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Abstract: The novel Schiff base complex [CoIIIZnIIL3Cl2]·CH3OH (1) was synthesized by interaction
of zinc powder, cobalt(II) chloride and methanol solution of the pre-formed HL in air (HL is the
product of condensation of o-vanillin and methylamine) and characterized by IR, UV-Vis and NMR
spectroscopy, ESI-MS and single crystal X-ray diffraction analysis. In the heterometallic core of 1
the two metal centers are bridged by deprotonated phenoxy groups of the L− ligands with the
cobalt-zinc separation of 3.123 Å. Catalytic investigations demonstrated a pronounced activity
of 1 towards mild alkane oxidation with m-chloroperbenzoic acid (m-CPBA) as an oxidant and
cis-1,2-dimethylcyclohexane (cis-1,2-DMCH) as the model substrate. The influence of the nature
of different promoting agents of various acidities (from HOTf to pyridine) on the catalytic process
was studied in detail and a pronounced activity of 1 in the presence of nitric acid promoter was
found, also showing a high retention of stereoconfiguration of the substrate (>99% for cis-1,2-DMCH).
The best achieved yield of tertiary cis-alcohol based on the oxidant was 61%, with a turnover
number (TON) of 198 for nitric acid as promoter. The 18O-incorporations into the alcohols when the
reactions were performed under 18O2 atmosphere using acetic and nitric acid promoters, suggest
that the cis-1,2-DMCH hydroxylation proceeds by two distinct pathways, a non-stereoselective and
a stereoselective one (with and without involvement of a long-lived free carbon radical, respectively).
The former dominates in the case of acetic acid promoter and the latter is realized in the case of
HNO3 promoter.

Keywords: stereoselective C-H oxidation; metal complex catalysis; 18O isotopic labelling

1. Introduction

Selective transformation of inactive aliphatic C−H bonds into suitable functional groups is
a principal goal of modern chemistry [1–8]. Among the already developed approaches towards the
C–H activation, those capable of selective insertion of oxygen into a particular sp3 carbon–hydrogen
bond are less numerous and often are limited to specific positions (e.g. allylic sites) or require laborious
synthesis of catalysts [9,10]. Additional challenges are encountered in stereoselective C−H oxidations.
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It is known that metalloenzymes, such as cytochrome P450 or methane monooxygenase (MMO),
can functionalize C–H bonds of a range of substrates, including alkanes, under very mild conditions
and using dioxygen or peroxides as terminal oxidants [11–14]. These observations inspired chemists
to synthesize families of complexes, primarily of copper, iron and manganese, which could mimic the
reaction mechanisms of enzymatic oxidations [15]. Nowadays these families are represented mainly by
porphyrin complexes and a few classes of non-heme systems, mostly based on N-donor macrocyclic or
polypyridyl ligands [13,15–17].

Catalytic activity of cobalt complexes in the oxidative functionalization of sp3 C–H bonds is
much less explored than that of iron or manganese compounds, although there is clear evidence
that cobalt species may serve as highly efficient and selective catalysts [18–25]. We recently reported
a cobalt complex with a simple N,O-donor isoindole ligand, which revealed a high stereoselectivity in
the course of oxidation of sp3 C–H bonds using m-chloroperoxybenzoic acid (m-CPBA) oxidant [26].
Being interested in better understanding of the mechanism of the retention of stereoconfiguration and
following our long-term interest in polynuclear coordination compounds [2,27], we have prepared
a novel cobalt complex bearing a similar N,O-donor ligand, but decorated with a second redox inactive
metal, [CoIIIZnIIL3Cl2]·CH3OH (1) (HL = 2-methoxy-6-[(methylimino)methyl]phenol, Scheme 1).
It was recently shown that non-redox metals, such as zinc, cadmium, bismuth etc., may influence the
redox reaction pathway or even serve as the main catalysts [28–32]. Thus, we were motivated to study
the catalytic properties of the heterometallic CoIII/ZnII complex 1 in the oxidation of alkanes using
m-CPBA as terminal oxidant.
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It is known that common C–H hydroxylation pathways (such as radical rebound, concerted,
metal-mediated or free radical one) show drastically different 18O-incorporations into the final products,
alcohols, from various sources, first of all 18O2, H2

18O and 18O-labelled peroxides [33–36]. For example,
the use of 18O2, in combination with bond-, regio- and stereoselectivity data, provides evidence
about the participation (or non-participation) of a long-lived free carbon radical in the catalytic
mechanism [2,36–41]. However, this important area still remains underdeveloped.

The heterometallic 1 was prepared using a one-pot reaction of zinc powder with cobalt(II) chloride
in methanol in the presence of HL formed in situ in open air. Details and applications of the used
synthetic approach were given earlier by some of us [27]. Herein, we report on the synthesis, crystal
structure and spectroscopic characterization of complex 1, as well as its catalytic activity towards
stereoselective alkane oxidation with m-CPBA in the presence of various promoting agents under
mild conditions. To get insights into the type of reaction mechanism, we performed a combined
selectivity/18O2 study.

2. Results and Discussion

2.1. Synthesis and crystal structure

The Schiff base HL was synthesized in situ by condensation of o-vanillin and CH3NH2·HCl in
methanol in the presence of dimethylaminoethanol. The one-pot reaction of zinc powder, cobalt
chloride hexahydrate and the pre-formed HL in methanol using the Zn0 : CoCl2 : HL = 1 : 1 : 3
mole ratio in open air resulted in the formation of a brown-colored solution. The zerovalent metal
was oxidized by atmospheric dioxygen and readily dissolved while the reaction mixture was heated
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mildly under magnetic stirring. Dark-red X-ray quality crystals of complex 1 were formed by the
following day. The cobalt(II) is easily oxidized to the cobalt(III) species in open air even in the presence
of zerovalent zinc. Cobalt(III) oxidation state is effectively stabilized by the deprotonated Schiff base
ligand that enables formation of the neutral CoL3 species with the metal center in a mer configuration
(see below). The latter acts as a metalloligand to a Zn2+ ion, affording the heterometallic complex 1.

Complex 1 crystallizes in the monoclinic space group P21/n. It is built of [CoZnL3Cl2] neutral
molecules with the metal centers bridged by two deprotonated phenoxy groups from the two L–

ligands. Solvent methanol molecules are involved in O–H···O hydrogen bonding. The molecular
diagram of 1 with a numbering scheme is given in Figure 1, while selected bond distances and angles
are presented in Table S1.
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Figure 1. (a) Molecular structure of complex 1 with principal atom labelling. Non-H atoms are shown
with 70% probability displacement ellipsoids. Selected bond lengths (Å): Co1–O31 1.8788(14), Co1–O11
1.9083(14), Co1–O21 1.9094(14), Co1–N16 1.9436(17), Co1–N26 1.9475(17), Co1–N36 1.9506(17), Zn1–O11
2.0300(14), Zn1–O21 2.1186(14), Zn1–Cl2 2.2183(6), Zn1–Cl1 2.2242(6), Zn1–O12 2.4038(15); (b) Chemical
scheme of 1.

The [CoZnL3Cl2] molecule that lacks crystallographic symmetry contains two metal atoms in
Co(1)N3O3 and Zn(1)O3Cl2 distorted octahedral and square-pyramidal geometries, respectively.
The oxidation state assignment for the cobalt ion was based on interatomic distances and charge
considerations. Three crystallographically non-equivalent Schiff base ligands coordinate the cobalt
center through the azomethine nitrogen and phenolate oxygen atoms with Co–O/N bond lengths in the
ranges 1.8788(14)–1.9094(14) and 1.9436(17)–1.9506(17), respectively (Figure 1, Table S1). The average
Co–O and Co–N bond distances are equal to 1.899 and 1.947 Å, respectively. The trans angles at
the cobalt atom fall in the range 171.38(7)–175.35(7)◦, the cis angles vary from 84.82(7) to 94.81(7)◦

(Table S1). The zinc atom possesses a distorted tetrahedral geometry forming two shorter bonds
to the phenolato O atoms of the two L– ligands, O(11) and O(21) [2.0300(14), 2.1186(14) Å], and
two longer bonds to the chlorine atoms [Cl1: 2.2242(6), Cl2: 2.2183(6) Å]. The angles at the metal
atom fall in the range 70.79(5)–143.30(5)◦. The additional weak Zn–O bond to the methoxy oxygen
atom O(12) of 2.4038(15) Å implies that the Zn(1) coordination polyhedron approximates a highly
irregular square pyramid with Cl(1) atom in the axial position. The µ-phenoxo-bridged metal centers
are separated at 3.123 Å. No significant intermolecular interactions between the dinuclear units are
observed in the solid state. The oxygen atom of the solvent methanol molecule, O1, acts as a donor
to O31 and O32 atoms of the ligand [O1–H1···O31, 2.790(2), H1···O31, 1.983(13) Å, ∠ = 157(2)◦;
O1–H1···O32, 3.035(1), H1···O32, 2.434(1) Å, ∠ = 128.17◦] forming a five-membered supramolecular
synthon (Figure 2, enlarged fragment). Stacked complex molecules form sheets parallel to the ab plane
with polar methoxy-groups and chloride ligands protruding into the intersheet space and together
with solvent molecules keeping the sheets apart (Figure 2). In the solid state, numerous C–H···Cl
contacts with the H···Cl distances of well above 2.75 Å are due to van der Waals close packing.
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Figure 2. The crystal packing diagram of [CoIIIZnIIL3Cl2]·CH3OH (1) and the enlarged fragment
demonstrating H-bonding between the solvent methanol molecule and deprotonated Schiff base ligand.
H atoms are not shown. Color scheme: Co, magenta; Zn, dark grey; O, red; N, blue; C, light grey;
Cl, green.

2.2. Spectroscopic characterization

The infrared spectrum of complex 1 in the 4000–400 cm−1 range contains broad overlapping
bands in the region 3600–3400 cm–1, ascribed to the OH group of the methanol solvent molecule
(Figure S1). Bands arising above 3000 cm–1 are due to aromatic = C–H stretching of the ligand and
solvent; their alkyl C–H stretching vibration are seen below 3000 cm–1. The characteristic ν(C=N)
peak of L– is detected at 1630 cm–1 (1634 cm–1 for free HL, Figure S1). Several sharp bands of medium
intensity are observed in the phenyl ring stretching (1600–1400 cm–1) and out-of-plane CH bending
regions (800–700 cm–1).

The diamagnetic nature of CoIII enabled NMR characterization of 1 in solution. The 1H NMR
spectrum of 1 exhibits the expected set of signals between 8 and 2.5 ppm (Figure S2). The mer
arrangement of the bidentate deprotonated ligands around the Co(III) atom, which causes the
inequivalence of all three coordinated Schiff bases is retained in DMSO solution. The three different
ligand environments are clearly distinguished by three different signals in a 1 : 1 : 1 ratio at δ 7.95,
7.79 and 7.46 for the –CH=N– protons, a set of two signals for nine CH3O protons at δ 3.61, 3.53,
in a 1 : 2 ratio and signals of nine aromatic protons due to the three inequivalent rings observed as five
doublets, a triplet and a multiplet in the range 6.91–6.22 ppm. The signals of CH3 protons of the ligand
and solvent are partly obscured by a H2O residual signal.

The ESI-MS spectrum of complex 1 (Figure S3) in CH3CN (ca. 1 × 10−5 M) shows the strongest
peak at 1338 m/z, which was associated to dimer of complex 1 [(CoIIIL3)2Zn2Cl3 – H]+ (Figure S4).
A peak of comparable intensity is observed at 1125 m/z, which is assigned to [(CoIIIL3)2Na – H]+
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(Figure S5). The molecular ion of 1 was not detected. However, its derivative with eliminated chloride
ion, [1 – Cl–]+ is clearly seen at 650 m/z (Figure 3 and Figure S3), showing the intensity, after correction
for isotopic distribution, of 43% relative to the top peak at 1338 m/z. Some products of degradation of
1 were also detected as peaks of low intensities, namely [CoIIIL2]+ and [CoIIIL3 – e–]+ species at m/z
= 387 and 551 m/z, respectively (Figure S3). The observed ionization pathways and species formed
are typical for ESI-MS spectrometry of coordination compounds [42]. These results suggest that the
binuclear core of 1 keeps its integrity even in diluted solutions.
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for the peak at 650 m/z attributed to the [1 – Cl–]+ species. The inset shows calculated distribution for
the proposed species.

2.3. Catalytic activity

The catalytic activity of complex 1 was studied in the hydroxylation of sp3 C–H bonds of
unactivated alkanes, under mild conditions. Oxidation of cis-1,2-dimethylcyclohexane (cis-1,2-DMCH)
was chosen as a primary reaction. This substrate is a recognized model that allows simultaneous
determination of stereo-, bond- and regio-preferences [2,26,35,43,44]. The reaction of m-CPBA, in the
presence of nitric acid, with cis-1,2-DMCH, using various loadings of 1 (Table 1, Entries 1–3), afforded
the tertiary cis-alcohol as the main product (Figure S6). The dependence of the initial reaction rate
W0 on [1] was found to be linear, suggesting that no change of the catalyst composition occurs in the
studied range of [1] (Figure 4). The extrapolated line for [1] = 0 M hints at a possible rather high activity
with W0 ca. 1 × 10–5 M s–1 in the absence of 1. However, the reaction rate of the metal-free reaction
was determined to be 3 orders lower, being equal to 6 × 10–8 M s–1. The reaction rate of chlorobenzene
accumulation also follows the concentration of 1 (Figure 4), confirming that chlorobenzene by-product
originates from the metal-catalyzed process rather than from spontaneous decomposition of m-CPBA.
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Table 1. Oxidation of cis-1,2-dimethylcyclohexane with m-CPBA, catalyzed by 1, in the presence
of promoters.1.
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1 HNO3 0.08 17 61 82 198 38 : 1
2 HNO3 0.8 11 40 82 13 38 : 1
3 HNO3 0.3 14 50 90 48 38 : 1
48 HNO3 0.3 37 37 29 56 37 : 1
5 HOTf9 0.3 < 1 < 1 > 40 < 1 -
6 TFA10 0.3 7 26 16 25 24 : 1
7 HOAc11 0.3 6 24 11 25 19 : 1
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9 Et3N 0.3 2 6 1 2.2 -

10 Py13 0.3 < 1 2 2 5.4 -
1114 HNO3 0.3 14 51 78 59 40 : 1
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1 General conditions are: [substrate]0 = 0.1 M, [promoter]0 = 5.5 × 10–3 M (5.5 mol% relative to substrate), [m-CPBA]
= 2.7 × 10–2 M (0.27 equivalents relative to substrate), in acetonitrile, open air, at 40 ◦C, data shown are for 90 min
reaction time; 2 relative to substrate; 3 yield (sum of 3◦ and 2◦ products) based on substrate; 4 yield (sum of 3◦ and
2◦ products) based on m-CPBA; 5 mols of tertiary cis-alcohol per mol of trans-alcohol; 6 turnover numbers, mols of
products (sum of 3◦ and 2◦ products) per mol of catalyst; 7 normalized bond selectivity, (4 ×mols of 3◦ products) /
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11 acetic acid; 12 pyrazinecarboxylic acid; 13 pyridine; 14 the complex [CoIIICdIIL3Cl2]·0.5H2O [45] was used as
a catalyst; 15 the complex [CoL3]•DMF [45] was used as a catalyst.

Since promoters may play a significant role in the peroxidative oxidation of alkanes and enhance
yields and selectivities [2], we screened various promoting agents for the present system. Replacing
nitric acid with a promoter of a higher Brønsted acidity [46,47], trifluoromethanesulfonic acid (HOTf),
led to complete loss of activity showing negligible yields of products (Table 1, Entry 5). With weaker
acids, such as acetic (HOAc) or trifluoroacetic (TFA) ones (Entries 7,6, respectively), the catalytic
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process retains stereoselectivity, although the cis/trans ratio becomes much lower, corresponding to
the retention of stereoconfiguration indexes (RC) of 85% and 89% for HOAc and TFA, respectively.
Pyrazinecarboxylic acid (PCA) is a recognized promoter in the catalytic oxidation of C–H bonds with
H2O2 due to its specific mechanism of action [48]. However, in the present case the 1/PCA/m-CPBA
system showed only trace yields of products, also demonstrating no stereoselectivity (Entry 8). Basic
promoters, Et3N and pyridine showed negligible activity (Entries 9,10, respectively). In the cases of
Entries 5,8–10 the yields of products formed through the oxidation of methylenic sites of cis-1,2-DMCH
were not sufficient for reliable determination of 3◦ : 2◦ bond selectivity. In all studied cases, no products
of oxidation of primary carbon (methyl group) were detected, implying that the catalytic system is not
able to oxidize them.

Hence, nitric acid has proven to be the most efficient promoter (Table 1). Within the respective
tests (Entries 1–3), the conditions of Entry 3 were chosen as the optimal ones. Entry 1, while providing
higher yields of products (61%), shows lower stereoselectivity with the cis/trans ratio of 82 (Table 1)
what corresponds to 99.3% RC index. The test with elevated [1]0 (Entry 3) shows a higher cis/trans ratio
(Table 1) reaching the maximum RC of 99.5%, that reflects an almost complete stereospecificity of the
catalytic process. We attempted to increase the yields of products based on the substrate by lowering
the concentration of substrate to 0.05 M and using 1 equiv. of the oxidant (Table 1, Entry 4). Although
the yield based on the substrate increases up to 37% comparing to 17% for Entry 1, the stereoselectivity
drops down to cis/trans = 29, keeping nearly the same bond selectivity of 37 : 1 (Table 1).

The accumulation curves for HNO3, TFA and HOAc promoters are given in Figure 5a. As can
be seen, while the concentration of cis-tertiary alcohols continuously grows for the cases of TFA and
HOAc, the HNO3 one shows a maximum at 40 min with the yield of the tertiary cis-alcohol of 52%
(59% for sum of 3◦ and 2◦ products), which is considerably higher than 45% exhibited at 90 min
(50% for sum of all products, Entry 3). The yield decay in the 40–90 min interval could be related to
overoxidation processes with the appearance of reaction by-products, particularly 2,7-octanedione
(Figure S6). It is presumably formed through the attack at a second tertiary C–H bond of the cis-alcohol
and subsequent cyclohexane ring cleavage.
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Figure 5. (a) Accumulations of tertiary cis- and trans-alcohols in cis-1,2-DMCH oxidation. Conditions
are as those for Entries 3,6,7, Table 1; (b) The same entries, plotted as dependences of cis/trans ratios
and retention of stereoconfiguration index (RC, inset).

Oxidation of dimethylcyclohexane isomers was performed to evaluate the selectivity features
of the 1/HNO3/m-CPBA system towards a family of substrates with close structures. Previously
for an acid-free system oxidizing with m-CPBA we have shown that cis-1,4-DMCH affords almost
twice lower yields than its 1,2-isomer [26]. Herein the yields of products in the course of oxidations
of 1,4-isomers (Table 2, Entries 2,4) are higher than those of 1,2-isomers (Table 2, Entries 1,3).
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The 1,4-substrates show lower stereoselectivities than their 1,2-isomers (Table 2). The principal
difference between cis- and trans-substrates lies in the 3◦ : 2◦ selectivity, which is considerably lower
for trans-dimethylcyclohexanes. Oxidation of adamantane revealed the high normalized 3◦ : 2◦ bond
selectivity of 39 : 1 and the highest yield of 71% among the substrates studied (Table 2, Entry 5).

The UV/Vis spectrum of the solution of 1 (1.4 × 10–4 M) in acetonitrile shows a number of
absorption bands, with the most pronounced one at 370 nm and a very weak broad band at 680 nm
(Figure 6a, inset, and Figure S7). The spectrum of 1 does not change with time suggesting the complex
stability in CH3CN solution. The band at 370 nm can be assigned to intraligand π→π* transitions,
while the second one (680 nm) could be due to phenolato-to-cobalt transfer [49,50]. The addition
of HNO3 (final concentration 5.5 × 10–3 M) leads to strong increase of the 370 nm absorption and
appearance of a new band at 553 nm. The spectrum exhibits changes within ca. 5 min after addition of
HNO3, showing isosbestic points at 389, 420 and 669 nm (Figure 6a and Figure S8). Further addition
of substrate, cis-1,2-DMCH, and then m-CPBA, in a minimum amount of acetonitrile to reach the
final concentration of 1.3 × 10–3 M, leads to an overall intensity decrease with time, as evidenced by
monitoring of the 370 nm band, finally showing broad absorption with no clear bands in the visible
region (Figure 6b). These results may suggest that complex 1 undergoes transformation upon addition
of the promoting agent. However, no expulsion of the ligand can be assumed as free HL has strong
absorption at much higher energy at wavelength of 320 nm (Figure S9).

Table 2. Oxidation of dimethylcyclohexane isomers and adamantane. 1.

Entry Substrate Yield based on
m-CPBA, %2 cis/trans 3◦ : 2◦

1 cis-1,2-DMCH 50 90 38 : 1
2 cis-1,4-DMCH 64 42 22 : 1
3 trans-1,2-DMCH 46 623 13 : 1
4 trans-1,4-DMCH 49 373 12 : 1
5 Adamantane 714 – 39 : 1

1 Reaction conditions and other parameters are as those stated in the Table 1 footnote, unless stated otherwise.
Entry 1 is Entry 3 in Table 1; 2 yield (sum of 3◦ and 2◦ products) based on m-CPBA; 3 trans/cis ratio, as the
trans-substrates produce trans-alcohols as the main products; 4 sum of 3◦ and 2◦ products, where 3◦ products
constitute 1-adamantanol and 1,3-adamantanediol (ca. 5%).
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Red line corresponds to the spectrum measured after 16 min. (a), main figure: m-CPBA (1.3 × 10–3 M) 

Figure 6. (a), inset: UV/Vis spectra of 1 in acetonitrile (1.4 × 10–4 M) (blue line). Grey lines are spectra
measured after addition of cis-1,2-DMCH (0.05 M) and HNO3 (5.5 × 10–3 M) to the above solution of 1.
Red line corresponds to the spectrum measured after 16 min. (a), main figure: m-CPBA (1.3 × 10–3 M)
was added to the above solution of 1, cis-1,2-DMCH and HNO3 in acetonitrile. Red line corresponds to
the spectrum measured immediately after addition of m-CPBA, black line shows the spectrum after
100 min. All the above-mentioned concentrations refer to those in the final solution; (b): Changes in
the absorbance at 370 nm, plotted as a function of time.
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Retention of stereoconfiguration at the sp3 carbon atom in the course of C–H oxidation is
a significant indicator of the absence of long-lived carbon-centered radicals as reaction intermediates [2].
Pronounced stereospecificity in the case of 1/HNO3/m-CPBA systems (Entries 1–4, Table 1) may
account for the concerted or radical rebound mechanism, which does not involve long-lived radicals.
In contrast, for the 1/TFA/m-CPBA and 1/HOAc/m-CPBA systems a much lower stereospecificity
is observed, where inversion of the stereoconfiguration of the alkane substrate most probably comes
from the presence of free carbon-centered radicals [2,35]. From these observations, as well as from the
previous data [26,45,51], we assume that the overall reaction proceeds by two pathways, one possessing
absolute stereospecificity and the other with epimerization of the stereoconfiguration of the substrate.
Since dioxygen is a suitable radical trap for long-lived alkyl centered radicals [37–41] we performed
oxidations using HNO3 and HOAc promoters under the atmosphere of labelled dioxygen, 18O2.
Reaction of 18O2 with C• radical produces labelled alcohol as a final product, which formation can be
tracked by mass-spectroscopic methods [37–41]:

R3C• + 18O2 → R3C-18O18O• → R3C-18OH

We expected that the system showing lower retention of stereoconfiguration would produce more
18O-labelled products, as it happens for iron-catalyzed oxidations with H2O2 [36,52]. cis-1,2-DMCH
oxidation in the presence of HNO3 promoter, under 18O2, revealed pure tertiary alcohols free of 18O
isotope (Figure S10). In contrast, the system involving acetic acid promoter showed large incorporation
of 18O, up to 68% in the trans-alcohol and up to 14% in the cis-one (Figure 7a). The accumulations of
18O-labelled tertiary alcohols demonstrate similar initial reaction rates (Figure 7b), with the cis/trans
ratios of the 18O-alcohols ranging from 0.9 to 1.6 (Figure 7b, inset). Such values are typical for
a free-radical oxidation of alkanes, for example, with hydroxyl radicals being attacking species [40,53].
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not stable under the experiment conditions [54]. Careful investigation of the chromatograms 

revealed that the ketones, formed through the oxidation of secondary sites of cis-1,2-DMCH, as well 
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isotope only. Ketones are known to rapidly exchange their oxygen with water via a metal-free 

Figure 7. (a): 18O incorporation into the tertiary alcohols in the process of cis-1,2-DMCH oxidation
using HOAc promoter (Entry 7, Table 1) under atmosphere of 18O2; (b): Accumulations of 18O-labelled
tertiary alcohols in the same reaction. Inset shows cis/trans ratio for 18O-alcohols.

No difference between chromatograms recorded before and after the treatment of the sample
with the solid PPh3 was observed, suggesting that alkyl hydroperoxides are either not formed or are
not stable under the experiment conditions [54]. Careful investigation of the chromatograms revealed
that the ketones, formed through the oxidation of secondary sites of cis-1,2-DMCH, as well as the
2,7-octanedione by-product, contain large amounts of 18O2 (ca. 70%) in the case of HOAc promoter.
In contrary, the respective products formed in the HNO3-promoted system contained 16O isotope only.
Ketones are known to rapidly exchange their oxygen with water via a metal-free mechanism [39,55];
hence the 18O/16O composition of ketones reflects the respective H2

18O/H2
16O ratio in the reaction

mixture. This means that the 1/HOAc/m-CPBA/18O2 system leads to the formation of H2
18O,

probably coming from the spontaneous decomposition of 18O-labelled peroxide species (Scheme 2).
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m-CPBA catalytic systems. Pathway (b), in contrast to (a), proceeds via formation of a long-lived free
carbon radical.

3. Materials and Methods

3.1. Reagents and General Procedures

2-Hydroxy-3-methoxy-benzaldehyde (o-vanillin) is commercially available (Sigma-Aldrich) and
was used as received. All other chemicals were purchased from local suppliers and used without
further purification. Elemental analyses (C, H, N) were performed with a PerkinElmer 2400 series
analyzer. Infrared spectra (KBr pellets, 4000–400 cm−1) were recorded using a BX-FT IR Perkin
Elmer instrument. UV/Vis spectroscopy measurements were carried out on a Perkin-Elmer Lambda
35 spectrometer. ESI–MS(±) spectra were run on a LCQ Fleet mass spectrometer equipped with
an electrospray (ESI) ion source (Thermo Scientific), using ca. 10–5 M solution of 1 in acetonitrile.
The 1H NMR spectra of complex 1 and HL in DMSO-d6 were measured at room temperature with
a Mercury 400 Varian spectrometer at 400 MHz. The chemical shifts (δ) values are given in ppm
downfield from internal Me4Si. The 13C NMR spectrum was recorded on Bruker Avance II+ 300 MHz
(UltraShield™ Plus Magnet) spectrometer at ambient temperature.

The pro-ligand HL was prepared according to a reported procedure that was slightly modified [56].
In the synthesis of 1, the reaction of condensation between o-vanillin and CH3NH2·HCl was used
without isolation of the Schiff base.

3.2. Synthesis of [CoZnL3Cl2]·CH3OH (1)

A mixture of o-vanillin (0.23 g, 1.5 mmol), CH3NH2·HCl (0.10 g, 1.5 mmol), dimethylaminoethanol
(0.1 mL) and methanol (10 mL) in a 50 mL conic flask was stirred magnetically at 60 ◦C for half an hour.
CoCl2·6H2O (0.12 g, 0.5 mmol) dissolved in methanol (5 mL) was added to the yellow solution of the
formed Schiff base, and the stirring continued for another 40 mins at the same temperature. After that,
0.03 g (0.5 mmol) of Zn powder was added to the flask and the mixture was stirred for an hour to
achieve the total dissolution of the metal powder. Filtration and evaporation of the resultant brown
solution at room temperature afforded dark-red crystals of complex 1 by the following day. The crystals
were collected by filtration and washed with PriOH (2 × 7 mL). Slow evaporation of the mother liquor
produced more product. Yield: 50%. Anal. Calcd. for [CoZnL3Cl2]·CH3OH (719.78): C 46.72, H 4.76, N
5.84%. Found: C 46.11, H 4.54, N 5.60%. 1H NMR (400 MHz, DMSO-d6, 21 ◦C): δ 7.95, 7.79, 7.46 (s, 3H,
3 × CH=N), 6.91–6.22 (m, 9H, 3 × C6H3), 3.61, 3.53 (s, 3H + 6H, 3 × OCH3), 3.08 (s, 6H, 2 × NCH3).
13C NMR (75 MHz, DMSO-d6, 21 ◦C, Figure S13): δ 168.19, 165.82, 165.33 (3 × CH=N), 157.76, 156.85,
155.03 (3 × C1), 153.09, 152.92, 152.82 (3 × C2), 126.62, 126.34, 126.27 (3 × C5), 121.99, 119.20, 118.82
(3×C6), 118.20, 117.70, 115.92 (3 × C4), 112.88, 112.49, 112.00 (3 × C3), 56.96, 56.89, 56.28 (3 × OCH3),
47.36, 47.13, 46.58 (3 × NCH3). FT–IR (KBr, ν, cm–1): 3510m, 3444m, 3058w, 2938m, 2836w, 1630s, 1600s,
1568w, 1478s, 1462s, 1438s, 1402w, 1316m, 1300s, 1278m, 1254vs, 1230s, 1196w, 1080m, 1018m, 972m,
858m, 792w, 734s, 668m, 634m. FT–IR (KBr, ν, cm–1): 3510m, 3444m, 3058w, 2938m, 2836w, 1630s, 1600s,
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1568w, 1478s, 1462s, 1438s, 1402w, 1316m, 1300s, 1278m, 1254vs, 1230s, 1196w, 1080m, 1018m, 972m,
858m, 792w, 734s, 668m, 634m.

3.3. Single-crystal X-ray diffraction

Crystallographic data for the structure of 1 were collected at 100(2) K on an Oxford Diffraction
Xcalibur diffractometer fitted with Mo Kα radiation. Following analytical absorption corrections and
solution by direct methods, the structure was refined against F2 with full-matrix least-squares using
the program SHELXL-2017 [57]. The Co and Zn atoms were distinguished on the basis of refinement
and coordination geometries. The solvent OH, H atom was refined with geometries restrained to
ideal values. All remaining hydrogen atoms were added at calculated positions and refined by
use of a riding model with isotropic displacement parameters based on those of the parent atom.
Anisotropic displacement parameters were employed for the non-hydrogen atoms. The crystal data
and structure refinement data are summarized in Table S2. CCDC 1833980 contains the supplementary
crystallographic data for this paper.

3.4. Catalytic oxidation of alkanes

The reactions were typically carried out in air in thermostated cylindrical vials with vigorous
stirring. Firstly, 0.9–2.1 mg of solid catalyst 1 was weighed into the reaction flask, then 3.4 or 3.5 mL of
CH3CN, 0.5 mL of CH3NO2 stock solution (internal standard; 1 mL of CH3NO2 mixed with 9 mL of
CH3CN), 2.1–50 µL of promoting agent (HNO3, HOAc and TFA were used in a form of stock solutions
in acetonitrile) and 70 µL of cis-1,2-dimethylcyclohexane were added. In the case of solid adamantane
(68 mg), it was placed into the vial prior the addition of acetonitrile solution. Solid m-chloroperbenzoic
acid (m-CPBA) oxidant was dissolved in acetonitrile (typically 30 mg in 1 mL of CH3CN) and added
dropwise within 10 seconds to a warm (40 ◦C) solution of other components under vigorous stirring.
(CAUTION. The combination of m-CPBA with organic compounds at elevated temperatures may be
explosive!). The total volume of the reaction solution was 5 mL. Samples were quenched at room
temperature with excess of solid PPh3 according to developed methods [54] and directly analyzed by
GC and GC-MS techniques. Retention of stereoconfiguration (RC) index was calculated considering
that the commercial substrate, cis-1,2-dimethylcyclohexane, contained 0.86% of trans-isomer.

3.5. Catalytic Reactions under 18O2 Atmosphere

The reactions were typically performed in a thermostated Schlenk tube under vigorous stirring.
The reagents were introduced in the same order as for a normal catalytic reaction. After the addition
of m-CPBA the Schlenk tube was closed with the septum, and the mixture was immediately frozen
with liquid nitrogen; the gas atmosphere was pumped and filled with N2 a few times to remove
air. The frozen mixture was left to warm under vacuum (to degasify) until becoming liquid, and the
above procedure was repeated. Finally, the Schlenk tube was filled with 18O2 through the septum,
and the reaction mixture was heated at 40 ◦C with a possibility of gas to escape to compensate the
excessive pressure. The 16O/18O compositions of the tertiary alcohols were determined by the relative
abundance of 128/130 m/z mass peaks.

3.6. Gas Chromatography

A Perkin-Elmer Clarus 600 gas chromatograph equipped with two non-polar capillary columns
(SGE BPX5; 30 m × 0.22 mm × 25 µm), one having an EI-MS (electron impact) detector and the other
one with a FID detector, was used for analyses of the reaction mixtures. The following GC sequence has
been used: 50 ◦C (3 min), 50–120 ◦C (8 degrees per minute), 120–300 ◦C (35 degrees per minute), 300 ◦C
(3.11 min), 20 min total run time; 200 ◦C injector temperature. For analysis of oxidation products of
highly-boiling compounds, such as adamantane, different conditioning was employed: 50 ◦C (3 min),
50–150 ◦C (30 degrees per minute), 150–300 ◦C (14 degrees per minute), 300 ◦C (2.95 min), 20 min
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total run time; 200 ◦C injector temperature. Helium was used as the carrier gas with a constant 1 mL
per minute flow. All EI–MS spectra were recorded with 70 eV energy. The identification of peaks at
chromatograms was made by comparison of respective EI mass-spectra with those from the NIST
v.2.0f database (PerkinElmer TurboMass v.5.4.2.1617 software). The mass-spectra patterns of tertiary
dimethylcyclohexanols (Figure S12) were not found in the NIST database, and identification of these
products was made by comparing with the reported previously mass-spectra [26,58].

4. Conclusions

In this work we have synthesized the novel complex [CoIIIZnIIL3Cl2]·CH3OH (1) starting from
zerovalent zinc, cobalt(II) chloride and using the in situ formed Schiff base pro-ligand HL. Single crystal X-ray
analysis showed a binuclear core with O-bridging between the two different metal centers. The NMR studies
of 1 suggested that the complex keeps its integrity in solution, while the results of ESI-MS investigations
do not exclude some alterations of the structure of 1 with formation of larger polynuclear species under
the ESI-MS conditions. The catalytic features of 1 were studied in the mild hydroxylation of alkane C–H
bonds with m-CPBA oxidant, in the presence of a wide range of co-catalysts (promoters). The influence of
the nature of the promoting agents on the catalytic efficiency was studied, revealing nitric acid as the best
one, which provides up to 61% yield and >99% retention of stereoconfiguration.

The stereospecific properties of the catalytic system 1/HNO3/m-CPBA were tested on various
isomers of dimethylcyclohexane as model substrates. Based on the selectivity and 18O2 isotopic
labelling data it was proposed that the 1/Promoter/m-CPBA systems operate via two general reaction
pathways, a stereospecific and a non-stereospecific one, which were distinguished by different
incorporations of 18O from 18O2 into the alcohol products. The acetic acid promoter was found
to enhance the non-selective process with a high level of epimerization of stereoconfiguration of
substrate, while at the same time showing a large incorporation of 18O from 18O2 that was explained
by the involvement of a long-lived carbon radical. In contrast, the nitric acid promoter showed a high
retention of stereoconfiguration and a complete absence of 18O in the reaction products, conceivably
involving a metal based oxidant.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/3/209/
s1: Figure S1: IR-spectra of [CoZnL3Cl2]•CH3OH (1) and HL; Figure S2: 400 MHz 1H NMR spectra of
[CoZnL3Cl2]•CH3OH (1) and HL in DMSO-d6 at 294 K in the ranges of 0–18 and 1–14 ppm, respectively;
Figure S3: ESI-MS spectrum of a solution of 1 in acetonitrile; Figure S4: Fragment of the ESI-MS spectrum of 1
(Figure S3) showing the isotopic distribution for the peak at 1338 m/z. The inset shows calculated distribution
for the proposed species; Figure S5: Fragment of the ESI-MS spectrum of 1 (Figure S3) in acetonitrile showing
the isotopic distribution for the peak at 1125 m/z. The inset shows calculated distribution for the proposed
species; Figure S6: Fragment of the chromatogram showing the main reaction products and by-products in
the course of cis-1,2-dimethylcyclohexane oxidation with m-CPBA catalyzed by 1 in the presence of HNO3
promoter (Table 1, Entry 3); Figure S7: Fragment of the UV/Vis spectrum of 1 in acetonitrile showing the band
at 680 nm; Figure S8: Fragment of the UV/Vis spectra depicted in Figure 6, (a), inset (1 + cis-1,2-DMCH +
HNO3), showing isosbestic points; Figure S9: UV/Vis spectrum of free HL in acetonitrile (10–4 M); Figure S10:
Fragments of the chromatograms, showing the intensities of 130 m/z signals (corresponding to the molecular
ion, M+, of the 18O-labelled tertiary alcohols) for the 1/HOAc/m-CPBA and 1/HNO3/m-CPBA tests (Figure 7,
90 min); Figure S11: EI-MS spectra of the partially 18O-labelled tertiary trans- and cis- alcohols, formed in the
course of cis-1,2-DMCH oxidation catalyzed by 1 in the presence of HOAc promoter (Figure 7, 40 min); Figure
S12: EI-MS spectra of the tertiary alcohols formed as the reaction products in the 1/HNO3/m-CPBA system
(Table 2); Figure S13: 13C NMR spectrum of [CoZnL3Cl2]•CH3OH (1) in DMSO-d6; Table S1: Selected bond
lengths (A) and angles (◦) for [CoZnL3Cl2]•CH3OH (1); Table S2: Crystal data and structure refinement for
[CoZnL3Cl2]•CH3OH (1).
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