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Abstract: The abundance of Cu-contaminated effluents and the serious risk of contamination of the
aquatic systems combine to provide strong motivating factors to tackle this environmental problem.
The treatment of polluted effluents by rhizofiltration and biosorption is an interesting ecological
alternative. Taking advantage of the remarkable ability of the selected plants to bioconcentrate copper
into roots, these methods have been exploited for the decontamination of copper-rich effluents.
Herein, we present an overview on the utility of the resulted copper-rich biomass for the preparation
of novel bio-sourced copper-based catalysts for copper-mediated reactions: from the bioaccumulation
of copper in plant, to the preparation and full analysis of the new Eco-Cu catalysts, and their
application in selected key reactions. The hydrolysis of a thiophosphate, an Ullmann-type coupling
leading to N- and O-arylated compounds, and a CuAAC “click” reaction, all performed under green
and environmentally friendly conditions, will be described.

Keywords: rhizofiltration; biosorption; Eco-Cu catalyst; hydrolysis of thiophosphate; Ullmann-type
reactions; eco-friendly N- and O-arylation; green CuAAC “click” reaction

1. Introduction

Numerous of the greatest successes of organometallic and inorganic chemistry are based on the
use of metal complexes for catalysis and organic synthesis [1,2]. In many cases, such metal complexes,
based most frequently on precious metals such as platinoids, allow the creation of new C–C or C–H
bonds or the cleavage of H–H bonds, etc. Wilkinson [3,4] and, more recently, Noyori and coworkers [5]
have developed remarkably reactive rhodium and ruthenium complexes for use in catalytic asymmetric
hydrogenations of C=C or C=O bonds. Nowadays, many C–C, C–N, and C–O coupling reactions; C–H
activations; and metal catalysed redox reactions are widely used in organic processes [6]. However,
the main limitation of these catalytic systems remains the cost and availability of the metal used [6].

Therefore, the current challenges rely precisely in the use of new metal catalytic systems replacing
platinoids by more abundant, cheap, and readily available metals [7]. In that scenario, copper is a
transition metal that perfectly meets these criteria [8]. Indeed, the literature testifies a broad range
of reactivity of copper species (Figure 1). One of the most famous is the ability of copper to promote
coupling reactions [9,10], among them the Ullmann-type reactions [11–14]. Indeed, the literature
offers many methodologies for the formation of C–N bonds, such as the arylation of amines [15–17],
the arylation and vinylation of N-heterocycles [18], aromatic amidation (Goldberg reaction) [19,20],
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and azidation [21]. These Ullmann-type reactions have been extended to the formation of C–O
bonds that led to the synthesis of diaryl ethers [22], to the aryloxylation of vinyl halides [23,24], or
to the cross-coupling of aryl halides with aliphatic alcohols [25]. Likewise, formations of C–C bonds
were reported, including cross-coupling with terminal acetylene [26–29], the arylation of activated
methylene compounds [30], and cyanation [31]. Worth mentioning are also the C–S bond formation
(the synthesis of bisaryl- and arylalkyl-thioethers [32,33] and the assembly of aryl sulfones [34]) and the
C–P bond formation by copper catalysis [35]. Another key part of copper chemistry is the 1,3-dipolar
cycloaddition, in particular the Cu-catalysed Azide-Alkyne Cycloaddition (CuAAC) “click” [36,37].
Indeed, this reaction represented the prime example of the concept of “click” chemistry, developed by
Sharpless et al. [38]. This reaction had a huge influence on drug discovery and became very popular
in biological and medicinal science as a ligation tool [39]. Copper can also be a versatile catalyst and
promote reductions (hydrosilylation of ketones [40]) or oxidations (cleavage/oxidation of benzylidene
acetals [41]). As last examples, copper catalyses the protection/deprotection transformations of
important functional groups such as the formation of isopropylidene acetals [42], the deprotection of
thioacetals, and selective ester hydrolysis [43].
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Furthermore, in line with the current trends in sustainable and green chemistry, heterogenous
catalysts for copper-based reactions were reported in the literature. This area of research
continues to evolve as a more suitable approach because of its crucial advantages such as the
easy separation of products from catalyst, a high stability of the heterogenous catalysts, and, most
importantly, their recyclability. In that aspect, the selected examples of heterogenous copper catalysts
employing Cu/C (copper-on-charcoal) [44,45], copper powder [46], magnetite-supported copper
nanoparticles [47], Cu/ligand catalyst immobilized on silica [48], CuI immobilised on MOF [49],
alumina-supported CuO [50], and recent mesoporous copper supported on manganese oxide material
(meso Cu/MnOx) [51] as well as copper oxide catalysts supported on three dimensional mesoporous
aluminosilicates [52] are certainly worth mentioning. Additionally, representative examples of
Ullmann-type reactions using organic (bio)polymers [53–55], or zeolites [56], as supports should
be mentioned.

Copper-catalysed reactions have found wide applications for the synthesis of natural products,
biomolecules, and precursors of advanced materials [57–59]. Heterocycles have been efficiently
prepared through copper-catalysed cascade or multicomponent reactions [60–64], some of which have
led to the synthesis of pharmaceutically important compounds [65–67].

Given the importance of copper-based catalysis, the purpose of this review is to discuss the recent
advances in the preparation of the first fully bio-based, ecological copper catalysts, named Eco-Cu,
and their application in organic synthesis.

In a first part, this review will focus on the preparation of the ecocatalysts based on the use of
Cu-rich biomasses and remedial phytotechnologies (i.e., rhizofiltration [68–70] or biosorption [71])
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in order to decontaminate metal-polluted water. This part highlights the possibility and feasibility
to efficiently reconcile copper-catalysis for organic synthesis with the protection of the environment,
including the preservation or remediation of aquatic systems. Rhizofiltration refers to the approach
in which aquatic plant roots are used to purify contaminated water through metabolically mediated
process, whereas biosorption can be defined as the ability of biological materials to accumulate
pollutants from wastewater through physicochemical pathways based on different mechanisms
including absorption, adsorption, ion exchange, surface complexation, or precipitation.

In a second part of this review, the full characterisation of the copper ecocatalysts will be described.
Polymetallic compositions, morphology, Lewis acid properties, and oxidation’s states of reported
ecocatalysts will be detailed in order to rationalise and predict their reactivity.

Finally, the synthetic potential of Eco-Cu will be illustrated through three major applications
of copper catalysis: (i) the hydrolysis of the thiophosphate group in an important example of
parathion [68], (ii) the Ullmann coupling for N- and O-arylation [69], and finally, (iii) the CuAAC
“click” reaction performed under green and environmentally friendly conditions [70].

2. Phytoaccumulation of Copper

There are different ways to phytoaccumulate metallic elements. In this part, we will focus on the
rhizofiltration and biosorption that have been used by Grison et al. to prepare copper ecocatalysts [69–71].

2.1. Preparation via Rhizofiltration

The rhizofiltration of copper was studied with three aquatic plants: Bacopa monierri, Lolium
multifolium, and Eichhornia crassipes [69,70]. When choosing the plants, two criteria were selected:
i) the biomass should be insoluble in water and ii) the structure of the biomass should be based on
carbon-containing aromatic compounds and contain many carboxylate groups naturally present in the
material of plant origin. Table 1 presents the concentration of copper in each plant after rhizofiltration
and the bioconcentration factor of each accumulation. The bioconcentration rates of Cu in the roots
were evaluated by ICP-MS (Inductively Coupled Plasma Mass Spectrometry).

Table 1. The copper concentration in roots and bioconcentration factor (BCF) calculation.

Plant Cu Concentration in Effluent (mg/L) Roots (wt. % ± SD) BCF 4 (in Roots)

Bacopa monnieri 1 10.5 1.34 ± 0.011 1279
Lolium multiflorum 2 10.6 0.71 ± 0.0036 666
Eichhornia crassipes 3 10.5 2.55 ± 0.027 2430

1 During Cu accumulation, the substrate used for growth was removed. 2 Lolium multiflorum was still on
Fleximix Root Riot Organic Starter Cubes during the copper accumulation. 3 No substrate was used for growth.
4 Bioconcentration factor.

The BCF is the ratio of the amount of copper accumulated in the roots to the concentration
of the element left in the effluent after rhizofiltration. For all species, the initial concentrations of
copper were the same. The BCF results showed that each studied aquatic plant was capable of
bioconcentrating copper in large quantities. E. crassipes, however, was found to be the most efficient
compared to B. monnieri and L. multiflorum, the latter being the least effective of the three species for
this bioaccumulation. The E. crassipes also has the advantage of having a very important root biomass,
and therefore, this plant represents the best candidate for rhizofiltration in order to prepare a large
quantity of Cu-rich ecocatalysts.

2.2. Preparation by Biosorption

Biosorption is using natural waste, abundant and rich in tannin biomasses, as a metal accumulator.
The same authors recently illustrated this methodology by using coffee grounds to accumulate different
metals, in particular copper [71]. In order to increase their adsorption capacity and affinity with the
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metal, the coffee grounds were functionalised with citric acid. This modification was described as
easily doable and important for the efficiency of the biosorbant but also for its preservation. Table 2
depicts the biosorption of different copper solution by analysing the quantity of the element in the
effluent, before and after accumulation.

Table 2. The biosorption of copper using functionalized coffee grounds. 1

Quantity of Coffee Grounds (g) Initial Concentration of Cu (mg/L) Final Concentration of Cu (mg/L)

1 15 0
1 101 54

2.5 315 186
1 Stirring at room temperature for 2 hours.

It appeared that the maximum biosorption capacity of the functionalised coffee grounds was
very high. These data could be advantageously compared to the values reported in the literature
by Cerino-Córdova et al. [72]. The authors described the accumulation of copper with closely
related materials. The coffee grounds’ functionalisation’s conditions are different in both studies.
In Cerino-Córdova’s work, the esterification reaction occurred in aqueous medium, compared to
Grison’s conditions in ethanol. In addition, the biosorption tests were carried out at different pH,
slightly acidic (pH = 5) in Cerino-Córdova’s work, where a large part of the carboxylate functions
was protonated, and this fact limited the biosorption of the copper. Under Grison’s conditions,
the biosorption was faster (2 hours compared to 5 days) at a neutral pH. The biosorption seemed then
faster than the precipitation of Cu2+ ions. The biosorption method was, therefore, ideal for recycling
Cu(II) species from homogeneous catalysis reactions.

3. Preparation and Characterisation of the Copper Ecocatalyst, Eco-Cu

3.1. Preparation via Rhizofiltration

An interesting recovery of Cu-rich biomasses or Cu-rich coffee grounds is the preparation of
bio-based catalysts, called Eco-Cu. A sequence of treatments was developed for the reproductible
preparation of Eco-Cu [69,70]. After a controlled thermal treatment under air, the organic matter was
converted into CO2 and H2O. The mineral residue polymetallic oxidized species were treated under
acidic condition (HCl in this case) in order to form metallic chloride species. The mineral compositions
of the resulting Eco-Cu were measured by ICP-MS (Inductively Coupled Plasma Mass Spectrometry)
(Table 3).

Table 3. The mineral compositions of the different Eco-Cu.

Eco-Cu Plant Mineral Composition (%wt. ± %RSD)

Na Mg Al K Ca Fe Zn Cu

Eco-Cu1 Bacopa monierri 5.29 1.86 1.93 3.48 4.91 1.21 0.04 4.75
±0.18 ±0.53 ±1.14 ±0.29 ±0.77 ±0.34 ±0.77 ±0.45

Eco-Cu2 Lolium multiflorum 0.50 0.36 0.00 0.72 22.18 0.02 0.05 2.02
±0.69 ±1.48 ±6.00 ±0.71 ±0.59 ±1.86 ±0.72 ±1.05

Eco-Cu3 Eichhornia crassipes 0.84 0.26 0.05 0.14 0.61 0.81 0.03 10.37
±0.57 ±0.95 ±1.82 ±0.34 ±6.97 ±0.21 ±5.86 ±0.23

Eco-Cu4
Functionalized
coffee grounds

0.46 0.62 0.06 0.10 8.81 0.08 0.17 52.51
±0.74 ±0.63 ±5.30 ±1.04 ±0.08 ±2.31 ±5.81 ±2.16

It appeared that the functionalized coffee grounds could absorb by biosorption more copper
element than the plants by rhizofiltration. This made coffee grounds a promising material for recycling
copper in effluents. However, the lack of physiological metallic elements (for example Fe and K)
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in it decreased the catalytic activity, in comparison to the Eco-Cu prepared from plants. Therefore,
the Infrared (IR) study of the Lewis and Brønsted acidic character of Eco-Cu4 was not carried out.
The polymetallic composition of the other Eco-Cu was clearly an advantage.

3.2. Identification of the Degree of Oxidation

Usually, X-ray Photoelectron Spectrometry (XPS) allows the determination of the oxidation state
of a metallic centre. In the case of copper salts, the XPS analysis did not allow to identify the oxidation’s
state, as the method induces the reduction of Cu(II) salts to Cu(I). The oxidation’ states were established
by different colourimetric methods, the oxime [73] and ammonia tests [74].

Both tests supported the presence of Cu(II) species in all catalysts.

3.3. Direct-Injection Mass Spectrometric Analysis of Eco-Cu3

In order to specify the nature of the copper(II) chloride salts present in Eco-Cu3, direct injection
electrospray mass spectrometry operating in negative ion mode (MS-ESI) analyses were carried
out. From Eco-Cu3, two copper chloride species were detected: CuCl32− and CuCl2−. During the
experiment, an electrochemical reduction of Cu(II) into Cu(I) was observed. This led to the conclusion
that Eco-Cu3 consisted of a mixture of CuCl42− and CuCl3−.

3.4. Morphology Study of Eco-Cu3 by BET Analyses

BET analyses were performed in order to study the morphology of the new materials. The surface
properties of the Eco-Cu3 catalyst were determined by nitrogen sorption. The material has a relatively
low porosity with an specific surface area SBET of 12.0 m2.g−1 and a mesoporous volume Vmeso of
0.07 cm3.g−1. An absorption of nitrogen appeared at high P/P0 values, indicating a broad pore size
distribution and an average pore size greater than 10 nm, due in part to intergranular porosity. Overall,
bulk copper(I) catalyst exhibit a small surface area (for example 1.9 m2.g−1 with CuO). However
copper nanoparticles with a defined size can have a greater surface area (136 m2.g−1), which allows
for enhanced catalytic activity in an Ullmann reaction [9].

3.5. XRD Analysis of the Eco-Cu3 Catalyst

X-ray Diffraction (XRD) analyses were performed in order to determine the crystalline structure of
the different complexes in the Eco-Cu3 catalyst. No crystalline form of copper was observed. However,
a variety of salts such as K6Fe2O5, MnO, NaCl, and CaSO4 were detected. Among them, K6Fe2O5,
a polymetallic species, was reported by Shanks et al. as an efficient catalyst for the ethylbenzene
dehydrogenation into styrene [75].

3.6. Analysis of the Acidic Properties of the Eco-Cu

3.6.1. Lewis and Brønsted Acidic Character

The Lewis and Brønsted acid properties of the ecocatalyst Eco-Cu3 were examined and compared
to commercially available copper chloride. A first method of acidic properties analysis was based
on the IR study of pyridine sorption/desorption at 25 ◦C and then 150 ◦C in order to distinguish
the physisorbed pyridine from pyridine coordinately bonded to Lewis acid sites [76,77]. Pyridine is
commonly used as a probe to evaluate the acidity of known Lewis and Brønsted acids by controlling
its infrared absorption bands observed between 1400 and 1660 cm−1. Absorption bands between
1445–1460 cm−1 are characteristic for strongly bound Lewis acid sites of pyridine. The frequencies of
these absorption bands were similar in the four catalysts (Table 4). Only in the case of Eco-Cu2 the
values were lower, suggesting a weaker Lewis acid character for this ecocatalyst. It was concluded that
the Lewis acid character of Eco-Cu1,3, anhydrous CuCl2, and CuCl2·2H2O was similar. Surprisingly,
in the case of Eco-Cu1 and Eco-Cu3, we have also observed absorption bands at 1529 and 1530 cm−1.
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This observation was interpreted as a proof for the unique Brønsted acid character of that ecocatalyst,
not observed either in the case on commercially available copper chloride.

Table 4. The IR spectra of adsorbed pyridine on commercial anhydrous CuCl2, on CuCl2·2H2O, and on
Eco-Cu1–3.

Catalyst Lewis Acidity
(1445–1460 cm−1)

Lewis Acidity
(1600–1640 cm−1)

Brønsted Acidity
(1500–1540 cm−1)

CuCl2 1450 1606 -
CuCl2·2H2O 1449 1605, 1635 -

Eco-Cu1 1449 1602, 1633 1529
Eco-Cu2 1447 1607 -
Eco-Cu3 1449 1606, 1645 1530

3.6.2. Analysis of the Lewis and Brønsted Acid Properties by the Corma Method

The results and information obtained during IR analysis were supported by the results of Corma’s
test performed in the related work. This method introduced by Corma et al. consists of studying the
rearrangement pathway of the cyclic α-bromopropiophenone acetal in the presence of a catalyst [78].
The proportion of the rearrangement’s products provides useful information evaluating the hardness
of the Lewis acid character of the catalyst (Table 5). The formation of an ester results from the opening
of the acetal by a hard Lewis acid. In contrast, the formation of the cyclic product proceeds from
the action of a soft Lewis acid. Moreover, the Brønsted acidity of the catalyst can be evaluated by
measuring the amount of propiophenone formed. The results using Corma’s method for Eco-Cu3 and
CuCl2 catalysts are presented below.

Table 5. The analysis of the acidic properties of the copper catalysts by Corma’s method.
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observed, while the use of both cupric chlorides led to a lower conversion, 49% and 65% depending
on their degree of hydration. It appeared that the Brønsted acidic character was slightly higher for
Eco-Cu3 than in the case of the two commercially available copper chlorides, which supports the results
obtained by IR. Finally, the formation of the heterocycle resulting from a soft acidity was observed
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was a stronger and harder Lewis acid than the commercially available cupric chlorides. This reactivity
was rationalised with the polymetallic composition of the ecocatalysts and with the presence of other
elements known to be hard Lewis acids, such as iron or calcium species, as shown by ICP-MS analysis.



Catalysts 2019, 9, 214 7 of 19

4. Study of the Synthetic Potential of the Eco-Cu Catalysts

4.1. Cu-Catalysed Hydrolysis of Thiophosphates

The copper-catalysed hydrolysis of thiophosphates using an Eco-Cu has been reported using an
example of environmental interest, namely the catalysed decomposition of parathion [68]. Discovered
by Schrader, this compound has been widely used as an insecticide and acaricide agent [79]. However,
parathion was recently found to be highly neurotoxic for many other organisms, as a good inhibitor of
the enzyme acetylcholinesterase [80,81]. The transformation of parathion into paraoxon in the liver
or in the environment is even more dangerous [82]. Therefore, their first identified objective was the
development of a method to decompose such biocides (parathion here) in order to decontaminate
humid or aquatic zones while being environmentally friendly technologies. A first difficulty was
related to the chemical nature of this type of biocide. Indeed, the presence of the sulphur atom of the
thiophosphate group is responsible for the much higher stability compared to a phosphoric ester [83].
Therefore, the proposed strategy for the rapid decomposition of parathion in aqueous media was
based on the use the natural affinity of sulphur to coordinate with the Cu(II) ions. Copper should act
as an electrophilic activator, weakening the P=S bond and facilitating the nucleophilic attack of water
(Scheme 1). To experimentally confirm the utility of the Losfled strategy, the ecocatalyst (Eco-Cu1) has
been used as the source of copper. The Eco-Cu1 was prepared from the biomass of a metallophyte plant,
Bacopa monierri, able to bioaccumulate cooper during rhizofiltration of industrial effluents polluted
with copper [69]. During the hydrolysis of parathion, the pH is usually important, especially to follow
the formation of p-nitrophenolate. In the presented case, the pH during hydrolysis was close to 6 and
could not promote the hydrolysis.
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Therefore, this developed process proposed the remediation of two kinds of pollution: (i) metallic
pollution by Cu(II) salts where rhizofiltration can naturally clean contaminated water and (ii) pollution
with organophosphate. This method is bio-based: The Eco-Cu1 are prepared from Bacopa monierri
and copper, the latter being overconcentrated because of anthropogenic metallurgy. The ecocatalysts
are then used as a catalyst in the hydrolysis, and thus in the neutralization, of the toxic biocide
parathion. A kinetic study of the hydrolysis of parathion was performed to evaluate the catalytic effect
of these new plant-based copper species, according to the mechanism indicated above (Scheme 1).
The progress of copper-catalysed hydrolysis of parathion was monitored by phosphorus nuclear
magnetic resonance spectroscopy (31P NMR) in order to unambiguously distinguish and quantify
the numerous phosphorylated compounds present in the reaction mixture. Each phosphorylated
compound was identified according to its chemical shift on the 31P NMR spectra which was strongly
dependent from the electronic environment around the phosphorus atom (Figure 2).

The analysis of the 31P NMR spectra was demonstrative after 30 hours of stirring: the catalyst
promoted the hydrolysis of parathion (29% remained instead of 56%, based on the integration of
the signals on the 31P NMR) and the formation of diethyl thiophosphate. This decomposition was
unambiguous, and no trace of paraoxon was observed (Figure 2).
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4.2. Copper-Catalysed Ullmann Coupling Reactions

As mentioned in the introduction, copper-catalysed coupling reactions are widely used in organic
syntheses. The application of the Eco-Cu catalysts was investigated for Ullmann-type reactions [69].
Despite considerable efforts studying the Ullmann reaction, the development of ligands that are more
efficient, more air and moisture stable, recyclable, and easy to prepare is still under investigation in
order to facilitate this coupling reaction under green conditions. Copper-catalysed Ullmann coupling
frequently requires harsh conditions, specific ligands, and large amounts of Cu for the reaction to
occur. In this context, the catalytic potential of Eco-Cu was, therefore, particularly appealing.

4.2.1. N-Arylation Ullmann-type Reaction

One of the particularities of Eco-Cu is their polymetallic structure. Those catalysts were, therefore,
compared to the catalysts described by Taillefer et al. who have developed one of the few examples
of bimetallic catalysis [84,85]. In the following described work, the N-arylation reaction carried out
with pyrazole and iodobenzene was chosen as the comparative model (Table 6) [69]. Each Eco-Cu was
found to be efficient for this reaction. A direct correlation between the coupling efficiency and the
copper concentration in the catalyst was established. Importantly, at equal amounts of copper, Eco-Cu
were found to be more active than CuCl2. Only 1 mol. % of copper was enough to observe a good
reactivity, which is a very low catalytic loading compared with reported studies on copper-catalysed
coupling (10 to 20 mol. %). These results are described as an important advantage from the practical,
environmental, and economic point of view. Additionally, Eco-Cu3, which contains more copper than
the other ecocatalysts, was found to be also the most active of all tested Eco-Cu.

Similar reactions under ligand-free conditions, reported in the literature, required a considerably
higher loading of copper and harsher conditions, for example, 20 mol. % of Cu, 8 h at 120 ◦C in
propionitrile as described by Hu et al. [86] or 10 mol. % of Cu, 24 h at 120 ◦C in DMF as described
by Zhang et al. [87]. In comparison, the same authors reported the N-arylation of pyrazole with
iodobenzene using excess tetraethylenepentamine (TEPA) (2 equiv.) as a base, and 10 mol. % of the
copper catalyst was still needed or tetrabutylammonium bromide (TBAB) (3 equiv.) and a reaction
time of 12 h at 125 ◦C was needed [88]. The copper loading could be reduced to 5 mol. % in some cases
using unusual copper sources such as CuO hollow nanospheres immobilized on acetylene black [89] or
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Cu nanoparticles [90]. However, both protocols required harsh conditions: 18 h at 180 ◦C and 18 h at
150 ◦C. Finally, the loading of 0.08 mol. % of copper for the N-arylation of pyrazole with iodobenzene
under ligand-like conditions was reported by Bolm et al. [91]. However, this method required the
presence of 1,2-dimethylethylenediamine (DMEDA) (20 mol. %); plus, the reactions were carried out
at 135 ◦C for 24 h. It appeared that the use of Eco-Cu catalysts represented an improvement over the
methods found in the literature. Once again, the performance of the ecocatalysts was explained by
their polymetallic composition and, more precisely, by the presence of alkaline metals (Na+ and K+)
and salts with Lewis acid properties (Ca2+, Mg2+, and Fe3+). This hypothesis was in agreement with
the work of Zhang et al. who demonstrated the advantages of inorganic salt particles in transition
metal-catalysed coupling reactions [92]. Partial negative charges on the salt surface created an electron
donor effect and increased the electron density around the metal centres. In addition, the anions on
the surface of the material have a similar influence on the aryl halide. The combination of these effects
favoured the oxidative addition step and improved the reaction rate. In addition, according to Fan et
al., the presence of Lewis acids would favour the polarization of the aryl-halogen bond [93]. This effect
resulted in a significant increase of the cross-coupling rate [94]. Finally, these results were consistent
with the previous work reported by Grison and coworkers on Heck-Mizoroki and Suzuki-Miyaura
cross-coupling reactions with Eco-Pd catalysts, characterized by an excellent dispersion of the active
centres on the mineral matrix of Na, K, Ca, Mg, and Fe [95].

Table 6. A comparison of the catalytic activity of Eco-Cu and CuCl2.
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Entry 1 [Cu] Catalyst wt. % of Eco-Cu [Cu] Quantity (mol. %) Yields 2

1 Eco-Cu1 4.8 1 84
2 Eco-Cu2 2.0 1 77
3 Eco-Cu3 10 1 85
4 Eco-Cu3 10 0.25 57
5 CuCl2 - 1 48 3

6 CuCl2 - 3 79 3

1 Reaction conditions: iodobenzene (5 mmol, 1 eq.), pyrazole (7.5 mmol, 1.5 eq.), Eco-Cu (x mol. %), Cs2CO3
(10 mmol, 2 eq.), DMF (5 mL), 90 ◦C, 15 h, and under argon atmosphere. 2 Isolated yields. 3 Yields were determined
by GC-MS analysis.

This Ullmann-type reaction was extended to other azole derivatives but with some limitations
concerning aniline and secondary amines such as pyrrolidine and morpholine as nucleophiles (Table 7).

Table 7. The extension of the Ullmann reaction to other nitrogen nucleophiles.
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Entry Nitrogen Nucleophile Yields (%) 1,2

1 Pyrazole 85
2 Imidazole 54
3 2-Pyrrolidinone 31 3

4 Aniline 0 3

5 Pyrrolidine 6 3

6 Morpholine 5 3

1 Reaction conditions: iodobenzene (5 mmol, 1 eq.), pyrazole (7.5 mmol, 1.5 eq.), Eco-Cu3 (1 mol. %), Cs2CO3
(10 mmol, 2 eq.), DMF (5 mL), 90 ◦C, 15 h, and under argon atmosphere. 2 Isolated yields. 3 The yields were
determined by GC-MS analysis.
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The study of the scope of the reaction showed a good applicability of the method with a large
variety of aryl halides, substituted by electron withdrawing or donating groups (Table 8). The use of
DMF as a solvent was required; only γ-valerolactone could replace DMF, but lower conversions were
observed. The Eco-Cu3 promoted efficient coupling reactions with aryl iodide, bromide, and even
chloride. The yields were good to excellent when the temperature was correctly adjusted. As expected,
the presence of an electron donating group such as p-OMe resulted in a decrease of reactivity (entry 2).
However, by increasing the temperature of the reaction from 90 to 110 ◦C (entry 3), the aryl halide,
even substituted with an electron donating group, could react efficiently with the pyrazole partner.
Finally, the presence of electron-withdrawing groups facilitated the coupling reaction (entries 4–9).

Table 8. The extension of the Ullmann reaction to other halogen derivatives.
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Entry Aryl Halide T (◦C) Time (h) Yield (%) 1,2

1 R = H; X = I 90 15 85
2 R = OMe; X = I 90 15 63
3 R = OMe; X = I 110 15 93
4 R = COMe; X = I 90 4 >98
5 R = COMe; X = Br 90 15 31
6 R = NO2; X = Br 90 4 >98
7 R = NO2; X = Cl 90 4 >98
8 R = CN; X = Cl 90 15 73
9 R = CN; X = Cl 110 15 89

1 Reaction conditions: aryl halide (5 mmol, 1 eq.), pyrazole (7.5 mmol, 1.5 eq.), Eco-Cu3 (1 mol. %), Cs2CO3 (10 mmol,
2 eq.), DMF (5 mL), T ◦C, time (h), and under argon atmosphere. 2 Isolated yields.

4.2.2. O-Arylation Ullmann-type Reaction

The creation of C–O bonds by Ullmann reaction is less reported in the literature than the
N-arylation. The most conventional approach is based on the reaction of aryl bromides with phenols
in the presence of ligands and a high catalyst loading (10–30 mol. %) and at elevated temperatures
(50–110 ◦C). In the case of the use of aryl chlorides, even higher temperatures are necessary (135 ◦C
to 160 ◦C). Therefore, the study of the potential application of Eco-Cu catalysts for that reaction was
interesting (Table 9).

The O-arylation reactions catalysed by Eco-Cu3 were found to be very efficient in the presence of
Cs2CO3 as a base at 110–130 ◦C. The reaction did not require the presence of any ligand, and only 1 mol.
% of copper was sufficient to reach very good yields (51–98%) and a large substrate scope. The high
potential of Eco-Cu to catalyse efficiently Ullmann-type coupling reactions has been demonstrated.
Importantly N- and O-arylation reactions did not work without the Eco-Cu catalyst or with CuO [96].
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Table 9. The Eco-Cu3-catalysed O-arylation.
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The O-arylation reactions catalysed by Eco-Cu3 were found to be very efficient in the presence 
of Cs2CO3 as a base at 110–130 °C. The reaction did not require the presence of any ligand, and only 1 
mol. % of copper was sufficient to reach very good yields (51–98%) and a large substrate scope. The 
high potential of Eco-Cu to catalyse efficiently Ullmann-type coupling reactions has been 
demonstrated. Importantly N- and O-arylation reactions did not work without the Eco-Cu catalyst 
or with CuO [96]. 

4.3. The Copper(I)-Catalysed Alkyne-Azide Cycloaddition (CuAAC) “Click” Reaction 

As a last huge application of copper catalysis, the feasibility with Eco-Cu of 1,3-dipolar 
cycloaddition between azides and alkynes was investigated [70]. This important reaction was the 
first example of "click chemistry" where the mechanism of "fusion" between two molecules 
represents a perfect atom economy [97]. This reaction fits perfectly into the current trends in green 
chemistry. It is also a very good method of access to substituted 1,2,3-triazoles. Finally, CuAAC has 
led to many applications in the fields of organic synthesis [98], medicinal chemistry [99,100], 
molecular biology [99,101], and materials science [102]. The “click” chemistry is increasingly used 
for the labelling of biomacromolecules [39,103,104] or as functional tool to understand complex 
biological systems [105,106]. The abovementioned facts illustrate the current interest for 
synthesizing triazoles using aqueous systems. Additionally, in the context of green chemistry, the 
development of ligand-free catalysts is an additional challenge. Ligand free catalysis represents a 
double advantage in terms of cost (the high cost of the ligands limits the industrial interest of the 
process) and purification (the delicate separation step between the ligand and the product is 
avoided).  The Eco-Cu represented a very good alternative for the development of new sustainable 
and environmentally friendly catalytic processes. This possibility was demonstrated by of Eco-Cu3 
catalyzed azide-alkyne cycloaddition (CuAAC) in aqueous medium [70]. Additionally, for the first 
time, it has been shown that a homogeneous Cu-based catalyst, Eco-Cu3, can be recycled by the 
rhizofiltration technique from the reaction mixture and then reused. 

4.3.1. Application of Eco-Cu in the CuAAC Reaction 

The reaction of benzyl azide with propargyl alcohol was chosen as the illustrative example. 
During the optimisation of the reaction, it appeared that sodium ascorbate, a natural and aqueous 
soluble reducing agent, could reduce in situ Eco-Cu3 into a Cu(I) active catalyst in only few minutes 
at room temperature. The Eco-Cu3 was found to be very efficient for this reaction, using a mixture of 
triethyl amine and sodium ascorbate (NaAsc). Different solvent systems were investigated (Table 
10): Very good conversions were obtained in green solvents, such as water, ethanol, isopropanol, or 
2-methyltetrahydrofuran. 

Table 10. The influence of the solvent on the CuAAC Click reaction with Eco-Cu3. 

Eco-Cu3

NaAsc, Et3N
Solvent, 25 癈 , 16 h

OH

N3 N

NN OH

 
Entry Solvent Conversion (%) 1,2 

1 H2O >99 
2 EtOH >99 

>98

1 Reaction conditions: Aryl halide (5 mmol, 1 eq.), phenol (6 mmol, 1.2 eq.), Eco-Cu3 (1 mol. %), Cs2CO3 (10 mmol,
2 eq.), DMF (5 mL), 15 h, and under argon atmosphere. 2 Isolated yields. 3 The yields were determined by
GC-MS analysis.
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4.3. The Copper(I)-Catalysed Alkyne-Azide Cycloaddition (CuAAC) “Click” Reaction

As a last huge application of copper catalysis, the feasibility with Eco-Cu of 1,3-dipolar
cycloaddition between azides and alkynes was investigated [70]. This important reaction was the first
example of “click chemistry” where the mechanism of "fusion" between two molecules represents
a perfect atom economy [97]. This reaction fits perfectly into the current trends in green chemistry.
It is also a very good method of access to substituted 1,2,3-triazoles. Finally, CuAAC has led to
many applications in the fields of organic synthesis [98], medicinal chemistry [99,100], molecular
biology [99,101], and materials science [102]. The “click” chemistry is increasingly used for the
labelling of biomacromolecules [39,103,104] or as functional tool to understand complex biological
systems [105,106]. The abovementioned facts illustrate the current interest for synthesizing triazoles
using aqueous systems. Additionally, in the context of green chemistry, the development of ligand-free
catalysts is an additional challenge. Ligand free catalysis represents a double advantage in terms of cost
(the high cost of the ligands limits the industrial interest of the process) and purification (the delicate
separation step between the ligand and the product is avoided). The Eco-Cu represented a very good
alternative for the development of new sustainable and environmentally friendly catalytic processes.
This possibility was demonstrated by of Eco-Cu3 catalyzed azide-alkyne cycloaddition (CuAAC) in
aqueous medium [70]. Additionally, for the first time, it has been shown that a homogeneous Cu-based
catalyst, Eco-Cu3, can be recycled by the rhizofiltration technique from the reaction mixture and
then reused.

4.3.1. Application of Eco-Cu in the CuAAC Reaction

The reaction of benzyl azide with propargyl alcohol was chosen as the illustrative example.
During the optimisation of the reaction, it appeared that sodium ascorbate, a natural and aqueous
soluble reducing agent, could reduce in situ Eco-Cu3 into a Cu(I) active catalyst in only few minutes at
room temperature. The Eco-Cu3 was found to be very efficient for this reaction, using a mixture
of triethyl amine and sodium ascorbate (NaAsc). Different solvent systems were investigated
(Table 10): Very good conversions were obtained in green solvents, such as water, ethanol, isopropanol,
or 2-methyltetrahydrofuran.

Table 10. The influence of the solvent on the CuAAC Click reaction with Eco-Cu3.
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Table 10. The influence of the solvent on the CuAAC Click reaction with Eco-Cu3. 

Eco-Cu3

NaAsc, Et3N
Solvent, 25 °C, 16 h

OH

N3 N

NN OH

 
Entry Solvent Conversion (%) 1,2 

1 H2O >99 

2 EtOH >99 

Entry Solvent Conversion (%) 1,2

1 H2O >99
2 EtOH >99
3 i-PrOH >99
4 2-Me-THF >99
5 DMF >99
6 H2O 3 0

1 Reaction conditions: Propargyl alcohol (1 mmol, 1 eq.), azide (1 mmol, 1 eq.), Eco-Cu3 (5 %mol.), NaAsc (5 mmol,
5 eq.), Et3N (20 mmol, 20 eq.), solvent, 25 ◦C, and 16 h. 2 The conversions were determined by GC-MS after
calibration with hexadecane as an internal standard. 3 A blind experiment in which the ecocatalyst has been
prepared following the same protocol from a plant that was never in contact with the CuNO3 solution.

The polymetallic composition of Eco-Cu3 did not affect the interactions between the copper site
and the substrate. Additionally, the ecocatalyst displayed a very high selectivity, and no formation
of by-products was observed. The reaction led exclusively to 1,4-substituted triazole. It has to be
noted that no Glaser coupling product (diynes) was detected under aerobic conditions. However,
in the presence of K2CO3 under air, the only observed reaction is the Glaser coupling product,
2,4-hexadiyne-1,6-diol, resulting from the homocoupling of the alkyne. The most efficient conditions
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reported in the literature for CuAAC involved the use of CuSO4 under aqueous conditions or CuI, CuBr,
Cu(OAc)2, or Cu in organic solvents [107]. The effectiveness of CuCl or CuCl2/sodium ascorbate was
rarely described [102]. The use of Eco-Cu3 ensured very simple experimental conditions and a large
application of the method to aliphatic, aromatic, and functionalised substrates such as propargyl ester,
alkenyl, or substrates containing amines or alcohol groups (Table 11). Worth mentioning is the activity
of the Eco-Cu3, comparable to homogeneous Cu catalysts [108], and recently to the heterogeneous
catalysts described by Taskin et al. [109]. The clear advantage of this methodology reported here with
Eco-Cu was the simplicity of the reaction treatment and isolation of products. No purification was
necessary: A simple addition of 2-methyltetrahydrofurane or ethyl acetate allowed the isolation of the
products with a high purity.

Table 11. A substrate scope of the Eco-Cu-catalysed CuAAC reaction.
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CuBr, Cu(OAc)2, or Cu in organic solvents [107]. The effectiveness of CuCl or CuCl2/sodium 
ascorbate was rarely described [102]. The use of Eco-Cu3 ensured very simple experimental 
conditions and a large application of the method to aliphatic, aromatic, and functionalised substrates 
such as propargyl ester, alkenyl, or substrates containing amines or alcohol groups (Table 11). Worth 
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acetate allowed the isolation of the products with a high purity. 

Table 11. A substrate scope of the Eco-Cu-catalysed CuAAC reaction. 

 

Entry Azide Alkyne 
Yield (%) 1,2  

(with Eco-Cu3) 
Yield (%)  

(other [Cu]) 

1   >99 (92)3 >99 [110] 

2 
  >99 - 

3   >99 (78)3 >99 [110] 

4  
 

98 98 [109] 

5   >99 61 [109] 

6 
 

 >99 85 [109] 

98 98 [109]

5

Catalysts 2019, 9, 214 13 of 20 

 

3 i-PrOH >99 
4 2-Me-THF >99 
5 DMF >99 
6 H2O 3 0 

1 Reaction conditions: Propargyl alcohol (1 mmol, 1 eq.), azide (1 mmol, 1 eq.), Eco-Cu3 (5 %mol.), 
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was never in contact with the CuNO3 solution. 
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2,4-hexadiyne-1,6-diol, resulting from the homocoupling of the alkyne. The most efficient conditions 
reported in the literature for CuAAC involved the use of CuSO4 under aqueous conditions or CuI, 
CuBr, Cu(OAc)2, or Cu in organic solvents [107]. The effectiveness of CuCl or CuCl2/sodium 
ascorbate was rarely described [102]. The use of Eco-Cu3 ensured very simple experimental 
conditions and a large application of the method to aliphatic, aromatic, and functionalised substrates 
such as propargyl ester, alkenyl, or substrates containing amines or alcohol groups (Table 11). Worth 
mentioning is the activity of the Eco-Cu3, comparable to homogeneous Cu catalysts [108], and 
recently to the heterogeneous catalysts described by Taskin et al. [109]. The clear advantage of this 
methodology reported here with Eco-Cu was the simplicity of the reaction treatment and isolation of 
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determined by GC-MS after calibration with hexadecane as an internal standard. 3 A blind 
experiment in which the ecocatalyst has been prepared following the same protocol from a plant that 
was never in contact with the CuNO3 solution. 
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and the substrate. Additionally, the ecocatalyst displayed a very high selectivity, and no formation 
of by-products was observed. The reaction led exclusively to 1,4-substituted triazole. It has to be 
noted that no Glaser coupling product (diynes) was detected under aerobic conditions. However, in 
the presence of K2CO3 under air, the only observed reaction is the Glaser coupling product, 
2,4-hexadiyne-1,6-diol, resulting from the homocoupling of the alkyne. The most efficient conditions 
reported in the literature for CuAAC involved the use of CuSO4 under aqueous conditions or CuI, 
CuBr, Cu(OAc)2, or Cu in organic solvents [107]. The effectiveness of CuCl or CuCl2/sodium 
ascorbate was rarely described [102]. The use of Eco-Cu3 ensured very simple experimental 
conditions and a large application of the method to aliphatic, aromatic, and functionalised substrates 
such as propargyl ester, alkenyl, or substrates containing amines or alcohol groups (Table 11). Worth 
mentioning is the activity of the Eco-Cu3, comparable to homogeneous Cu catalysts [108], and 
recently to the heterogeneous catalysts described by Taskin et al. [109]. The clear advantage of this 
methodology reported here with Eco-Cu was the simplicity of the reaction treatment and isolation of 
products. No purification was necessary: A simple addition of 2-methyltetrahydrofurane or ethyl 
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experiment in which the ecocatalyst has been prepared following the same protocol from a plant that 
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and the substrate. Additionally, the ecocatalyst displayed a very high selectivity, and no formation 
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2,4-hexadiyne-1,6-diol, resulting from the homocoupling of the alkyne. The most efficient conditions 
reported in the literature for CuAAC involved the use of CuSO4 under aqueous conditions or CuI, 
CuBr, Cu(OAc)2, or Cu in organic solvents [107]. The effectiveness of CuCl or CuCl2/sodium 
ascorbate was rarely described [102]. The use of Eco-Cu3 ensured very simple experimental 
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recently to the heterogeneous catalysts described by Taskin et al. [109]. The clear advantage of this 
methodology reported here with Eco-Cu was the simplicity of the reaction treatment and isolation of 
products. No purification was necessary: A simple addition of 2-methyltetrahydrofurane or ethyl 
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CuBr, Cu(OAc)2, or Cu in organic solvents [107]. The effectiveness of CuCl or CuCl2/sodium 
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4.3.2. Recycling and Reuse of the Ecocatalysts

An ecotechnology (rhizofiltration or biosorption) was performed with the plant E. crassipes of
the waste aqueous phase after treatment of the CuAAC reaction reported above. It has been reported
that the plant could bioaccumulate the metals from the first ecocatalyst used. During such processes,
95% and 53% of the Cu were bioaccumulated, respectively (rhizofiltration of biosorption). After the
usual thermal and acidic treatment, the recycled ecocatalysts Eco-Cu4 and Eco-Cu5 were obtained and
characterised (Figure 3). The ICP-MS analysis revealed a significant level of iron (1.35 wt. %), that
represented more than a half of the amount of copper (2.29 wt. %). An X-ray analysis revealed that the
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Eco-Cu5 structure was very close to the one of Eco-Cu3. The catalytic activity of the recycled Eco-Cu5

was tested in a CuAAC reaction using benzylazide and phenylacetylene as substrates. Under the
optimised conditions (described above), the reaction remained quantitative. This result was noteworthy
as it is one of the rare cases of the recycling and reuse of a homogeneous catalyst. The ecological
conditions and the effectiveness of the methodology are, therefore, remarkable.
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5. Conclusions

The first examples of Cu catalysts of plant origin, Eco-Cu, were presented in this review. These
catalysts resulted from the bioaccumulation of copper by living (rhizofiltration) or dead (biosorption)
aquatic plants. Among the aquatic plants used, the Eichhornia crassipes was found to be the most efficient
to such purposes and, in each case, allowed the innovative recovery of Cu from copper-rich effluents.
The transformation of Cu-rich roots led to Eco-Cu catalysts. The polymetallic composition of the Eco-Cu
was established as the reason for their interesting, original, and unique catalytic activity. The utility
of the Eco-Cu was demonstrated through three main reactions for copper catalysis: (i) the catalytic
hydrolysis of the thiophosphate group; (ii) the Ullmann-type reactions and their application for N- and
O-arylation; and (iii) finally, the CuAAC “click” reaction. These reactions were very simple and did
not require the presence of an amine or ligands. Importantly, the obtained products did not require
any additional purification. A very important aspect of the use of Eco-Cu was the possibility of their
recovery and reuse. The recovery of the catalyst could be effectively preformed via ecological recycling
of the reaction mixture through a second cycle of bioaccumulation. The recycled Eco-Cu has a similar
catalytic activity. This easy recovery of Eco-Cu is another asset in terms of green catalysis.
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