Supplementary material

A Facile Fabrication of Supported Ni/SiO₂ Catalysts for Dry Reforming of Methane with Remarkably Enhanced Catalytic Performance

Yan Xu^{1,2}, Qiang Lin¹, Bing Liu¹, Feng Jiang¹, Yuebing Xu¹ and Xiaohao Liu^{1,*}

- ¹ Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China; xuyan8787@163.com (Y.X.); lq15355615253@163.com (Q.L.); liubing@jiangnan.edu.cn (B.L.); jiangfeng@jiangnan.edu.cn (F.J.); xuyuebing@jiangnan.edu.cn (Y.X.)
- ² School of Chemistry and Chemical Engineering, Xuzhou University of Technology, 221018 Xuzhou, China

* Correspondence: liuxh@jiangnan.edu.cn;

Feeding gas and product gas	CH_4	CO_2	N_2	H_2	СО	H ₂ O
Initial molar composition (mol)	45.0	45.0	10.0	0	0	0
Equilibrium composition (mol)	4.14	2.18	10.0	79.8	83.7	1.96
Conversions of CH4 and CO2 (%)	91.0	95.0				
Equilibrium H ₂ /CO molar ratio				0.95		
Selectivity to H ₂ O (%)						2.3

Table S1. The equilibrium conversions of CH_4 and CO_2 , H_2/CO molar ratio, and selectivity to H_2O calculated by HSC chemistry 6.0.

Reaction conditions: 800 °C, 1 bar.

In order to evaluate the catalytic activity in DRM reaction, equilibrium conversions of CH₄ and CO₂ were calculated by software HSC chemistry 6.0. The initial composition of feeding gas and product gas was set at CH₄ (45 mol), CO₂ (45 mol), N₂ (10 mol), H₂ (0 mol), CO (0 mol), and H₂O (0 mol), while operating conditions were set at 800 °C and 1 bar. The calculated results are shown in Table S1.

Sample		SiO ₂ support	Ni/SiO ₂ -0/0	Ni/SiO ₂ -0/1	Ni/SiO ₂ -2/0	Ni/SiO2-2/1
BET surface area	Fresh	188.8	161.2	159.7	172.2	175.1
(m ² /g)	Reduced	-	162.6	167.0	169.9	165.9
	Spent	-	89.9	95.0	121.0	118.3
Pore volume	Fresh	1.17	0.97	0.81	0.84	0.80
(cm ³ /g)	Reduced	-	0.99	0.99	0.82	0.88
	Spent	-	0.37	0.36	0.39	0.50
Pore size	Fresh	17.6	15.6	17.5	15.5	16.2
(nm)	Reduced	-	15.5	15.5	15.5	15.5
	Spent	-	17.5	16.2	13.8	16.8

Table S2. BET surface area, pore volume and pore size of the SiO₂ support and as-prepared Ni/SiO₂ catalysts.

Table S2 shows the BET surface area, pore volume and pore size of the SiO₂ support and as-prepared Ni/SiO₂ catalysts. It can be seen clearly that, compared with SiO₂ support, the BET surface area, pore volume and pore size slightly decreased over all prepared fresh and reduced Ni/SiO₂ catalysts. However, they became distinctly different after 50-hours of reaction, which should be ascribed to the carbon deposits on the catalyst. The Ni/SiO₂-0/0 with the largest Ni nanoparticle size led to the decrease of surface area to the largest extent from 162.6 to 89.9 m²/g. In contrast, the Ni/SiO₂-2/1 prepared by the combustion method with both C₂H₅NO₂ as the fuel and NH₄NO₃ as the combustion improver gave the lowest decrease in the BET surface area from 165.9 to 118.3 m²/g due to its smallest Ni nanoparticle size.

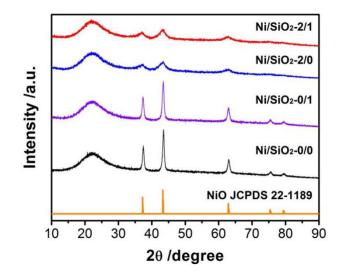
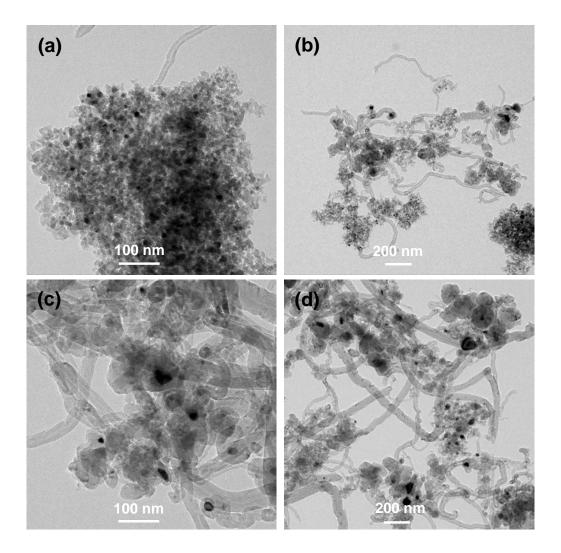



Fig. S1 XRD patterns of fresh Ni/SiO₂ catalysts prepared with the combustion method by using different ratios of $C_2H_5NO_2$ to NH_4NO_3 .

Fig. S1 shows the XRD patterns of as-prepared fresh Ni/SiO₂ catalysts. It is clear that all fresh Ni/SiO₂ catalysts exhibit the apparent diffraction peaks at 20 values of 37.3° , 43.2° , 63.0° , 75.4° , and 79.4° assigned to the NiO (JCPDS 22-1189). In the case of Ni/SiO₂-0/1, the presence of only NH₄NO₃ as the combustion improver did not obviously affect the intensity of sharp peaks compared to the Ni/SiO₂-0/0 which indicates the large NiO crystallite nanoparticles. In contrast, the addition of C₂H₅NO₂ fuel brought about a remarkable decrease in the nanoparticle size of NiO as reflected by much weaker and broader diffraction peaks over Ni/SiO₂-2/0 and Ni/SiO₂-2/1 catalysts.

Fig. S2 TEM images of spent Ni/SiO₂-0/0 catalyst ((a) and (b)) and Ni/SiO₂-2/1 catalyst ((c) and (d)) after 50-hours of reaction.

5 / 5