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Abstract: Palladium-catalyzed cross-coupling reactions are nowadays essential in organic synthesis
for the construction of C–C, C–N, C–O, and other C-heteroatom bonds. The 2010 Nobel Prize in
Chemistry to Richard F. Heck, Ei-ichi Negishi, and Akira Suzuki was awarded for the discovery
of these reactions. These great advances for organic chemists stimulated intense research efforts
worldwide dedicated to studying these reactions. Among them, the Suzuki–Miyaura coupling (SMC)
reaction, which usually involves an organoboron reagent and an organic halide or triflate in the
presence of a base and a palladium catalyst, has become, in the last few decades, one of the most
popular tools for the creation of C–C bonds. In this review, we present recent progress concerning the
SMC reaction with the original use of nitroarenes as electrophilic coupling partners reacting with the
organoboron reagent.
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1. Introduction

The importance of creating carbon–carbon (C–C) bonds in organic synthesis is demonstrated by
the history of awardees of the Nobel Prize in Chemistry, for example, the Grignard reaction (1912),
the Diels–Alder reaction (1950), the Wittig reaction (1979), and the olefin metathesis to Y. Chauvin,
R. H. Grubbs, and R. R. Schrock (2005). In the last few decades, transition metals have shown their
ability to catalyze the formation of C–C single bonds and, among them, palladium-catalyzed reactions
have been rapidly shown to be very efficient in organic chemistry [1]. This was demonstrated by the
2010 Nobel Prize in Chemistry, awarded to R. F. Heck, E. Negishi, and A. Suzuki for the formation
of a C–C single bond through palladium-catalyzed cross-coupling reactions [2]. Among the different
metal-catalyzed cross-coupling reactions, the Suzuki–Miyaura coupling (SMC) reaction rapidly became
one of the most efficient processes for the construction of C–C bonds, due to its high versatility,
efficiency, and non-toxicity, making it suitable for industry [3]. This cross-coupling is conventionally
performed using organic halide or triflate as an electrophilic partner, and an organoboron reagent as
the nucleophile. Very recently, nitroarenes have been reported as new electrophilic counterparts and,
in this review, we highlight these new developments around the SMC reaction.

2. Discussion

Forty years ago, Suzuki and colleagues reported, in 1979, that organoboron compounds such as
1-alkenylboranes in the presence of a base can be used as coupling partners in palladium-catalyzed
cross-coupling with 1-alkenyl, 1-alkynyl or 1-aryl halides [4,5]. The scope of this reaction was further
extended to varied aryl, benzyl, alkyl, alkenyl, and alkynyl halides [6–8], as well as triflates [9]
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or nosylates [10,11] as substrates for the oxidative addition of palladium(0), or, in a few examples,
of nickel(0) complex [12,13] (Scheme 1). The oxidative addition corresponding to the first step of the
catalytic cycle is often the rate-determining step, and the relative reactivity decreases in the order I >
OTf > Br >> Cl.
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The organoboron reagent typically used is a boronic acid or a boronic ester for which the use of a
base activation facilitates the transfer of the organic group from boron to palladium (transmetallation).
Thanks to extensive and recent developments, the SMC reaction is now compatible for all kinds of C–B
bonds, and alkyl, aryl, alkenyl and alkynylboronic acids or esters are able to participate as nucleophile
partners in the palladium-catalyzed cross-coupling reaction [7,14]. Consequently, the stability and
weak nucleophilic nature of organoboron compounds have made this reaction very practical, thanks to
its wide tolerance of functional groups and its high chemo-, regio- and stereoselectivity. Furthermore,
boron compounds are generally non-toxic, and the reaction can be run under very mild conditions.

As the SMC reaction is a popular method to form aryl–aryl bonds, this review highlights
recent investigations that have been conducted towards nitroarenes. Nitroarenes are accessible
building blocks via nitration of parent arenes that use fuming HNO3 or a mixture of HNO3 and
H2SO4. In comparison to halogenation, as halogens are classical leaving groups in the SMC reaction,
mononitration is often more selective because the electron-withdrawing nitro group sufficiently
deactivates the second electrophilic substitution [15]. Furthermore, a significant number of aryl halides
employed in the SMC reaction are prepared from corresponding nitroarenes, after the reduction of
the nitro group and subsequent Sandmeyer halogenation. The direct use of nitroarene is of particular
interest because it could reduce the number of steps and cost of synthesis, due to the concomitant
advantages of the nitro group, that allow for an interesting and better atom economy process compared
to the bromo, iodo, or triflate groups.

Over the last few decades, very few papers have reported on the use of nitroarenes in transition
metal cross-couplings [16–18]. Notably, Pd-catalyzed couplings were developed for the construction of
C-heteroatom bonds, in particular, for the formation of C–O and C–N bonds [19]. The first example was
reported by R. Tamura and L. S. Hegedus in 1982, who described the use of allylic nitro compounds
as substrates for Pd(0)-allylic amination [20]. However, it was only very recently, in 2017, that
the C(sp2)–NO2 bond was recognized as an electrophilic partner in Pd-catalyzed coupling, in which
nitroarene could react with a Pd(0) catalyst to form η2-arene palladium complex I (Figure 1). The further
oxidative addition of the latter afforded complex II, which could subsequently react with a nucleophilic
partner, such as amine undergoing Buchwald–Hartwig amination [21], or phenolate for O-arylation
(Scheme 2) [22]. Notably, the catalytic amination of nitroarene was facilitated by the use of the catalytic
system derived from the bulky biarylphosphine ligand, BrettPhos. The importance of a similar ligand,
tBu-BrettPhos, was also highlighted in Pd-catalyzed nitration of aryl chlorides, triflates or nonaflates.
First reported in 2009, this reaction occurs by transmetallation of the Pd(II) species formed after
oxidative addition with Ar–X in the catalytic process in the presence of sodium nitrite, followed by
reductive elimination to afford nitroarene derivatives (Scheme 2) [23].
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Since the nitro group could be involved in the Pd-catalytic cycle, either as an electrophilic partner
allowing oxidative addition, or as a nucleophile transmetallating with further reductive elimination,
the utilization of nitroarenes in the SMC reaction has recently been investigated. In 2017, Y. Nakao, S.
Sakaki, and colleagues reported, for the first time, the use of nitroarenes in the SMC reaction, greatly
expanding the scope of the reaction [24]. The reaction was performed with a large range of nitroarenes
and boronic acids (electron-rich, electron-poor, sterically hindered, 38 examples, yield 41%−84%,
Scheme 3). Using optimized conditions, for most of the substrates, the coupling was performed in
the presence of Pd(acac)2, BrettPhos, 18-crown-6, and K3PO4.nH2O in 1,4-dioxane at 130 ◦C. It is
notable that the choice of the ligand appeared to be crucial for the reaction. For instance, to obtain
4-methoxybiphenyl, phosphine-based ligands SPhos, RuPhos, PCy3, P(tBu)3, or carbene ligand IPr
were found to be ineffective (around 5% yield). The use of Pd(PPh3)4 as a catalyst was also ineffective.
Additionally, the water contamination from the base seemed important for the reaction to occur.
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The investigations of the mechanistic pathway supported the formation of the η2-arene palladium
complex followed by the cleavage of C(sp2)–NO2 bond via oxidative addition onto the Pd(0) center
(Figure 2). Indeed, the stoichiometric reaction of (cod)Pd-(CH2SiMe3)2 (cod=1,5-cyclooctadienyl) and
BrettPhos with nitrobenzene at 60 ◦C gave BrettPhos-Pd(Ph)(NO2). The molecular structure of this
complex was determined by single-crystal X-ray diffraction with the Pd center coordinated to both
phosphorous and the triisopropylphenyl ring of BrettPhos (Figure 3). On the other hand, the reaction
with 1-nitronaphtalene at 25 ◦C afforded the isolable η2-arene complex whose structure was confirmed
by single-crystal X-ray diffraction, thus proving that the η2-complex is present in the catalytic cycle.
After the formation of the nitroarene-Pd complex, the occurrence of transmetallation between the nitro
group and the aryl boron derivative followed by reductive elimination, afforded the biaryl compound.
The authors showed that these two steps can occur at 25 ◦C in the presence of the base, or at 60 ◦C
without base and, consequently, that the oxidative addition is the rate-determining step of the cycle.

Many important questions had to be answered in order to understand this cross-coupling
reaction involving nitroarenes: 1) why is the Ar–NO2 bond more difficult to break than Ar–Br?;
2) why can a usual monodentate ligand not be used?; 3) how does the catalytic system derived
from BrettPhos ligand control the coupling? Y. Nakao, S. Sakaki, and colleagues investigated the
oxidative addition of nitroarenes to Pd0(BrettPhos) with theoretical calculations [25]. To answer the
first question, the authors compared, by using density functional theory (DFT) methods, the Gibbs
activation energy (∆G◦ 6=) and the Gibbs reaction energy (∆G◦R) required for the oxidative addition of
4-nitroanisole and 4-bromoanisole from the η2-adduct (MeOC6H4X)Pd(BrettPhos). It was found
that the nitro derivative required much higher activation energy to reach the transition state
compared to the bromo analogue (30.3 kcal·mol−1 vs. 16.3 for R–Br). Furthermore, they also
discovered that the complex PdII(Br)(C6H4OMe)(BrettPhos) (∆G◦R = −17.9 kcal·mol−1) was more
stable than PdII(NO2)(C6H4OMe)(BrettPhos) (∆G◦R = −2.1 kcal·mol−1). Hence, the oxidative addition
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of nitroarene is more difficult than that of bromoarene, both kinetically and thermodynamically.
The difference in activation energies is the result of a large energy of deformation being required in the
case of the nitroarene, whereas the stability of the PdII–Br complex is explained by the Pd–Br bond
energy being stronger than that of Pd–NO2.
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The role of the bulky biarylphosphine ligand was clarified by comparing the values of ∆G◦ 6= and
∆G◦R, which were obtained when the oxidative addition of 4-nitroanisole occurred onto the complexes
with the BrettPhos and PPh3 ligands. In the case of the usual PPh3 ligands, the activation barrier
was determined to be 32.9 kcal·mol−1 while the reaction energy was 6.6 kcal·mol−1, proving that
this step is endergonic and needs more energy to occur. Moreover, a side reaction of dissociation
between NO2 and Pd0(PPh3)2 can happen at a much lower energy level, explaining why the reaction
did not succeed. Finally, during the oxidative addition, the charge transfer (CT) which occurred from
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the HOMO of Pd to the LUMO and LUMO+1 of the substrate plays a significant role. The HOMO
of Pd0(BrettPhos), being at a higher energy level than that of Pd0(PPh3)2, is more reactive for the
oxidative addition of nitroarene, due to sufficient CT interaction. Interestingly, the authors predicted
that Pd0(BrettPhos-NMe2) should better catalyze the SMC with nitroarenes because of its higher energy
HOMO compared to that of BrettPhos. Last but not least, the authors also theoretically clarified why
during the Pd-catalyzed nitration, reported in Scheme 2, a bulkier ligand tBu-BrettPhos was used.
The steric repulsion between the tBu groups and the aryl group of the substrate favored the reductive
elimination, but not the oxidative addition. This was supported by a positive value of ∆G◦R (5.8
kcal·mol−1) when the oxidative addition of 4-nitroanisole occurred onto Pd0(tBu-BrettPhos).

In our group, we recently applied the SMC reaction onto nitro-perylenediimide (PDI-NO2) [26].
PDI derivatives are still of particular interest since they are among the most important n-type
semiconductors, and are recognized as promising non-fullerene acceptors for organic solar cells [27–30].
All the reported cross-coupling reactions in the PDI series use 1-bromoPDI derivatives. However,
the monobromination of PDI is poorly selective, affording a complicated mixture of unreacted PDI,
mono-, and bis-bromo-PDI and thus requiring fastidious chromatography for purification [31]. On the
other hand, nitration is almost quantitative and 1-nitroPDI can be purified by simple crystallization.
To achieve functionalization of PDI-NO2, the SMC reaction with 3-formylphenylboronic acid was
carried out in the presence of Pd(PPh3)4 and anhydrous K3PO4 in refluxing THF, and the product
was isolated in a satisfactory 81% yield. In order to investigate the electronic effect of the substituent
on the organoboron reagent, the reaction was also performed with 4-formylphenylboronic acid and
(4-diphenylamino)phenylboronic acid, affording the corresponding products in 85% and 75% yields,
respectively (Scheme 4). It is noteworthy that (4-diphenylamino)PDI was previously synthesized
in 49% yield from 1-bromoPDI derivative using SMC [32]. Hence, the reaction appears to be very
efficient, with both electron-withdrawing and -donating groups, which highlights the versatility of the
method. Interestingly, the coupling in this case was highly efficient, using easily accessible Pd(PPh3)4

and showing that the oxidative addition of nitro-PDI is easier than that of nitroarenes, as previously
described in this review.
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3. Conclusions

In conclusion, possible alternatives to the use of halogens or triflates as electrophilic reagents in
organometallic chemistry are desirable in order to reduce the number of steps, the cost of synthesis
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and, eventually, the atom economy. In this respect, the recent discoveries of palladium-catalyzed
Suzuki–Miyaura cross-coupling using nitroarenes have opened new horizons in this field, highlighting
nitroarenes as suitable electrophilic counterparts of boronic acids or boronic esters. Nitroarenes
are well-tolerated in classical Suzuki–Miyaura coupling, but this reaction seems to be more
difficult than that using halogenated analogues, and requires a bulky biarylphosphine ligand.
However, the promising coupling between electron-deficient 1-nitroperylenediimide (PDI-NO2) and
arylboronic acids can occur using a classical Pd(PPh3)4 catalyst. Until now, the use of nitroarenes in
palladium-catalyzed cross-coupling remains poorly explored, but further developments are expected
in the near future in order to extend its scope. In particular, this extension of the Suzuki–Miyaura
reaction using nitroarenes could find nice applications in the synthesis of important chemicals for
pharmaceuticals or varied organic materials.
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Abbreviations of Ligands

Brett Phos (2-(Dicyclohexylphosphino)3,6-dimethoxy-2′,4′,6′-triisopropyl-1,1′-biphenyl)
SPhos (2-Dicyclohexylphosphino-2′,6′-dimethoxybiphenyl)
RuPhos (2-Dicyclohexylphosphino-2′,6′-diisopropoxybiphenyl)
PCy3 (Tricyclohexylphosphine)
IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene)
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