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Abstract: Copper-cerium mixed oxide catalysts have gained ground over the years in the field of
heterogeneous catalysis and especially in CO oxidation reaction due to their remarkable performance.
In this study, a series of highly active, atomically dispersed copper-ceria nanocatalysts were synthesized
via appropriate tuning of a novel hydrothermal method. Various physicochemical techniques
including electron paramagnetic resonance (EPR) spectroscopy, X-ray diffraction (XRD), N2 adsorption,
scanning electron microscopy (SEM), Raman spectroscopy, and ultraviolet-visible diffuse reflectance
spectroscopy (UV-Vis DRS) were employed in the characterization of the synthesized materials, while
all the catalysts were evaluated in the CO oxidation reaction. Moreover, discussion of the employed
mechanism during hydrothermal route was provided. The observed catalytic activity in CO oxidation
reaction was strongly dependent on the nanostructured morphology, oxygen vacancy concentration,
and nature of atomically dispersed Cu2+ clusters.
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1. Introduction

Carbon monoxide (CO) is a harmful, toxic gas that is present in many industrial processes. Due
to its negative impact for both humans and the environment, the catalytic oxidation of CO into CO2

has always been a research topic of great interest [1–3]. Moreover, the catalytic oxidation of CO is an
important reaction in the technological fields of fuel cells [4–6], gas sensors [7], and CO2 lasers [8].

Cerium oxide or ceria (CeO2) has been thoroughly studied as a catalyst or support in CO oxidation
reaction due to its defective structure enriched with oxygen vacancies and high oxygen storage capacity
(OSC) resulting from the interaction between Ce3+ and Ce4+ [9–12]. In the case of ceria synthesized
in a nanosized form, more remarkable functions can be obtained due to the nanosize effects. For this
reason, research has focused on the understanding of the properties of nanoceria as well as improving
its OSC, surface to volume ratio, and redox properties [13–16]. Computational studies have shown that
the catalytic activity of nanoceria is strongly associated with the exposed surface plane. Sayle et al. [17]
predicted that the (110) and (100) surfaces are catalytically more active for CO oxidation than the (111)
surface, due to more oxygen vacancies located in the former. According to Conesa [18], the formation
of oxygen vacancies on the (110) and (100) surfaces requires less energy than the (111) surface. It is
noteworthy that the exposition of the reactive surface plane is dependent on the morphology of the
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material at the nanoscale. Zhou et al. [19] have shown that CeO2 nanorods, which exposed the (110)
and (100) planes achieved higher catalytic activity for CO oxidation than nanoparticles exposing
the (111) planes. Wu et al. [20] studied the morphology dependence of CO oxidation over ceria
nanocrystals. They discovered that the activity for CO oxidation of those CeO2 nanostructures follows
the order: Rods > cubes > octahedra, whereas the activity of different planes follows the order: (110)
> (100) > (111). These results were also confirmed by Tana et al. [21]. In order to prepare various
shapes of nanoceria, a number of methods have been applied, such as sol-gel [22], precipitation [23],
hydrothermal or solvothermal methods [24–27], and electrochemical deposition [28]. Among these
methods, the hydrothermal method has attracted great interest because a desired morphology can be
obtained via appropriate control of the hydrothermal parameters such as reaction time, temperature,
and concentration [29–31].

Despite the attractive physicochemical properties of ceria, poor catalytic activity of pure ceria [32]
can by highly promoted via doping with a series of metal ions, in order to change its surface chemistry
and promote the active oxygen content [33]. It is well known that the reduction behavior of ceria can be
rapidly altered by the addition of a minimal amount of Au, Pd, and Pt precious metals and/or transition
metals [34–38]. While the activity of the catalysts is improved by the addition of precious metals, their
high cost prohibits their application. Numerous reports have indicated that the activity of ceria in
oxidation reactions is enhanced by transition metals like copper. The copper–ceria system presents
a cost-effective material with unique catalytic properties, comparable to noble metal catalysts, in many
catalytic reactions and especially in the CO oxidation and in the preferential oxidation of CO in excess
of hydrogen [39–44]. The superiority of CuCeOx catalytic system has been attributed to a synergistic
effect. Reports on the mechanism of CO oxidation reaction over these catalysts have demonstrated the
significance of both copper and ceria species in the adsorption of CO and CO2 production, as the former
takes place in the copper-ceria interface [45]. Particularly, the main reasons that trigger the highly
catalytic performance of these Cu-Ce catalysts are the large amount of well-dispersed copper species
in the ceria support, the creation of oxygen vacancies due to incorporation of Cu2+ ions into the ceria
structure and the presence of high concentration of active lattice oxygen [45–47]. Several Cu2+ entities
(e.g., amorphous clusters, isolated ions, dimers, and discrete crystallites) have been detected, which can
take part in the catalytic mechanism, displaying high levels of activity [5,39,48–50]. In order to form
these entities, conventional preparation methods have been used such as the deposition of Cu2− species
onto pre-synthesized ceria support or the coprecipitation of Cu and Ce precursors. The obtained
materials are calcined at high temperatures, which enable the dispersion of copper species and the
chemical bonding between the Cu and Ce components. For example, Harrison et al. [39] prepared
CuO/CeO2 catalysts via coprecipitation and impregnation routes, and tested in CO oxidation. After
thermal pretreatment of materials at 400 ◦C, the copper content on the surface of ceria consisted of
amorphous clusters of Cu2+ ions, which presented high catalytic activity for CO oxidation. In several
cases, the high temperatures required for the activation of copper component (>600 ◦C for 4 h) may
lead to particle sintering and phase segregation, which facilitates the formation of tenorite particles of
CuO, which are inactive for CO oxidation [51].

In the present work, copper clusters were atomically dispersed in ceria nanostructures via
a novel hydrothermal route, yielding highly active catalysts in CO oxidation reaction. Tuning of
the physicochemical and catalytic properties was studied by varying the hydrothermal parameters
(temperature and concentration). A set of analytical techniques such as electron paramagnetic
resonance (EPR) spectroscopy, X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron
microscopy (SEM), Raman spectroscopy, and ultraviolet-visible diffuse reflectance spectroscopy
(UV-Vis DRS) was used to assess the physicochemical characteristics of the materials and correlate
with the catalytic performance.
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2. Results

2.1. EPR Measurements

Figure 1 illustrates the EPR spectra of the hydrothermally prepared ceria-based catalysts, using
various concentrations of NaOH. The concentrations of the detected species are shown in Table 1.
In general, the EPR spectra present three characteristic signals; A signal at ca. 1580 Gauss (g = 4)
is attributed to Ce3+ ions in high spin (S = 5/2) state, corresponding to reduced Ce3+ ceria centers
located inside the lattice of ceria particles [15,52]. The sharp signal at around 3400 Gauss (visualized
better in the right column spectra of Figure 1) is ascribed to [Ce3+-O−-Ce4+] (S = 1/2) units localized
on the surface of the ceria particles [5,53,54]. According to the geometrical disposition of the two
types of Ce3+ centers—lattice and surface—it is considered that surface Ce3+ ions can be correlated
with high catalytic activity, i.e., since they may result to the formation of oxygen vacancies [55–57].
Regarding the Cu2+ signals, the EPR signals of the sample treated at 180 ◦C show a strong signal
at 2600–3300 Gauss, which is attributed to Cu2+ (S = 1/2, I = 3/2) ions. The line shape of this EPR
spectrum indicates that the copper atoms show dipolar Cu-Cu interactions, i.e., the Cu2+ is clustered
within 10 ± 3 Angstroms from each other [58]. The g-and A values of Cu2+, (g⊥= 2.035, g//= 2.305,
A⊥= 15, A//=150) suggest that the Cu2+ ions are located in the octahedral sites in ceria with a tetragonal
distortion [39,49,55,56,59–61].

Table 1. Concentrations of the species as detected by EPR spectroscopy.

Samples Bulk Ce3+ (µM/gr) Surface Ce3+ (µM/gr) Cu2+ Species (wt %)

Ce-120-0 0.43 0.1 N.D.
CuCe-120-0.05 0.50 1.3 0.20 (isolated ions)

Ce-120-0.1 0.40 0.4 N.D.
CuCe-120-0.5 0.50 4.0 0.002 (isolated ions)
CuCe-120-1 0.29 4.0 0.02 (isolated ions)

Ce-120-5 0.50 4.0 N.D.
CuCe-150-0 1.00 1.3 0.15 (isolated ions)

CuCe-150-0.05 0.20 1.1 0.3 (>95% clusters)
CuCe-150-0.1 0.40 0.8 3.9 (>95% clusters)

Ce-150-0.5 0.50 3.0 N.D.
CuCe-150-1 0.27 4.0 0.002 (isolated ions)

Ce-150-5 0.50 4.0 N.D.
CuCe-180-0 0.02 <0.05 2.1 (>95% clusters)

CuCe-180-0.05 N.D. 1 <0.05 2.8 (>95% clusters)
CuCe-180-0.1 0.40 0.1 1.4 (>95% clusters)
CuCe-180-0.5 0.50 3.0 0.02 (isolated ions)
CuCe-180-1 0.25 3.0 0.01 (isolated ions)

Ce-180-5 0.40 4.0 N.D.
1 Not-detected.
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Figure 1. EPR spectra of the catalysts prepared with 0–5 M NaOH. Magnification of the region in which
the bulk Ce3+ ions were detected, is shown in the inset figure; the figures on the right side present an
enlarged region where the Cu2+ species and the surface Ce3+ ions were detected.

Quantitate data on the Ce3+ and Cu2+, estimated from the EPR spectra, are listed in Table 1.
Copper loading was also confirmed via XRF measurements (within an experimental error of±10%; not
shown here), in line with EPR results. Concerning the surface Ce3+ ions, there is a clear trend vs. the
NaOH concentration: Their concentrations increases when concentrated solutions of sodium hydroxide
were employed in the hydrothermal route. With regard to the copper entities, the combination of low
concentrations of NaOH and high hydrothermal temperatures caused the formation of a high amount
of copper species (especially Cu2+ clusters). On the other hand, the high concentrations of NaOH
halted the dispersion of copper species in the ceria phase, due to the high basicity of NaOH resulting
in Cu(OH)n clusters’ formation in the CeO2 phase.

2.2. XRD Measurements

The XRD diffractograms of all the samples are shown in Figure S1. Noticeably, all peaks can be
indexed to (111), (200), (220), (331), (222), (400), (331), (420), and (422) planes corresponding to the pure
cubic phase [space group: Fm-3m, JCPDS: 00-043-1002, α = 0.54113 nm] of CeO2 [30]. No diffraction
peaks of crystalline copper species can be observed, due to the presence of highly dispersed amorphous
copper species or/and the low copper loading, which can be hardly detected at XRD [62,63]. However,
as it was discussed in EPR section, the copper species might be atomically dispersed in the ceria
matrix. The calculated average crystallite size and the lattice parameter of the ceria-based materials
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are presented in Table 2. It has to be noted that there is no clear relationship between Cu content (see
Table 1) and crystallite size or lattice parameter of the catalysts.

Table 2. Average crystallite size and lattice parameter of the catalysts based on the crystal plane of
(111) of CeO2.

Samples d111 (nm) α (nm)

Ce-120-0 8.6 0.54078
CuCe-120-0.05 6.9 0.54228

Ce-120-0.1 10.0 0.54136
CuCe-120-0.5 13.2 0.54118
CuCe-120-1 13.8 0.54123

Ce-120-5 8.2 0.54185
CuCe-150-0 7.2 0.53966

CuCe-150-0.05 7.5 0.54147
CuCe-150-0.1 19.0 0.54211

Ce-150-0.5 9.5 0.54164
CuCe-150-1 15.2 0.54127

Ce-150-5 25.3 0.54133
CuCe-180-0 37.7 0.54168

CuCe-180-0.05 29.2 0.54168
CuCe-180-0.1 18.2 0.54142
CuCe-180-0.5 11.3 0.54134
CuCe-180-1 13.9 0.54138

Ce-180-5 23.5 0.54159

The dependence of the crystallite size from the hydrothermal parameters is depicted in Figure 2.
It can be seen in Figure 2a that, for concentrations of NaOH≤0.05 M, small-size crystallites were formed
at temperatures of 120–150 ◦C, while at 180 ◦C, a dramatic increase of their size can be observed. A more
rapid increase of crystallites size was obtained in the case of 0.1 M NaOH. For instance, the sample
Ce-120-0.1 presents an average crystallite size at 10 nm, while at 150 ◦C, the average size is ca. 20 nm.
In the range of 0.5–1 M NaOH, the crystallites size varies from ~10 to 15 nm following an increase in
the hydrothermal temperature. Finally, for 5 M NaOH, the combination of high concentration and high
temperatures caused the formation of large crystallites. In Figure 2b, at 120 and 150 ◦C, a fluctuation of
the crystallites size is indicated as the concentration of NaOH increases. At 180 ◦C, a decrease of the
crystallite size is observed for concentrations ≤0.5 M. Further increase of the concentration caused the
rise of the crystallites size.
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Concerning the lattice parameter, the vast majority of the samples present higher values of
lattice parameter than the pure ceria, suggesting the lattice expansion for the obtained materials.
According to several studies, the lattice expansion is closely correlated with the presence of Ce3+ ions
in the crystal lattice because the radius of Ce3+ ions (0.114 nm) is higher than the radius of Ce4+ ions
(0.097 nm), inducing the lattice expansion [27,64–66]. On the other hand, only two samples (Ce-120-0
and CuCe-150-0) presented a smaller value of lattice parameter than the pure ceria. According to Pan
et al. [30], the hydroxyl groups may stabilize the smaller nanoparticles resulting in the smaller value of
lattice parameter.

2.3. N2 Adsorption Measurements

The N2 adsorption/desorption isotherms and the pore size distribution for the ceria-based
materials are illustrated in Figure 3. Additionally, the specific surface areas (SSA), the pore volume
and the pore size of all samples are shown in Table 3. For hydrothermal solutions of NaOH
≤0.1 M, the materials present type II isotherms with type H2 hysteresis loops, independently of
the hydrothermal temperature. Materials that present type H2 hysteresis loops are often disordered
without well-defined pore distribution. However, for NaOH concentrations ≥0.5 M, it can observed
that the type of isotherm becomes type IV, which is characteristic of mesoporous materials [67] with
type H2 hysteresis loops. It is worth mentioning that a different type of hysteresis loops is revealed for
Ce-150-5 and Ce-180-5 samples. Specifically, the type of hysteresis loop is type H1, which is associated
with well-defined cylindrical pores.

Table 3. Specific Surface Area, Pore Volume, and Pore Size of the catalysts.

Samples SSA (m2/g) Pore Volume (cm3/g) Pore Size (nm)

Ce-120-0 36.3 0.0860 10.34
CuCe-120-0.05 67.0 0.0920 5.33

Ce-120-0.1 22.2 0.0420 10.02
CuCe-120-0.5 70.6 0.1286 5.17
CuCe-120-1 78.8 0.1447 5.63

Ce-120-5 137.1 0.2294 5.55
CuCe-150-0 63.7 0.1070 5.51

CuCe-150-0.05 73.3 0.1050 4.80
CuCe-150-0.1 40.4 0.0320 5.23

Ce-150-0.5 86.2 0.1462 4.97
CuCe-150-1 58.6 0.1390 5.88

Ce-150-5 37.3 0.2114 18.06
CuCe-180-0 9.2 0.0450 15.30

CuCe-180-0.05 14.8 0.0530 12.30
CuCe-180-0.1 27.8 0.0730 10.00
CuCe-180-0.5 76.5 0.1437 5.50
CuCe-180-1 59.4 0.1343 6.50

Ce-180-5 35.0 0.1952 16.80

The pore size distribution diagrams (Figure 3) denote that these ceria-based catalysts have not
got a well-defined pore size. Indeed, the combination of hydrothermal parameters affected this
distribution. Pores ranging in the mesoporous region were formed in the case of NaOH concentration
≥0.5 M, while different distributions can be observed with NaOH concentrations ≤0.1 M. For example,
the CuCe-150-0 catalyst mainly presents mesopores, whereas the CuCe-180-0 sample mainly consists
of macroporous.

The effect of the hydrothermal parameters on the specific surface area (SSA) of the obtained
materials is illustrated in Figure 4. It can be seen in Figure 4a that an increase of the hydrothermal
temperature from 120 to 150 ◦C resulted in higher SSA when the NaOH concentration was ≤0.5 M.
Further increase of the temperature lowered the surface area of the catalysts. On the other hand, for
higher NaOH concentration (≥1 M), the highest surface area was obtained at 120 ◦C. The highlight of
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this trend was the SSA of the Ce-120-5 catalyst (137.1 m2 g−1). A general trend depicted in Figure 4b,
suggests that for elevated concentration of NaOH, higher surface areas can be obtained for the
catalysts prepared hydrothermally at 120 ◦C. A similar trend can be seen at 150 and 180 ◦C, however a
maximum of SSA corresponds to NaOH concentration of 0.5 M. Therefore, it can be concluded that
the combination of high concentrations and high hydrothermal temperatures favors the formation of
catalysts with poor surface area.Catalysts 2019, 9, x FOR PEER REVIEW  8 of 26 
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obtained for the Ce-120-0 sample. In the presence of NaOH, the morphology changed and spheres
with a diameter of 4–8 µm were formed for the CuCe-120-0.05 sample. Spherical aggregates with a size
of few hundred nanometers were formed onto this material surface. Further increases of the NaOH
concentration resulted in rods with various lengths (2–10 µm) for the Ce-120-0.1 sample. No particles
or aggregates can be observed on the surface of these rods, a fact that confirms the high crystallinity of
the rods. These rods disappeared at elevated concentrations of NaOH, and very big aggregates with
non-defined morphology were formed. In the case of hydrothermal synthesis at 150 ◦C, a spherical
morphology dominates (Figure 6), while at high NaOH concentrations (≥ 0.5 M), bulky aggregates with
particles without well-defined geometry, were formed. Figure 7 illustrates representative SEM images
of the materials, which were treated hydrothermally at 180 ◦C. The CuCe-180-0 sample maintained
the spherical morphology. The spheres composed of particles without well-defined geometry with
size of ca. 70 nm. Adding low amounts of NaOH (0.05 M) resulted in a mixed morphology with rods
of few micrometers, spheres and to a smaller extent sheets. All these structures contained irregular
particles with an average size of a few dozen nanometers. The CuCe-180-0.1 sample appears to possess
a spherical morphology, while similar structures with the lower hydrothermal temperatures were
obtained at elevated NaOH concentrations (≥0.5 M).

2.5. Raman Measurements

Raman spectra of all the catalysts are shown in Figure 8. Ceria presents a fluorite structure with only
one allowed Raman mode, which has an F2g symmetry and can be viewed to the symmetrical stretching
mode of oxygen ions around Ce4+ ions [68–70]. For bulk ceria, this band appears at 465 cm−1. However,
a shift to lower frequencies (Table 4), together with a non-linear linewidth, can be viewed for all the
samples. According to Spanier et al. [71], a large number of factors can contribute to the changes in the
Raman peak position and linewidth of the 465 cm−1 peak, including phonon confinement, broadening
associated with size distribution, defects, strain, and variations in phonon relaxation as a function
of particle size. Apart from this main band, several other bands can be clearly distinguished in the
corresponding spectra. The band at ca. 265 cm−1 is attributed to the tetrahedral displacement of oxygen
from the ideal fluorite lattice [25,69,72]. The band at ca. 600 cm−1 is assigned to the defect-induced
mode (D), related to the presence of lattice defects, mostly oxygen vacancies [5,42,68,73]. Noticeably,
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the samples synthesized at 150 ◦C with low concentration of NaOH (CuCe-150-0, CuCe-150-0.05, and
CuCe-150-0.1) exhibit one additional band at ca. 830 cm−1. According to Choi et al. [72], this band is
associated with peroxo-like oxygen species adsorbed on the oxygen vacancies, in close relation with
reduced ceria species. No separated copper phase (CuO) can be confirmed via the appearance of the
corresponding Raman peaks at ca. 295 cm−1 and ca. 350 cm−1. Therefore, both the XRD and Raman
results clearly indicate that Cu species onto ceria are highly dispersed.
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(c) CuCe-150-0.1, (d) Ce-150-0.5, (e) CuCe-150-1, and (f) Ce-150-5.

The position and the FWHM for the F2g band, and the relative intensity ratio of ID/IF2g for
the ceria-based catalysts are shown in Table 4. In general, the ratio of ID/IF2g, where IF2g and ID

correspond to the maximum intensity of F2g and D bands, respectively, can roughly reflect the amount
of lattice defects (oxygen vacancies) in the obtained materials [72,74,75]. With appropriate tuning
of the employed hydrothermal parameters, materials with high concentration of oxygen vacancies
are obtained. For instance, the Ce-120-5 sample presents the highest value of this ratio, i.e., 0.106,
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suggesting a material with high perspectives in catalytic CO oxidation reaction. According to previous
studies, the FWHM of the F2g band is influenced to a great extent by the crystallite size of ceria and
the concentration of oxygen vacancies [75–77]. However, there is no specific trend in this work and
mainly the high FWHM may be closely correlated with the high concentration of oxygen vacancies,
since more factors might also play a role in these features.
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Figure 7. Catalysts prepared hydrothermally at 180 ◦C: (a) CuCe-180-0, (b) CuCe-180-0.05,
(c) CuCe-180-0.1, (d) CuCe-180-0.5, (e) CuCe-180-1, and (f) Ce-180-5.
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Table 4. F2g peak position, full width at half maximum (FWHM) for the F2g band, relative intensity
ratio of ID/IF2g, and energy band gap (Eg) of the catalysts.

Samples F2g (cm−1) FWHM (cm−1) ID/IF2g Eg (eV)

Ce-120-0 463.0 14.8 0.027 3.05
CuCe-120-0.05 462.3 22.8 0.046 3.03

Ce-120-0.1 463.1 17.7 0.023 3.13
CuCe-120-0.5 463.0 13.3 0.035 3.18
CuCe-120-1 463.0 12.5 0.060 3.24

Ce-120-5 462.3 36.5 0.106 3.12
CuCe-150-0 463.0 24.2 0.031 3.12

CuCe-150-0.05 462.3 26.7 0.050 3.06
CuCe-150-0.1 460.7 36.0 0.046 3.07

Ce-150-0.5 463.8 17.6 0.032 3.20
CuCe-150-1 464.6 12.7 0.014 3.28

Ce-150-5 464.6 17.0 0.046 3.29
CuCe-180-0 463.7 22.8 0.047 3.11

CuCe-180-0.05 463.0 23.2 0.080 3.00
CuCe-180-0.1 461.4 28.1 0.035 3.21
CuCe-180-0.5 463.7 15.8 0.038 3.20
CuCe-180-1 464.5 13.1 0.020 3.25

Ce-180-5 463.8 14.8 0.034 3.29
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2.6. UV-Vis DRS Measurements

Figure S2 presents the UV-Vis DRS spectra of the materials. Each spectrum indicates three
different bands, which according to the literature correspond to different electronic transitions between
cerium and oxygen ions. The band at ca. 360 nm is ascribed to the O2− → Ce4+ interband-transfer
transition. The bands at ca. 270 and ca. 230 nm are attributed to the O2− → Ce4+ and O2− → Ce3+

charge-transition, respectively [25,78]. Interestingly, the CuCe-180-0, CuCe-180-0.05, CuCe-180-0.1, and
CuCe-150-0.1 samples present one extra wide band at 670 nm. It is important to mention that there is
a lot of controversy about this band. According to Rakai et al. [79], this band is correlated with a surface
redox couple of cerium ions (Ce3+/Ce4+). A similar band was found from Bensalem et al. [80] and Binet
et al. [81]. However, there is a number of studies which ascribe this band to d-d transitions of Cu2+ in
an octahedral environment [2,82,83]. It also has to be noted that, for the CuCe-150-0.1, CuCe-180-0,
CuCe-180-0.05, and CuCe-180-0.1, catalysts a shoulder appears in the spectra at ca. 400–500 nm. This
feature represents the charge transfer between “Support← Oxygen—Active Phase”, suggesting strong
interactions between the copper species and ceria [43,44].

The energy band gap (Eg) of the catalysts, calculated via the Tauc plots method, is summarized in
Table 4. Taking into account the reference value for the bulk CeO2 as a direct band gap semiconductor
(Eg = 3.19 eV), the obtained values of the ceria-based materials, especially the ones synthesized with
low concentrations of NaOH (≤0.1 M), are smaller than the energy band gap of bulk ceria. On the
other hand, the catalysts prepared with higher concentrations of NaOH (≥0.5 M) resulted in a higher
value of Eg. The former values indicate the presence of defects and especially oxygen vacancies [26,84],
while the latter values of Eg are closely related to the quantum confinement effect [77,85].

2.7. Formation Mechanism

Over the years, the utilization of organic additives such as polyvinylpyrrolidone (PVP) [86],
cetyltrimethylammonium bromide (CTAB) [87] and oleic acid [88] has been established in the
hydrothermal method in order to obtain well-defined particles and morphologies. However, due
to adsorption effects on the surface of particles these additives lead to quenching because of their
high-energy vibration [89]. Compared with the above surfactants, citric acid (CA) presents weaker
morphology control ability. Therefore, when the citric acid is used as a chelating agent, products with
various morphologies and sizes can be obtained [90,91].

According to Levien [92], citric acid separates into different ionic species:

H3cit (citric acid)→ H++ H2cit−, (pK α = 3.2), (1)

H2cit− → H++ Hcit2−, (pK α = 4.9), (2)

Hcit2− → H++ cit3−, (pK α = 6.4), (3)

The concentrations of these ionic species are closely depended on the pH value. In an acid solution
(ca. pH = 2) the citric acid is not effectively dissociated to citric ions. Further increase of pH at values
of 4, 6, and 8, the main citric species are the H2cit−, Hcit2− and cit3−, respectively. The citric ions can
form complexes with the cerium ions, which are depended on the pH of solution [93].

The pH values from each step of synthesis route are illustrated in Table 5. It can be observed that
the low concentrations of NaOH (≤0.1 M) did not increase the pH of the final solution (acid solution).
As a result, the citric acid was not effectively dissociated, as there were H3cit and H2cit− species in
the final solution. Concerning the partial dissociation of citric acid, it is not possible to form several
and stable complexes with the cerium ions under ambient conditions. On the other hand, the high
concentrations of NaOH (≥0.5 M) caused the formation of an alkaline solution. Under these conditions,
the citric acid has been completely dissociated and can form several and stable complexes with the
cerium ions, even under ambient conditions.
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Table 5. pH values from the different part of the catalyst’s preparation.

Samples pH (Ce3+) 2 pH (CA) 3 pH (Ce3+ + CA) 4 pH (NaOH) 5 pH Total 6

0 M 1 3.75 1.56 0.95 0 1.68
0.05 M 3.75 1.56 0.95 12.76 2.10
0.1 M 3.75 1.56 0.95 13.03 2.52
0.5 M 3.75 1.56 0.95 13.35 13.11
1 M 3.75 1.56 0.95 13.51 13.46
5 M 3.75 1.56 0.95 13.91 13.86

1 The sample 0M is referred to the sample that no addition of NaOH is occurred and so on; 2 pH of the solution that
contains Ce3+ ions; 3 pH of the solution that contains citric ions; 4 pH during the mixing of the previous solutions;
5 pH of the NaOH solution; and 6 pH of the final solution before the hydrothermal treatment.

It is believed that the increase of the temperature (from room temperature to the desired
hydrothermal temperature) ensures the complete complexation of citric ions with the cerium ions [93–95],
while the formed complex is polymerized and becomes stable in the solution. As the hydrothermal
treatment proceeds the elevated pressure and temperature triggers the appearance of two events:

• The weakening of the complex stability and precipitation of the latter as hydroxide into
the solution.

• Depending on the hydrothermal parameters, the leaching and migration of copper species from
the copper ring to the solution where their deposition in the ceria phase is taking place.

The final catalyst is obtained after the steps of filtration, drying, and calcination.
Concerning the various morphologies which are illustrated in Figures 5–7, it is proposed that the

successful combination of hydrothermal parameters (temperature and concentration of NaOH) is the
main reason behind these morphologies. It has been mentioned in Section 2.4 that the combination of
low concentrations (≤0.1 M) and hydrothermal temperatures caused the formation spheres and/or
rods. Given that the pH of the solution at these specific concentration was acidic, Ostwald Ripening
seems to be the most dominant particle’s formation mechanism [96–98]. Once the particles have been
formed, a process of self-organization starts to happen, which results in a spherical and/or rod-like
morphology depending on the hydrothermal parameters. On the other hand, the high concentrations
of NaOH (≥0.5 M) and the hydrothermal temperatures resulted in the formation of bulky aggregates
consisting of particles with a spherical and/or irregular geometry. At these conditions, the pH of the
solution was alkaline and so the proposed formation mechanism of particles appears to be the oriented
attachment [87,99]. Once the formation of particles has been completed, self-organization process
initiates, but simultaneously the excess of OH− groups and the hydrothermal temperatures cause the
formation of bulky aggregates.

2.8. CO Oxidation Catalytic Studies

The conversion of CO to CO2 as a function of the temperature of the reaction over the ceria-based
catalysts is shown in Figure 9. As a general trend, it can be commented that the catalysts prepared with
low concentrations of NaOH (≤0.1 M) and contained Cu2+ species onto their surface, presented better
catalytic behavior than the catalysts which were hydrothermally treated with high concentrations of
NaOH (≥0.5 M). Noticeably, the latter catalysts illustrated a significant amount of surface Ce3+ ions
(see Table 1), which is usually correlated with high catalytic activity. However, this is not the case in
this work and other factors control the catalytic activity, as will be discussed in the next section.

An indicator of the catalytic activity behavior are the temperatures where 50% and 90% CO
conversion is achieved (T50 and T90, respectively) (Figure 9). For the samples treated hydrothermally at
120 ◦C, it can be seen that the most active catalysts are the CuCe-120-0.05 and the Ce-120-0, presenting
T50 equal to 194 ◦C and 224 ◦C, respectively, and T90 equal to 272 ◦C and 263 ◦C, respectively.
Additionally, the above samples achieved full removal of CO. The less active sample was the Ce-120-0.1,
which revealed a T50 at 306 ◦C and T90 at 351 ◦C. One possible explanation for the poor catalytic
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activity of this sample is its morphology, which presented rods with high crystallinity. Increasing the
concentration of NaOH (≥0.5 M), the catalytic activity of the samples was improved, but it cannot be
comparable with the activities of the CuCe-120-0.05 and Ce-120-0. The morphology of the samples
prepared with high concentrations of NaOH (see Figure 5) seems to influence the catalytic activity in a
negative way. Moreover, although the sample Ce-120-5 illustrated the highest SSA among all catalysts
(see Table 3), this is not related to the achievement of high catalytic activity.
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 Figure 9. (a,c,e) CO conversion diagrams of the catalysts which were treated hydrothermally at 120,
150 and 180 ◦C, respectively; and (b,d,f) Bar graphs which are shown the temperatures where 50% and
90% conversion of CO to CO2 is achieved.
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The catalytic activity of the samples synthesized at 150 ◦C, was dramatically improved, especially
for NaOH concentrations ≤0.1 M, reaching in some cases 100% of CO conversion. For instance, the
CuCe-150-0 sample presents a T50 at 257 ◦C and the sample CuCe-150-0.1 shows T50 at 165 ◦C. It should
be mentioned that the former sample contained Cu2+ isolated ions dispersed in ceria, as confirmed
via EPR spectroscopy, while the latter sample presented Cu2+ clusters onto ceria surface. Higher
reactivity of Cu2+ clusters than Cu2+ isolated ions, was also reported by Harrison et al. [39]. Higher
concentrations of NaOH (≥0.5 M) resulted in catalytic materials with poor activity.

Similar trends can be also depicted in the catalytic behavior of the materials synthesized
with a hydrothermal temperature of 180 ◦C. Overall, the highest catalytic activity was achieved
over the CuCe-180-0.05 sample which present in Figure 9, T50 and T90 at 132 ◦C and 180 ◦C,
respectively. The rod-like morphology, the presence of high-content Cu2+ clusters (see Table 1)
and high concentration of oxygen vacancies (see Table 4) seems to be the crucial reasons behind
this extraordinary catalytic activity. It is noteworthy that the CuCe-180-0.05 as both CuCe-180-0
and CuCe-180-0.1 illustrated 100% conversion of CO. On the other hand, the samples that were
prepared with high concentrations (≥0.5 M) presented similar catalytic behavior with the samples
hydrothermally treated at 120 ◦C and 150 ◦C.

3. Discussion

Correlation of the Physicochemical Characteristics with the Catalytic Activity

Taking into consideration both the physicochemical characterization and catalytic evaluation,
it can be proposed that the high catalytic activity is controlled by the successful combination of specific
materials characteristics such as the morphology, oxygen vacancies, and type of copper entities. The
specific surface area seems to be the feature with less impact in order to achieve high activity. More
specifically:

• The most active samples presented spherical and/or rod-like morphology (samples with
concentrations of NaOH ≤0.1 M), which was attributed to the effective combination of
hydrothermal parameters. Exception to this trend was the sample Ce-120-0.1, which illustrated
rods with high crystallinity. The bulky aggregates which, were revealed by the samples with high
concentrations (≥0.5 M), seemed to negatively affect the catalytic activity.

• While the samples with high NaOH concentrations (≥0.5 M) showed high SSA, they could
not compete the activities of the samples prepared with low concentrations of NaOH (≤0.1 M).
In general, the high SSA is a desirable parameter for enhanced catalytic activity, but in our work,
it is not a determining factor, as the observed catalytic performance is a combination of the copper
content, copper species nature, morphology, oxygen vacancies and Cu-Ce interactions.

• Two different copper species were detected in ceria-based materials, which promoted the catalytic
activity. This effect was more pronounced in the case of Cu2+ clusters as compared with the
effect caused by the presence of Cu2+ isolated ions. The former species were favored under high
hydrothermal temperatures and low NaOH concentrations.

• The presence of lattice defects and especially oxygen vacancies, which were certified by the
spectroscopic techniques, affected the catalytic behavior, but not following a conventional trend.
As shown via EPR spectroscopy, the catalysts, which were prepared with high concentrations of
NaOH (≥0.5 M), presented a high concentration of Ce3+ ions (see Table 1), they did not result
in a high catalytic activity. On the other hand, the samples with low concentrations of NaOH
(≤0.1 M), although possessing small concentrations of Ce3+ ions, they exhibited better catalytic
behavior. Strong copper-ceria concentrations were confirmed via DRS analysis for several samples
prepared at 150 and 180 ◦C with low concentrations of NaOH. Conclcuding the above remarks,
it can be commented that the formation of a high-defective structure is not a crucial factor for
high catalytic activity, but the formation of a structure that will have a suitable concentration
of oxygen vacancies. Similar results have been illustrated by Lin et al. [99]. Pulse calorimetry
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measurements showed that the high concentration of oxygen vacancies promoted the buildup of
adsorbed carbonates that prohibit the adsorption and activation of CO, but not O2. According to
several studies, oxygen vacancies tend to form oxygen vacancy clusters [100,101]. Wang et al. [102]
showed that oxygen vacancy clusters with suitable size and distribution are responsible for high
activity. Thus, it is believed that the various morphologies, which were obtained in this study, can
present oxygen vacancies with different size and distribution.

4. Materials and Methods

4.1. Catalysts Preparation

All the chemicals used in this work were of analytical reagent grade. Cerium(III) nitrate
hexahydrate Ce(NO3)3 · 6H2O (purity 99.99%, Sigma-Aldrich) and a pure metallic copper ring were
used as precursors for the preparation of ceria and copper-promoted ceria nanomaterials. Moreover,
citric acid monohydrate C6H8O7 · H2O (purity 99.5–101.0%, Ing. Petr Švec PENTA, Prague, Czech
Republic) and sodium hydroxide NaOH (purity ≥98.0%, Ing. Petr Švec PENTA, Prague, Czech
Republic) were also employed in the synthesis procedure as a chelating agent and precipitating
agent, respectively.

At first, 3.7834 gr of Ce(NO3)3 · 6H2O and 1.8314 gr of C6H8O7 H2O were dissolved under
continuous stirring into 15 mL of triple distilled (3D) water, respectively. The molar ratio of citric
acid to metal nitrate was adjusted according to the stoichiometry of the reaction (citric acid/Ce =
1/1). When the dissolution of the compounds was completed, the two aqueous solutions were mixed
under continuous stirring, while at the same time, a 150 mL aqueous solution of NaOH (CNaOH =
0–5 M) was prepared. Both solutions were mixed in a Teflon beaker, and this mixture was kept under
stirring for 20 min. The Teflon beaker was placed in a lab-made stainless-steel autoclave (chamber
volume of 200 mL), where the copper ring was placed over the beaker (not immersed into the solution).
The autoclave was sealed tightly and heated at various temperatures (120, 150, and 180 ◦C) for 24 h.
After the hydrothermal treatment, the autoclave was opened, excess water was decanted, and the
precipitates were filtered, washed several times with triple distilled water (until pH = 7), and dried
under vacuum at 70 ◦C overnight. Finally, the obtained powders were calcined at 400 ◦C for 2 h
(heating ramp = 2 ◦C min−1).

In order to facilitate the presentation of results, the following encoding of catalysts is used: Ce-T-M
and CuCe-T-M, where T represents the temperature (◦C) of the hydrothermal reaction and M the
molarity of NaOH (M). For example, the Ce-120-5 catalyst was synthesized hydrothermally at 120 ◦C,
using 5 M NaOH.

4.2. Catalysts Characterization

An X-ray powder diffractometer (Bruker D8 Advance, Bruker, Birmingham, UK) employing Cu
Ka radiation (λ = 0.15418 nm) at 40 kV and 40 mA was used to analyze the crystalline structure of
the catalysts.

The specific surface area (SSA), the pore volume and the pore size distribution of the materials
were determined from the adsorption and desorption isotherms of nitrogen at −196 ◦C using a TriStar
3000 Micromeritics instrument (Norcross, GA, U.S.A). Prior to the measurements, the samples were
outgassed at 150 ◦C for 1 h, under N2 flow.

The morphology of the obtained materials was observed with scanning electron microscopy (SEM,
Leo Supra 35VP (Carl Zeiss SMT AG Company, Oberkochen, Germany).

Raman spectra were accumulated with the 441.6 nm laser line as the excitation source emerging
from a He–Cd laser (Kimon). The scattered light was analyzed by the Lab-Ram HR800 (Jobin-Yvon,
Horiba, Montpellier, France) micro Raman spectometer at a spectral resolution of about 2.0 cm−1.
A microscope objective with magnification 50× was used to focus the light onto a spot of ~3 µm in
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diameter. Low laser intensities were used (∼0.37 mW on the sample) to avoid spectral changes due to
heat-induced effects. The Raman shift was calibrated using the 520 cm−1 Raman band of crystalline Si.

The diffuse reflectance spectra of the obtained materials were recorded in the range 200–800 nm at
room temperature using a UV-vis spectrophotometer (Varian Cary 3; Varian Inc. Palo Alto, CA, USA)
equipped with an integration sphere. The DR spectra were collected on calcined samples with PTFE
disks. The powder samples were mounted in a quartz cell, which provided a sample thickness >3 mm
to guarantee the “infinite” sample thickness.

Ceria-based nanomaterials were also characterized by Electron Paramagnetic Resonance (EPR)
spectroscopy employing a Bruker ER200D spectrometer (Billerica, MA, USA) equipped with an Agilent
5310A frequency counter (Agilent Technologies, Santa Clara, CA, USA). EPR spectra were recorded
at 77 K in suprasil-quarz tubes (3 mm inner diameter; Willmad Glass). 10 mg of nano-powders
were introduced into the sample EPR tube followed by outgassing at 300 K for 10 min under
10-4 bar vacuum. The spectrometer was running under home-made software based on LabView.
Numerical simulation of experimental EPR spectra was performed with EasySpin 5.2.21 software (The
MathWorks Inc., Natick, MA, USA) [103]. Quantification of Ce3+-O–Ce4+ (S = 1/2) was performed
using 2,2-diphenyl-1-picrylhydrazyl (DPPH) [104] as a spin standard (Sigma Aldrich). Quantification
of Ce3+ (S = 5/2) was performed using FeIII (S = 5/2)-EDTA complex [105,106], while the quantification
of the Cu2+ centers was done using a Cu(NO3)2 standard. Copper content was also determined via
WDXRF analysis (Wavelength Dispersive X-Ray Fluorescence; ZSX PRIMUS II, RIGAKU, Austin,
TX, USA).

4.3. Catalytic Studies

Activity measurements for the catalytic oxidation of CO were conducted in a conventional
fixed-bed reactor (described in detail elsewhere [107]) at atmospheric pressure, in the temperature
range of 30–400 ◦C. The catalyst was in the form of powder with a mass of 120 mg and the total flow
rate of the reaction mixture was 25 cm3 min−1, yielding a contact time of W/F = 0.288 g s cm−3, where
W is the weight of catalyst and F the total flow rate of the reactant gas. The reaction feed stream
contained 1 vol.% CO, 20 vol.% O2 and He as balance. Product and reactant analysis was carried out
by a gas chromatograph (Shimadzu GC-14B) equipped with a thermal conductivity detector. The CO
conversion calculation was based on the CO2 formation or CO consumption:

CO conversion (%) =
[CO2]OUT
[CO]IN

× 100%, (4)

5. Conclusions

In this study, highly active ceria and copper-promoted ceria catalysts were synthesized via a novel
hydrothermal method and evaluated in CO oxidation reaction. The physicochemical characteristics,
and as a consequence, the catalytic properties were controlled via appropriate combination of
hydrothermal parameters (temperature and concentration of the precipitating agent). EPR spectroscopy
demonstrated the presence of different copper species (isolated ions and amorphous clusters),
dispersed in ceria nanostructrures (mainly nanorods and nanospheres, depending on the pH of
the hydrothermal solution). Elevated hydrothermal temperatures and NaOH concentrations favored
the formation of isolated copper ions, which resulted to be less active, as compared with copper
clusters. Moreover, the catalysts prepared with high concentrations of NaOH (≥0.5 M) presented
a significant amount of surface Ce3+ ions, while Raman spectroscopy and UV-Vis DRS measurements
revealed the presence of lattice defects and especially oxygen vacancies. Overall, ceria-based catalysts
prepared at elevated temperatures with low concentrations of NaOH (≤0.1 M) were more active in CO
oxidation, and this behavior can be mainly related with the obtained morphology and the nature of
oxygen vacancies and dispersed copper species, and to a lesser extent, with the specific surface area
and the concentration of defects.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/2/138/s1,
Figure S1. XRD diffractograms of CeO2 and Cu/CeO2 catalysts: (a) Catalysts prepared hydrothermally at
120 ◦C; (b) Catalysts prepared hydrothermally at 150 ◦C; (c) Catalysts prepared hydrothermally at 180 ◦C, Figure
S2. UV-Vis DRS spectra of CeO2 and Cu/CeO2 catalysts: (a) Catalysts prepared hydrothermally at 120 ◦C;
(b) Catalysts prepared hydrothermally at 150 ◦C; (c) Catalysts prepared hydrothermally at 180 ◦C.
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