2p3/2 is 778.3 eV, which is less than 778.5 eV for metal
cobalt [29]. The higher binding energies of La 3d5/2 and Ga 3d5/2, and the lower binding energies of
Co 2p3/2 illustrate that an interaction among La, Ga, and Co existed. At the same time, La and Ga
could donate elector to Co.

Compared to the reduced LCG catalyst, it was found that the binding energy of La in LKCG-0.1
decreased, suggesting that the doping of K modulated the interaction between La and Ga, which
agrees with the above XRPD results. In addition, the binding energy of Co is lower, which means that
the K could donate electron to Co. The enhanced electron for Co is beneficial for the selectivity to
higher alcohols.

2.5. Transmission Electron Microscopy (TEM)

Figure 5a–h shows the transmission electron microscopy (TEM) images, the line scans profiles,
the energy dispersive spectrometer (EDS) mapping scans image, and the elements distribution of
the reduced LKCG-0.1 catalyst. In Figure 5a, 5–11 nm Co nanoparticles are uniform dispersed in the
reduced LKCG-0.1 catalyst even after 750 ◦C high temperature reduction. In Figure 5b, the lattice
spacing of [112] and [011] planes for La2O3, [200] and [111] planes for metal Co, [220] planes for
La4Ga2O9 and LaGaO3 can be clearly seen. That is to say, the composition of the reduced LKCG-0.1
catalyst is Co/La2O3-La4Ga2O9-LaGaO3, which is consistent with the XRPD. In addition, as seen from
Figure 5b, the metal cobalt nanoparticles are encircled and located between La-Ga-O oxides. And this
confinement effect result in the highly dispersion of Co nanoparticles in Figure 5a.
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Figure 5. Transmission electron microscopy (TEM) images (a–c), line scanning profiles, energy
dispersive spectrometer (EDS) mapping image (d), and the elements distribution of La (e), K (f),
Co (g), and Ga (h) for the reduced LKCG-0.1.

Figure 5c–h exhibits the line scans profiles and the corresponding element distribution of the
reduced LKCG-0.1 catalyst. The red lines represent the scanning routes in Figure 5c. Seen from
the illustration in Figure 5c, the La and Ga have the same change trend, indicating the formation of
La-Ga-O. In addition, there is no La and Ga where Co appears, illustrating metal cobalt nanoparticles
are highly dispersed and located between the La-Ga-O oxides, which is in accordance with the XRPD
and Figure 5b.

Figure 6a–h displays the TEM images, the line scanning profiles, the EDS mapping image, and
the corresponding elements distribution of LKCG-0.1 after 200 h stability tests. As can be seen from
Figure 6a, Co is still located between La-Ga-O oxide and the average crystal size of the Co nanoparticles
is 9.5 nm, indicating that the sintering of the catalyst is not obvious, which is consistent with the
results in Table 2. Seen from the Figure 6b, the lattice spacing of 0.205 and 0.177 nm are assigned to
parameters of the [111] and [200] planes of Co; the lattice spacing of 0.228 nm, 0.276 nm, 0.306 nm and
0.294 nm corresponds to the [012], [200], [023], and [103] planes for La2O3, LaGaO3, La4Ga2O9 and
La2O2CO3, respectively. That is to say, the component of the LKCG-0.1 catalyst after 200 h reaction is
Co/La2O3-La4Ga2O9-LaGaO3-La2O2CO3, which is in accordance with the XRPD results.

2.6. CO Hydrogenation Performance

Table 4 lists the catalytic performance of all the investigated catalysts. The carbon monoxide
hydrogenation performance of the different molar ratio of Co/Ga for LaCoyGa1−yO3 catalyst were
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explored in our lab, and the results revealed the optimum molar ratio is 0.65/0.35 [30]. Therefore,
the molar ratio of Co/Ga of all the investigated samples was fixed at 0.65/0.35.Catalysts 2018, 8, x FOR PEER REVIEW  8 of 14 
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Figure 6. TEM images (a–c), line scanning profiles, EDS mapping image (d), and the elements
distribution of La (e), K (f), Co (g), and Ga (h) for LKCG-0.1 after 200 h stability tests.

Table 4. CO hydrogenation performance of the investigated catalysts.

Catalysts Xco
a

(%)
Sco2

b

(%)
SROH

c

(%)

Selectivity to Hydrocarbon (%) Distribution of Alcohols (%)

C1 C2 C3 C4+ C1 C2 C3 C4+

LCG 4.1 1.6 27.2 45.1 10.5 10.8 4.9 36.3 45.2 1.6 16.9
LKCG-0.1 13.2 5.8 43.6 24.7 9.2 11.9 4.8 30.9 58.1 3.2 7.8
LKCG-0.2 11.7 6.6 40.0 26.3 11.5 11.7 3.9 27.8 59.1 3.9 9.2

Reaction conditions: P = 4 MPa, H2/CO/N2 = 8/4/1, T = 290 ◦C, GHSV = 6000 mL gcat
−1·h−1. a Xco is CO

conversion. b Sco2 is the selectivity to CO2. c SROH is the selectivity to the total alcohols. i in Ci is number of
carbon atoms for the carbon-contained products. C4+ represents the carbon-contained products with 4 or more
carbon atoms.

As for LCG, seen from the above TEM and XRPD results, the composition after reduction is the
same with that after reaction, and all are Co/La4Ga2O9. In addition, the smaller BET surface area
for LCG makes the Co nanoparticle severely sintered and unevenly dispersed (see in Table 2), thus
resulting in a poor activity. At the same time, the larger Co particle sizes and the strong effects between
Ga and La in the catalyst are also detrimental to the generation of the Co-Ga interfaces. The interfaces
of Co and Ga were usually considered to be the active sites for HAS [16], while metal cobalt was the
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active sites of hydrocarbon generation [14]. Therefore, the LCG catalyst has the highest hydrocarbon
selectivity among all the samples.

However, as for LKCG-0.1 catalyst, the main composition after reduction is Co/K2O-La2O3-
LaGaO3 and the main composition after reaction is Co/K2O-La2O3-La2O2CO3-LaGaO3 (seen from
the XRPD results). It is known from Table 4 that the catalyst with the optimal catalytic performance
is LKCG-0.1. Since they have a larger specific surface area, cobalt nanoparticles are highly dispersed
on the catalyst surface, which can be seen in Figure 5 and Table 2. In addition, since all the elements
located in the lattice of perovskite, smaller size and uniformly dispersed cobalt nanoparticles are also
conducive to generating more Co-Ga interfaces. In the process of reaction, cobalt exists in the form
of Co0. The close contact of cobalt with the Co-Ga interface at the atomic level is beneficial to the
synergistic effect of the catalyst, and thus the LKCG-0.1 catalyst exhibits the best catalytic performance.
In addition, the electron donating effect of K can promote the increase of the selectivity of higher
alcohols [31–34].

For the LKCG-0.2 catalyst, with the increasing of K content, the catalytic activity decreased, for
that the addition of K can make part of Co outside the perovskite structure, resulting in a non-uniform
dispersion of Co and Ga. A relatively lower activity and selectivity is observed in Table 4.

Other catalysts with outstanding performance reported in the literature are revealed in
Table 5 [17,35–38]. By comparison, the activity of LKCG-0.1 catalyst in this work is not the optimal,
but it may be one of the good catalysts in general considering relatively lower reaction temperatures
and higher alcohol selectivity for HAS.

Table 5. Performance of CO hydrogenation reported in the literature.

Catalysts Temperature
(◦C) H2/CO a Pressure

(MPa)
GHSV
(h−1)

XCO
(%)

SROH
(%)

EtOH
(%) b

C2+OH c

(%) Ref.

LaCo0.7Cu0.3O3 300 2 6.9 15000 16.0 38.1 37.0 53.8 [37]
Cu-Co/La2O3-SiO2 330 2 3 3900 32.1 39.5 47.5 66.1 [36]

Cu-Co/Al2O3 250 2 2 1800 23.2 23.3 - 79.3 [35]
Co3Cu1-11%CNT 300 2 5 7000 26.5 49.8 - 69.9 [38]
15Co-2.5Ga/AC 220 2 3 4000 13.1 30.3 - 24.5 [17]

LKCG-0.1 290 2 4 6000 13.2 43.6 58.1 69.1 This work
a Molar ratio. b The ethanol’s mass fraction in all alcohols. c The mass fraction of the higher alcohols in all alcohols.

Figure 7 presents the carbon monoxide hydrogenation performance for 200-h stability tests of
LKCG-0.1 catalyst. Seen from Figure 7, the alcohol’s selectivity and CO conversion still maintained
stability, which are remained at 19.8% and 41.8%, and the higher alcohols in all alcohols stabilized at
72.8%. The outstanding stability can be owned to the uniform dispersion of the active sites, stable
catalyst structure, good sintering resistance, and more Co-Ga interfaces.
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Figure 7. (a) Stability performance and (b) alcohols distributions (seen from the illustration) of the
LKCG-0.1 catalyst after 200 h reaction at T = 290 ◦C, P = 4 MPa, GHSV = 6000 mL gcat

−1 h−1, and
H2/CO/N2 = 8/4/1.
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2.7. Thermo-Gravimetry (TG)

Figure 8 exhibited the TG curves of the reduced and used LCG and LKCG-x (x = 0.1 and 0.2)
catalysts and the corresponding differential thermal gravity (DTG) curves of the used catalysts.
In Figure 8, the weight of the three reduced samples increases in the temperature range of 200–320 ◦C,
which is attributed to the oxidation of metal cobalt nanoparticles on the surface of the catalysts.
Therefore, the TG profiles of the catalysts after reduction was severed as a datum to explore the carbon
deposition amount of the catalysts after reaction. In Figure 8b, two exothermic peaks can be seen for
all the samples. The peak located at 300–600 ◦C can be attributed to amorphous carbon; while the
other peak at 600–800 ◦C to the graphitized carbon [39]. Seen from Figure 8b, the incorporation of K
can significantly reduce the total amount and formation rate of amorphous carbon, and for that K can
modulate the composition of the catalysts and produce amount of La2O3, which is beneficial to the
coke elimination.
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Figure 8. (a) Thermo-gravimetric (TG) curves of the reduced and used catalysts and (b) differential
thermal gravity (DTG) curves of the used catalysts.

Seen from the Figure 8, the carbon deposition amounts of LKCG-0.2, LKCG-0.1 and LCG after
reaction are 3.9%, 5.3% and 10.7%, respectively; in other words, the addition of K significantly relieves
the formation of carbon deposition.

For LKCG-x (x = 0.1 and 0.2) catalysts, the containing carbon content of the two catalysts is almost
similar. Compared to LCG catalyst, the adding of K leads to a decrease of carbon deposition. According
to the above XRPD and XPS results for the reduced LKCG-x catalysts, the doping of K can modulate
the composition of La-Ga-O, generating more La2O3, which has a better carbon-depleting effect.
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Herein, the formula of CO2 + La2O3 → La2O2CO3
C→ 2CO + La2O3 is used to illustrate the process

of removing carbon deposits during the reaction, indicating that more La2O3 favors the anti-carbon
effect of catalysts [19,40–42]. In addition, seen from the used XRPD pattern for LKCG-x catalysts, both
La2O3 and La2O2CO3 can also be detected, explaining that the above mechanism is correct. Therefore,
the K-doped catalyst exhibits the best anti-carbon deposition performance.

For the LCG catalyst, seen from the used XRPD result, no La2O3 and La2O2CO3 can be detected.
Meanwhile, there is a strong effects between La and Ga, which is not conducive to eliminating carbon
deposited, and thus the carbon content of the LCG catalyst is largest.

3. Materials and Methods

3.1. Material

Lanthanum (III) nitrate hexahydrate, citrate acid, cobalt (II) nitrate hexahydrate, potassium nitrate,
and glycol were bought from Shanghai Aladdin. Gallium (III) nitrate nonahydrate was purchased
from Beijing HWRK Chem. All of above materials were used without further purification.

3.2. Catalysts’ Synthesis

The citrate complexation method was used to prepare the K-doping catalysts [43]. Firstly,
a solution with La, K, Co, Ga nitrates and citric acid, glycol are mixed by using deionized
water, in which the molar ratio of lanthanum:potassium:cobalt:gallium:citric acid:glycol is
1−x:x:0.65:0.35:2.4:0.48. Secondly, the above prepared mixed solution was continuously stirred to
gel at 80 ◦C, and then dried overnight at 120 ◦C. Finally, the powder catalysts were calcined at
350 ◦C for 2 h and 700 ◦C for 5 h (with a heating speed of 2 ◦C min−1), respectively. The obtained
La1−xKxCo0.65Ga0.35O3 were labeled as LKCG-x (x = 0.1 or 0.2, which is the content of K in perovskite).

For comparison, LaCo0.65Ga0.35O3 without K doping was prepared according to the above method,
and the sample was labeled as LCG.

3.3. Catalysts’ Characterization

XRPD patterns were performed at the speed of 8 ◦C min−1 between 20◦ and 80◦ (2θ). TPR were
performed between 30◦ and 900 ◦C in 5% H2/Ar (50 mL min−1) at the heating rate 10 ◦C min−1. TEM
images, the EDS line scans and the corresponding element mapping scans analysis were performed
to observe the component structure of the catalysts. The N2 physical adsorption curve were tested
to calculate the BET surface areas, the pore size distributions, and the pore volumes of the catalysts.
XPS profiles were used to analyze the binding energy of elements, and the binding energy (BE) of C 1s
was 284.6 eV. TG was performed between 30 ◦C and 900 ◦C in air at the heating speed of 10 ◦C min−1.
H2-TPD was used to analyze the dispersion degree and size of metal cobalt. The formula of d (Co0) =
96/D was used to calculate the size of metal cobalt, and the dispersion of metal cobalt was conducted
by using the method reported in literatures [44,45].

3.4. Catalysts’ Performance

The CO hydrogenation performance of catalysts were tested in a fixed-bed reactor; 0.4 g samples
and 0.4 g quartz sand in 40–60 mesh were mixed and used for the HAS reaction. Temperature,
pressure and gas hourly space velocity were set to 290 ◦C, 4 MPa and 6000 mL·gcat

−1·h−1, respectively.
The molar ratio of H2/CO is 2/1, and the internal standard gas of reaction was N2. Before reaction, the
catalysts precursors were reduced at 750 ◦C and remained 3 h in pure H2 atmosphere. A TCD detector
was used for analyzing H2, N2, CO, CO2, and CH4; the hydrocarbons and alcohols were detected by
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using a FID detector. The following formula is used to calculate CO conversion (XCO), the selectivity
to product (Si), and the weight fraction to product (Wi):

XCO =
COin −COout

COin
× 100% (1)

Si =
nCi

∑ nCi
× 100% (2)

Wi =
mi

∑ mi
× 100% (3)

COin and COout represent the moles fraction of CO in the inlet and outlet gases, respectively; n is
the carbon atoms number, and Ci is the mole fractions of carbon-containing products. mi is the weight
of alcohol.

4. Conclusions

La0.9K0.1Co0.65Ga0.35O3 with a perovskite structure was prepared by using the citrate
complexation method. Due to all the components being derived from the perovskite structure, after
reduction Co is firmly confined to the K-modified La-Ga-O composite oxides, resulting in excellent
anti-sintering performance. The addition of K can modulate the composition of La-Ga-O, forming more
La2O3, favoring the improvement of anti-carbon deposition performance. In addition, the addition of
K also increases the dispersion of cobalt, which can generate a greater Co-Ga interface. What is more
important is that the doping of K can provide more electron donors for metallic Co, which enhances the
selectivity to higher alcohols. Therefore, the catalysts show excellent catalytic activity, high selectivity
to higher alcohol, and outstanding stability for the HAS.
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