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Abstract: Since the beginning of the 20th century, numerous research efforts made elegant use of
barbituric acid derivatives as building blocks for the elaboration of more complex and useful
molecules in the field of pharmaceutical chemistry and material sciences. However, the construction of
chiral scaffolds by the catalytic enantioselective transformation of barbituric acid and derivatives
has only emerged recently. The specific properties of these rather planar scaffolds, which also
encompass either a high Brønsted acidity concerning the native barbituric acid or the marked
electrophilic character of alkylidene barbituric acids, required specific developments to achieve
efficient asymmetric processes. This review covers the enantioselective catalytic reactions developed
for barbituric acid platforms using an organocatalytic and metal-based enantioselective sequences.
These achievements currently allow several unique addition and annulation reactions towards the
construction of high valued chiral heterocycles from barbituric acid derivatives along with innovative
enantioselective developments.

Keywords: organocatalysis; asymmetric synthesis; barbituric acid; alkylidene barbituric acid;
metal based-catalysis; cycloaddition; annulation reaction

1. Introduction

1.1. Context

Barbituric acid 1, namely 2,4,6-(lH,3H,5H)-pyrimidinetrione, and derivatives are fascinating
building blocks in organic synthesis (Figure 1). This story dates back to 1894 when von Baeyer reported
on the preparation of barbituric acid [1]. Later, in 1903, Fisher and von Mering highlighted the
pharmacological properties of 5,5-diethyl barbituric acid, the so-called barbital, as a potent hypnotic
agent [2]. Ever since, barbituric acid derivatives served as starting materials for the elaboration of
thousands of complex architectures useful in medicinal chemistry, a field of research covered by several
exhaustive reviews [3–6]. Selected examples of bioactive compounds in this series are depicted in
Figure 1, which highlights scaffolds that possess, at least, one stereogenic center or a tetrasubstituted
carbon as a source of chemical diversity and structural complexity. Phenobarbital, involved in the
treatment of certain types of epilepsy, derived from the original barbital but displays two different
substituents at C-5 position (Figure 1a) [7]. The opportunity afforded by the double functionalization of
the C-5 position of barbituric acid allowed the construction of several spiro-compounds and, thus,
more rigid architectures highlighted by the development of nucleotide mimics [8], inhibitor of
matrix metalloproteinases (MMP) [9] and anticancer agents [10], for example (Figure 1b–d) [11,12].
On the other hand, the synthesis of fused-bicycle derivatives led to ingredients possessing either
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antidiabetic [13] or antituberculosis properties (Figure 1e–f) [14]. Besides medicinal chemistry,
the photophysical properties of barbituric acid derivatives were exploited in colorimetric or heat
detection [15], and provided promising dyes or fluorogenic probes to name a few [16,17].
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Figure 1. Barbituric acid scaffolds within bioactive architectures.

The versatile properties of products obtained from barbituric acid elicited the motivation of
organic chemists to explore its chemistry [3,4,6], and more recent evolutions have met the
development of efficient multicomponent reactions (MCR) [16,18]. Despite great synthetic advances in
this field of research, the use of diastereoselective sequences or separation techniques (crystallization or
chromatography) of racemic mixtures were required for the elaboration of enantiopure architectures of
chiral bioactive compounds as depicted in Figure 1 [19]. At the end of the 1990s, the pioneering
research of Brunner’s group, on the palladium-catalyzed enantioselective alkylation of barbituric acid
derivatives have shed light on the potential of this starting material in asymmetric synthesis while
pointing out challenges, which have to be overcome with this unique architecture [20–23]. This review
intends to cover the literature dealing with the enantioselective catalytic transformations of barbituric
acid derivatives, an exercise which is unprecedented to the best of our knowledge. The literature
concerning the enantioselective transformations of barbituric acid and alkylidene barbituric acid
derivatives will be discussed separately, to focus on specific types of reactions developed for a given
barbiturate structure. To give a flavor of the uniqueness of barbituric acid compounds, its properties
will first be introduced.

1.2. Properties of Barbituric Acid Derivatives

To gain insight into the reactivity of barbituric acid derivatives, the unique chemical properties of
these molecules have to be taken into account. As shown in Figure 2a, barbituric acid 1 displays a
rather low pKa value (pKa = 8.4 in DMSO) [24] lying just above Meldrum’s acid 2 well-known for its
remarkable acidity (pKa = 7.03 in DMSO) [25,26]. Consequently, barbituric acid 1 and derivatives will
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be much more prone to deprotonation by soft bases than dimedone 3 or non-cyclic homologues, such as
malonate 4, for instance. However, direct correlation between the pKa value and the nucleophilic
behavior is not always feasible [27].
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In 2017, Spange and co-workers embarked on the insightful evaluation of the kinetics of
derivatives of barbiturate acid anions thanks to the reaction with specific electrophiles, such as
benzhydrylium cations and Michael acceptors [28]. Then, the so-called nucleophilicity parameter N
and the corresponding nucleophile-specific susceptibility parameter sN of barbiturate anions 1’ could
be determined and compared to related 1,3-dicarbonyl anions 2’-4’ (Figure 2b) [27]. Barbituric acid
anion 1’ features a nucleophilic character between Meldrum’s acid 2’ and dimedone 3’ anions but is
much less reactive than malonate anion 4’, which actually leads to a rather good correlation with the
scale of pKa values. In addition to being more soluble, the 1,3-dimethyl barbituric acid 5a’ reacted
faster than the parent anion 1’, a phenomenon attributed to the electron-donating effect of the N-alkyl
groups. Nevertheless, a ground state stabilization of the negative charge of 1’ by hydrogen bonding of
the NH moieties might also account for this outcome. In comparison, the anionic thiobarbiturate
analogues 6’ and 7’ proved to be less nucleophilic due to superior electron withdrawing properties of
the thiocarbonyl versus carbonyl of 1’ for instance. Interestingly, during this study, the O-alkylation
reaction has never been observed. Accordingly, a computational study showed that the C-alkylation
process is favored both from a thermodynamic and a kinetic point of view. This scenario might be
different with harder electrophiles, however.

Mayr and co-workers studied the electrophilicity of benzylidene barbituric acid derivatives
(Figure 3) [29], which proved to be a potent electrophile in various conjugate addition reactions or
cycloaddition processes (vide infra). 5-Arylidene 1,3-dimethylbarbituric acid 8a has an electrophilicity
parameter E similar to 5-arylidene Meldrum’s acid 10, which is in line with the reactivity of
benzylidenemalononitriles, such as 12. For comparison purposes, the benzylidene barbituric acid
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derivative 8a is a much more potent electrophile than the malonate counterpart 11 and, thus, affords
interesting reactivity to be exploited in catalysis. Another important feature, relies on the modulation of
reactivity by moving from barbiturate 8a to thiobarbiturate 9a which displays a superior electrophilicity.
The authors attributed this phenomenon to the higher positive polarization of nitrogen in the
thiobarbiturate 9a versus barbiturate 8a [29].

Catalysts 2018, 8, x FOR PEER REVIEW  4 of 30 

 

superior electrophilicity. The authors attributed this phenomenon to the higher positive polarization 100 
of nitrogen in the thiobarbiturate 9a versus barbiturate 8a [29].  101 

 102 
Figure 3. Reactivity issues. 103 

2. Enantioselective Transformations of Barbituric Acid Derivatives 104 
As aforementioned, barbituric acid derivatives are easily deprotonated with regard to their 105 

rather low pKa value. Simple reasoning based upon resonance structures obviously shows that the 106 
conjugate base of barbituric acid may undergo either a C-alkylation or an O-alkylation reaction 107 
(Figure 4a), an issue known to be dependent on the nature of the electrophile and reaction conditions 108 
[28]. Several research groups took advantage of these features to develop enantioselective 109 
transformations based on three different strategies (Figure 4b). Barbituric acid derivatives having 110 
different N-substituents (R1 ≠ R2) are pro-chiral by nature (if R3 = H) and, consequently, they provide 111 
the corresponding alkylated products with a stereocenter inside the ring (strategy A). This approach 112 
was mainly applied to the formation of tetrasubstituted products (R3 ≠ H). On the other hand, 113 
symmetrical architectures (R1 = R2, strategy B) will furnish products along with the construction of a 114 
stereocenter outside the ring after the reaction with a pro-chiral electrophile. Finally, annulation 115 
processes may take place, through both a C- and O-alkylation sequence (strategy C), allowing the 116 
synthesis of fused ring scaffolds while the initial symmetry of the barbituric acid precursor is 117 
broken.  118 
  119 

N

N

O

O O N

N

O

O O

E

E

C-alkylation O-alkylation

(b) Enantioselective strategies

N

N

O

O O

R3

E R2

R1

(A) stereocenter inside
the ring (R1 R2)

R1

R2 R2

R1

N

N

O

O O

R3

*E R2

R1

(B) stereocenter outside
the ring (R1 R2)

*

N

N

O O

R2

R1

O
E

*R
E

(C) annulation reaction
(R1 R2)

(a) Resonance structures

Symmetry

 120 
Figure 4. Reactivity issues and asymmetric synthesis. (a) Resonance structures towards C or 121 
O-alkylation reaction. (b) Enantioselective strategies. 122 

In the following Section, we will describe the achievement based on these three enantioselective 123 
synthetic strategies. 124 

2.1. Addition Reactions with Stereocenters Created Inside the Ring 125 
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2. Enantioselective Transformations of Barbituric Acid Derivatives

As aforementioned, barbituric acid derivatives are easily deprotonated with regard to their rather
low pKa value. Simple reasoning based upon resonance structures obviously shows that the conjugate
base of barbituric acid may undergo either a C-alkylation or an O-alkylation reaction (Figure 4a),
an issue known to be dependent on the nature of the electrophile and reaction conditions [28]. Several
research groups took advantage of these features to develop enantioselective transformations based on
three different strategies (Figure 4b). Barbituric acid derivatives having different N-substituents
(R1 6= R2) are pro-chiral by nature (if R3 = H) and, consequently, they provide the corresponding
alkylated products with a stereocenter inside the ring (strategy A). This approach was mainly applied
to the formation of tetrasubstituted products (R3 6= H). On the other hand, symmetrical architectures
(R1 = R2, strategy B) will furnish products along with the construction of a stereocenter outside the ring
after the reaction with a pro-chiral electrophile. Finally, annulation processes may take place, through
both a C- and O-alkylation sequence (strategy C), allowing the synthesis of fused ring scaffolds while
the initial symmetry of the barbituric acid precursor is broken.
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O-alkylation reaction. (b) Enantioselective strategies.

In the following Section, we will describe the achievement based on these three enantioselective
synthetic strategies.
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2.1. Addition Reactions with Stereocenters Created Inside the Ring

In the 1990s, the Brunner group published a series of pioneering investigations highlighting
the stereoselective alkylation reaction of non-symmetrical barbituric acid derivatives. In 1994 [21],
the authors succeeded in the Pd-catalyzed allylation reaction of the 1,5-dimethylbarbituric acid
13 to give the corresponding product 14 in 68% yield and 12.7% ee (Scheme 1), along with the
creation of an all-carbon tetrasubstituted stereocenter. The process needed the use of a stoichiometric
amount of 1,8-diazabicyclo[5.4.0] undec-7-ene (DBU) as a base to deprotonate the starting material 13.
This beautiful early achievement was allowed with the parallel development of novel chelating chiral
phosphine imine ligands, such as 15.
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Scheme 1. Pioneering investigations.

During subsequent investigations, this group of researchers took advantage of the readily available
phosphine imines like 17, easily synthesized from the corresponding aldehyde with suitable chiral
amines (Scheme 2). Then, 134 various ligands were evaluated in this enantioselective allylation
process of 13 [20,23]. The novel phosphine ligand 17 allowed to improve the ee up to 34% for product 14,
and another side-product, 16, which originated from the double allylation reaction was observed in
these conditions. Based on preliminary theoretical and NMR investigations, the authors have proposed
a transition state wherein the (η3-allyl)-palladium complex would possess two phosphine-ligands
L featuring π-π stacking events between their phenyl rings. Then, the hydroxyl functional group of
the ligand may create hydrogen-bonding interactions with the barbituric acid anion to differentiate
the two enantiotopic enolate faces (Scheme 2). These pioneering achievements are noteworthy since
the pro-chiral incoming anion, and the palladium complex (having the chiral information) are lying
at the opposite faces of allylic activated species, which makes the design of a suited ligand for this
asymmetric reaction significantly challenging contrariwise to the one used for a pro-chiral electrophile.
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In 1999, Brunner and colleagues tackled the stereoselective synthesis of methohexital 19,
a potent short-time anesthetic (Scheme 3) [22]. As mentioned in the article, the four stereoisomers of
barbituric acid derivatives 19 displayed distinct narcotic effects that make asymmetric synthesis a
useful constructive-tool in this case. The palladium-promoted allylation reaction was, obviously,
a suited approach to 19 but had to challenge the presence of a stereogenic center on
1-methyl-5-(1’-methylpent-2’-ynyl) barbituric acid 18, in so much as this starting material was used
as a racemic mixture. The phosphine imine 17 proved to be the best ligand for this reaction, and
an advanced investigation revealed salient features. Indeed, the stereoselective allylation of one of
the prostereogenic faces of the transient enolate species took place upon the influence of the chiral
ligand 17, giving two diastereoisomers (19, (R,R) and (R,S), for instance) for a given enantiomer of
18 (for instance, from the one having the R propargylic-stereocenter). Additionally, this allylation
sequence also led to a kinetic resolution process resulting in the faster transformation rate of either
(R)-18 or (S)-18 at the propargylic-stereocenter. In line with these two processes (Scheme 3), the reaction
stopped after 9 hours and provided two diastereoisomers 19 with 26% yield and one of them was
obtained in up to 80% ee (the other one in 13% ee). The remaining starting material 18 was recovered in
79% yield and a combined 5% ee. After 72 hours of reaction, the enantiomeric excess of the first pair of
enantiomers decreased to 46% while the other one reached 72%. Nonetheless, the combined ee of the
starting material 18 (7%) was improved to 83% in accordance with a kinetic resolution event.
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In 2000 the Trost group envisaged the elaboration of a simplified analogue 21 of methohexital,
lacking a stereogenic center at the propargylic position (Scheme 4) [30]. The catalyzed asymmetric
allylic alkylation reaction (AAA), using the C2-symmetrical cyclohexyldiamine ligands 23 or 24 in
the presence of palladium chloride species, allowed the transformation of the starting material 20
into the corresponding allylated product 21 albeit in modest 19% yield and 37% ee. In this case,
the more sterically hindered ligand 24 versus 23, having two naphthyl moieties, proved to be the
most efficient one. The authors moved to a prochiral cyclopentenyl carbonate as electrophile with
the hope to favor the stereodifferentiation of the prochiral faces of the enolate intermediate derived
from deprotonation of nucleophile 20. In a similar catalytic system, but in dichloromethane solvent
instead of DMSO, the product 22 was obtained in a good 78% yield, modest 2:1 dr but with excellent
ees of 93% and 86% for both diastereoisomers, respectively. This constitutes the highest selectivity
obtained at that time for a catalytic metal-based transformation of a non-symmetrical barbituric
acid. That is noteworthy as this requires the chiral discrimination between an NMe and NH amide
moieties of the pro-nucleophilic partner 20.
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Recently, Palomo and co-workers tackled the enantioselective alkylation reaction of
non-symmetrical barbituric acid derivatives making use of an organocatalytic strategy (Scheme 5) [31].
After the observation of very moderate ees obtained using (thio)barbituric acid nucleophiles,
this research established that 2-alkylthio-4,6-dioxopyrimides 25 were competent barbituric acid
surrogates for the conjugate addition reaction to vinyl aryl ketones 26. Upon the influence of a
newly designed squaramide-derived 9-epi-amino quinine 28a organocatalyst, as a chiral Brønsted
base, an array of Michael adducts 27 were synthesized in good yields and ees ranging from 90 to 97%
irrespective of the nature of substituents (R1, R2, and Ar) on precursors 25 and 26. To explain the
enantioselectivity of this reaction, the authors proposed a transition state in which the bifunctional
organocatalyst 28a would create two hydrogen bonds between the squaramide moiety and the
corresponding enolate of barbiturate derivative 25 within the ion-pair 29 (Scheme 5), and more
precisely with the most accessible oxy-anion. Then, enones 26 would approach the front-face of the
barbiturate enolate escorted by a hydrogen bonding allowed by the quinuclidinium cation moiety.

Notwithstanding this major achievement in this field of research, the Michael reaction could not be
extrapolated to less reactive acrylate derivatives, and the moderately sterically hindered acrolein led to
a modest ee of 48% [31]. Nevertheless, this group showed that enone 30 (Scheme 6), a precursor of
acrylates or acrolein after oxidative cleavage sequences, was able to undergo the stereoselective
conjugate addition of 25 under rather similar organocatalytic conditions to give barbituric acid
products 31 with ees between 81% and 94%, after an acidic hydrolysis of the 2-benzylthioether moiety.
As depicted in Scheme 6, this reaction tolerates various linear and branched alkyl substituents at C5
(R1), and both alkyl and aryl pendants on nitrogen (R2) of products 31a-f. Curiously, as an exception,
the precursors 29 with an iso-propyl (R1) did not furnish any product 31g in these conditions (Scheme 6).
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The scope of this transformation was further broadened during the development of an asymmetric
allylation reaction thanks to the potent Cinchona derived organocatalyst 28a (Scheme 7). The reaction
proceeded smoothly between barbiturate 32 and the Morita-Baylis-Hillman allyl bromide 33 in the
presence of potassium carbonate to neutralize the HBr production. As a representative example,
the allylated product 34 was synthesized in 65% yield and 92% ee. The optimization demonstrated
that the best results were obtained with electrophile 33 having a tert-butyl ester and K2CO3 proved
to be the more suitable base. The authors illustrated the usefulness of the obtained barbiturate
derivatives, such as 34, possessing an all-carbon quaternary stereocenter by performing various
transformations [31]. For instance, a metathesis reaction on product 34 furnished the cyclopentene
35 in 78% yield (Scheme 7). Eventually, the barbituric acid architecture 36 was formed upon an
acidic hydrolysis.
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These achievements constitute a breakthrough in the field of catalytic enantioselective
transformations of non-symmetrical barbituric acid derivatives along with the demonstration of useful
transformations of the obtained enantioenriched products. In parallel, the development of catalytic
asymmetric addition reactions of symmetrical barbituric acid derivatives to prochiral electrophiles has
evolved (see Section below).

2.2. Addition Reactions with Stereocenters Created Outside the Ring

Inspired by previous reports by Brunner et al., dealing with the Pd-catalyzed asymmetric allylic
alkylation reaction (AAA) of pro-chiral barbituric acid derivatives [20–23], Trost et al. reported the AAA
reaction of symmetrical barbituric acid derivatives in the course of the synthesis of cyclopentobarbital
38 and pentobarbital 42 that are known to exhibit sedative and hypnotic properties, respectively
(Scheme 8) [30]. Initial attempt to synthesize cyclopentobarbital 38 from allylic barbituric acid
derivatives 37a (R1 = allyl) and allylic carbonate in the presence of Pd2(dba)3·CHCl3 (2.5 mol%),
ligand (S,S)-23 (5 mol%, see Scheme 4 for structure), and Et3N (1 equivalent) in CH2Cl2 at 25 ◦C
allowed the formation of the expected product 38 in high enantiomeric excess (84% ee). However,
moderate isolated yield of 39% was obtained due to the presence of significant amounts of di- and
tri-alkylated products 40 and 41, respectively (38/40/41 = 4.3:1:1). The presence of polyalkylated
products was assigned to the higher solubility and hence reactivity of the first formed monoalkylated
product 38 versus barbituric acid 37a. To solve this issue, the reaction was performed without
base but in the presence of an ammonium salt (n-Hex4NBr) playing a dual role of (1) providing a
more sterically congested nucleophile resulting in the diminution of polyalkylated products, and (2)
increasing interactions between the nucleophile and the ligand, thus, improving the enantiomeric
excesses. Indeed, by implementing such conditions and by switching to ligand (S,S)-24 (see Scheme 4),
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a selective formation of the cyclopentobarbital 38 was observed in a good isolated yield of 85% and
excellent 91% ee. The (R)-absolute configuration of 38 was proposed using the predictive model
previously developed by Trost et al. for such type of ligands and nucleophiles [32]. To synthesize
pentobarbital 42 from barbituric acid derivative 37b and allylic carbonate, the reaction conditions
were slightly modified. Indeed, by using the same palladium(0) source (Pd2(dba)3·CHCl3, 1 mol%)
in the presence of ligand (R,R)-23 (2 mol%), the mono alkylated product 39 was obtained in almost
quantitative yield (96%) and 78% ee in 3h providing that 10 mol% of TBAT (tetra n-butylammonium
triphenyldifluorosilicate) was used as additive. After a hydrogenation step, the enantioenriched
pentobarbital 38 was obtained in a quantitative yield and 81% ee after a simple recrystallization. (R)-42
is known in the literature, the absolute configuration was eventually ascertained by comparison of the
optical rotation.Catalysts 2018, 8, x FOR PEER REVIEW  11 of 30 
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Later, Rawal et al. reported an enantioselective Michael addition of N,N′-disubstituted barbituric
acid derivatives 5 to β-nitro olefins 43 using chiral thiosquaramides 44 as a bifunctional organocatalyst
(Scheme 9) [33]. To circumvent the known solubility issue of the original squaramide catalysts,
the authors have developed an unprecedented and more soluble chiral thiosquaramide version 44.
Furthermore, the higher acidity of the N–H bonds of the thiosquaramide moiety was estimated with a
lower pKa of 4 to 5 units in comparison to the squaramide counterpart allowing stronger hydrogen
bonding activation events. Several chiral thiosquaramides 44, having a chiral cyclohexanediamine
scaffold, were synthesized in three steps from commercially available butyl squaramate ester in
good yields ranging from 67 to 83%. These catalysts were evaluated in the nucleophilic 1,4-addition
reaction of N,N′-diphenyl barbituric acid 5b acid to β-nitro styrene 43a. In each case, complete
conversions into adduct 45 were obtained in toluene at room temperature in half an hour along with
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ees ranging from 45 to 97% even at catalyst loading as low as 0.5 mol%. Interestingly, a comparison
of catalyst 44b to its squaramide version 46 revealed that both catalysts are very similar in terms of
conversion (above 98%) and enantioselectivity (97% ee vs 95% ee, respectively). It is noteworthy
that the reaction could be carried out using only 0.05 mol% of catalyst 44b in toluene without
erosion of both conversion and enantioselectivity (>98%, 96% ee). As mentioned by the authors, these
reactions were conducted without any precautions under air atmosphere. Thus, by implementing
optimized conditions (i.e., 0.5 mol% of catalyst 44b in toluene at room temperature for 0.5 h to 24 h),
several addition products 45 have been obtained in excellent isolated yields and ees regardless to
the substitution of the barbituric precursors 5 or the β-nitrostyrenes 43 (Scheme 9c). Only for more
sterically hindered precursors 5 or 43, longer reaction times (24 h instead of 0.5 h) and higher catalyst
loading (5 mol% instead of 0.5 mol%) were required to maintain the level of isolated yields and
ees. For HPLC analysis issue (high retention times and broad peaks), the addition products 45 were
chlorinated to afford 47 before analysis.Catalysts 2018, 8, x FOR PEER REVIEW  12 of 30 
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The same year, Wang and co-workers reported on the enantioselective organocatalytic Michael
addition of N,N′-dialkylbarbituric acid derivatives 5 to β-substituted enones 48 making use of chiral
bifunctional squaramide catalyst 28b based upon a 9-epi-aminoquinine scaffold (Scheme 10) [34].
The screening of reaction parameters was performed using N,N′-dimethyl barbituric acid 5a and
chalcone 48a as model substrates in toluene at 25 ◦C. Quinine (QN) provided the corresponding
addition product 49a in a good yield of 68%, but ee values did not exceed 15% (Scheme 10a). Drastic
improvement of the induction was achieved by switching to bifunctional squaramide catalyst 28b
(10 mol%) allowing to obtain product 49a in 78% ee. After an optimization endeavor, the best conditions
were set as followed: o-xylene as solvent at room temperature in the presence of 10 mol% of catalyst
28b using N,N′-di-tert-butylbarbituric acid 5c as substrate. Then, a survey of the scope of the reaction
was undertaken using various substituted enones 48 and barbituric acid 5c (R1 = t-Bu, Scheme 10c).
A large panel of Michael adducts 49 flanked by mono or di-substituted (electron-withdrawing or
electron-donating groups) aryl, heteroaryl could be tolerated as long as R2 and R3 substituents are
concerned in almost perfect stereoinduction (25 examples, 95–99% ee) with, nonetheless, variable
isolated yields (44–99%). Aliphatic R2 group (n-Pr) in association with phenyl R3 group resulted in a
slight drop of the ee (92%) whereas enones with R3 = Me, and R2 = Ph or n-Pr remained unreactive in
the reaction conditions. The absolute configuration of compounds 49i was attributed as (S) thanks to
single-crystal X-ray analysis. To account for the high level of induction observed, the authors proposed
a transition state where the squaramide part of the catalyst 28b binds to the carbonyl of the enone
while the barbituric acid moiety (under its enol form) is well-positioned by the quinucline Brønsted
base part (Scheme 10b). Thus, an addition to the Re-face of the enone is favored.

Catalysts 2018, 8, x FOR PEER REVIEW  13 of 30 

 

and R3 substituents are concerned in almost perfect stereoinduction (25 examples, 95–99% ee) with, 314 
nonetheless, variable isolated yields (44–99%). Aliphatic R2 group (n-Pr) in association with phenyl 315 
R3 group resulted in a slight drop of the ee (92%) whereas enones with R3 = Me, and R2 = Ph or n-Pr 316 
remained unreactive in the reaction conditions. The absolute configuration of compounds 49i was 317 
attributed as (S) thanks to single-crystal X-ray analysis. To account for the high level of induction 318 
observed, the authors proposed a transition state where the squaramide part of the catalyst 28b 319 
binds to the carbonyl of the enone while the barbituric acid moiety (under its enol form) is 320 
well-positioned by the quinucline Brønsted base part (Scheme 10b). Thus, an addition to the Re-face 321 
of the enone is favored. 322 

 323 

  324 
Scheme 10. Organocatalyzed enantioselective Michael addition of N,N’-disubstituted barbituric acid 325 
derivatives to β-substituted enones. (a and b) Importance of the bifunctional nature of the catalyst in 326 
the transition state. (c) Scope and limitations. 327 

2.3. Annulation Reactions 328 
Barbituric acid derivatives may also be involved in annulation reactions. This approach was 329 

first tackled by Chen and co-workers during the synthesis of tetrahydropyrano bicycles 50 (Scheme 330 
11) [35]. Starting from N,N’-dimethyl barbituric acid 5a and Morita-Baylis-Hillman (MBH) acetate of 331 
nitroalkene 51, a domino Michael-oxa-Michael addition reaction was achieved upon 332 
organocatalysis. During the reaction investigation, it was found that the original tertiary 333 
amine-thiourea bifunctional organocatalyst 52 was superior to the other organocatalysts. Thus, by 334 
applying optimized conditions (i.e. 10 mol% of 52, CH2Cl2, 25 °C), the investigation of the scope of 335 
the reaction was undertaken. Excellent results were obtained regardless of the substitution pattern 336 

Scheme 10. Organocatalyzed enantioselective Michael addition of N,N′-disubstituted barbituric acid
derivatives to β-substituted enones. (a,b) Importance of the bifunctional nature of the catalyst in the
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2.3. Annulation Reactions

Barbituric acid derivatives may also be involved in annulation reactions. This approach was first
tackled by Chen and co-workers during the synthesis of tetrahydropyrano bicycles 50 (Scheme 11) [35].
Starting from N,N′-dimethyl barbituric acid 5a and Morita-Baylis-Hillman (MBH) acetate of nitroalkene
51, a domino Michael-oxa-Michael addition reaction was achieved upon organocatalysis. During the
reaction investigation, it was found that the original tertiary amine-thiourea bifunctional organocatalyst
52 was superior to the other organocatalysts. Thus, by applying optimized conditions (i.e., 10 mol% of
52, CH2Cl2, 25 ◦C), the investigation of the scope of the reaction was undertaken. Excellent results
were obtained regardless of the substitution pattern on the aromatic ring to give 76–99% isolated yields,
dr <19:1 and 86–99% ees. Polyaromatic or heretoaromatic ring pendants of the MBH adduct 51 were
tolerated but at the expense of a slight drop of the diastereoisomeric ratio (dr >10:1) or isolated yield
(51%), respectively. To account for the high diastereo- and enantioselectivity, the authors proposed a
transition state where the amine part of the catalyst would deprotonate the barbituric acid 5a while
its thiourea part binds to the nitro group of the MBH derivative 51. This results in a well-defined TS
allowing an attack of the enolate to the Re-face of the nitroalkene 51. Then, a 6-endo-trig annulation took
place through a 6-membered ring transition state where the nitro group is in pseudo-equatorial position
to minimize steric interactions with an aromatic group, thus, leading to product 50 as trans-isomers in
high diastereo- and enantioselectivity.
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One year later, the same group reported on a (3+3) annulation reaction consisted of a similar
Michael-oxa-Michael sequence starting from N,N′-dimethyl barbituric acid 5a but in the presence of
2-(1-alkynyl)-2-alken-1-ones 53 as electrophilic partners (Scheme 12) [36]. Thus, by implementing
the Takemoto’s organocatalyst, possessing an amine-thiourea bifunctional scaffold 54 (10 mol%) in
mesitylene at−20 ◦C, almost 20 cyclic products 55 were obtained in fair to good isolated yields (32–87%)
and moderate to high ees of 67–94%. The substitution of Ar1 by either electro-withdrawing or -donating
groups proved to have a low impact on the ees being generally above 80% except for nitro-substituted
compounds obtained in 67% ee values. This was attributed to possible interactions with the catalyst that
hamper the optimal activation process. Contrariwise, substitution of Ar2 was found to have a positive
effect on the asymmetric induction leading to ees ranging from 84 to 94%. Generally speaking, the steric
effect seems to be detrimental to obtain high yields and enantioselectivties as shown by results obtained
with 2,4-dichloro substituent on Ar1 whereas no reaction was observed when cyclohexyl was used
instead of Ar1 group or in the presence of N,N′-diethyl barbituric acid 5d. From a mechanistic point of
view, the authors proposed the activation of the barbituric acid 5a, under its enol form, by the tertiary
amine part of the catalyst meanwhile the thiourea moiety chelates the carbonyl group of the enynone
53 to favor the attack of nucleophile to the Si-face of the C–C double bond of 53. Then, an oxa-Michael
addition to the transient allene 56 takes place, thus, affording the (3+3) cycloadduct 55.
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An example of annulation reaction consisted of two consecutive C–C bonds was reported in
2015 by Lam and co-workers during the synthesis of a series of spiro-indenes of type 59 with
good to excellent ees. However, in this study, a single example was reported which involved the
1-methyl-5-phenylbarbituric acid 57 and alkynes 58 in the presence of chiral rhodium complexes 60
as catalyst and Cu(OAc)2 as oxidant giving rise to the formation of 59 in good isolated yield (76%)
but with only 11% ee (Scheme 13) [37]. This low enantioselection was attributed to the fact that both
carbonyl functional groups (which act as directing groups for the formation of the rhodacycle 61 in the
catalytic cycle) adjacent to the phenyl substituent are electronically and sterically similar. This results
in a lack of stereodifferentiation between the two possible transition states (rhodacycles 61 and ent-61)
obtained after the coordination and migratory insertion of the alkyne partner.
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3. Enantioselective Transformations from Alkylidene Barbituric Acid

As discussed in the introduction (Cf. § 1.2), alkylidene barbituric acids are highly reactive
electron-poor alkene derivatives which have been involved into either cycloaddition or annulation
reaction (Scheme 14). On the one hand, under asymmetric catalytic conditions, (3+2) and (4+2)
cycloaddition or annulation reactions took place on the C–C double bond and have allowed the
construction of spiro-compounds (path A). On the other hand, suitably designed dienophiles led to
enantioselective Diels–Alder reactions through the concomitant C–C and C–O bond formation to
provide chiral fused-compounds (path B).
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3.1. (3+2) Cycloaddition Reactions

Alkylidene barbiturates have been involved in (3+2) cycloaddition as found by different
research groups. First of all, isothiocyanates were used with amine catalysis (Scheme 15a). Then,
Morita-Baylis-Hillman (MBH) adduct or ynone starting materials were reported as dipole precursors
along with phosphine catalysis (Scheme 15b,c).Catalysts 2018, 8, x FOR PEER REVIEW  18 of 30 
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For more than ten years, isothiocyanates have been engaged in catalytic reactions as isothiocyanato
amides, esters or phosphonates. In 2015, Liu’s group published on a racemic (3+2) cycloaddition
between alkylidene barbiturates 8 and 3-isothiocyanato oxindoles 62 catalyzed by triethylamine
(Scheme 16) [38]. In 2016, the same authors reported on an enantioselective version catalyzed by a
Cinchona-based thiourea 64 leading to spirobarbiturates 63 in modest to excellent ees and 20:1 dr in
most cases (Scheme 16) [39]. The best reaction conditions involved the use of 9-epi-quinine-thiourea
64 (10 mol%), p-toluic acid (10 mol%) and 4 Å molecular sieves in chloroform. According to the
proposed mechanism (see TS in Scheme 16), p-toluic acid drives the equilibrium of 62 towards its enol
form, which forms a hydrogen bond with the tertiary amine of catalyst 64. The bifunctional nature of
organocatalyst 64 allows extra-hydrogen bonding interactions between both the thiourea and barbituric
acid moieties, thus, providing a well-organized transition state that favors the selective addition of
the nucleophile 62 to one the two prosterogeneic faces of the alkylidene derivative 8. The scope
with regard to alkylidene barbiturates 8 was studied and showed that aryl substituents (R1) were
well-tolerated irrespective to the substitution pattern on the rings (R2 = R3 = Me: 80–99% yield, 13:1 to
>20:1 dr, 75–99% ee). Nevertheless, it was demonstrated that the position of substituents significantly
influenced the selectivity as shown with 3-chlorophenyl derivative 63b obtained in 96% ee whereas
4-chlorophenyl derivative 63d was isolated in only 75% ee. Moreover, cycloaddition products 63f-g
with 2-naphthyl and iso-propyl pendants were synthesized in high 93% and 75% yields, respectively,
albeit with a dramatic drop in ees (31% and 18% ees, respectively), probably due to steric and electronic
issues. The scope of 3-isothiocyanato oxindoles 62 has also been surveyed showing that variations of
R2 and R3 groups were well-tolerated.

In 2018, the Albrecht group tackled the first use of α-substituted α-amino acid-based
isothiocyanates 65 in the annulation reaction with alkylidene barbituric acids 8 leading to the spiranic
2-pyrrolidinethiones 66 (Scheme 17) [40]. The original idea was to combine barbituric acid and
quaternary α-amino acid, which are both known as bio-relevant architectures. After the screening of
solvents and organocatalysts, the best reaction conditions made use of 9-epi-quinine-squaramide
28b (20 mol%) in toluene, leading to 66a in 95% conversion and 94% ee (Scheme 17b). With their
optimized conditions in hand, the authors first studied the scope of the reaction from the alkylidene
barbiturates point of view. First of all, the substitution pattern of the aromatic part of the benzylidene
barbituric acid 8 (R1 = Ar) had almost no influence on the reaction outcome, and excellent ees were
generally obtained independently of the nature or the position of the substituents on the aromatic
ring. Interestingly, the alkylidene barbituric acids 8 (R1 = i-Pr) also yielded the corresponding product
66e with excellent 92% ee but at the expense of a lower isolated yield of 40%. To account for the high
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level of stereoinduction observed, the authors proposed a transition state where the catalyst binds to
the alkylidene barbituric acid through hydrogen bonding thanks to the thiourea moiety while the
tertiary amine part deprotonates the isothiocyanate 65 (Scheme 17c).Catalysts 2018, 8, x FOR PEER REVIEW  19 of 30 
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alkylidenes barbituric acid.

Catalysts 2018, 8, x FOR PEER REVIEW  20 of 30 

 

  450 
Scheme 17. Enantioselective synthesis of spiranic 2-pyrrolidinethiones from amino acid 451 
isothiocyanate derivatives and alkylidene barbituric acids. (a) General conditions. (b) Scope and 452 
limitations. (c) Proposed transition state. 453 

Eventually, the Albrecht group envisioned the use of isothiocyanato α-aminophosphonates 67 454 
for the synthesis of spirobarbiturates 68 (Scheme 18) [40]. By switching the solvent from toluene to 455 
THF, the diphenyl derivative 68a was obtained in 99% yield and 98% ee. Albrecht and co-workers 456 
then modified the R1 substituent. Various aryl substituted moieties were tolerated without showing 457 
a significant impact on the enantiomeric excesses of the reaction, as exemplified with 3-ClC6H4 and 458 
2-ClC6H4 derivatives 68b–68c together with 4-MeOC6H4 derivative 68d providing almost the same 459 
ees (92%, 96% and 98%, respectively). Finally, the same trend was observed for the R2 substituents on 460 
isothiocyanate nucleophile 67 as underlined by the excellent level of enantioselection obtained either 461 
for the 4-ClC6H4 derivative 68e or the 4-MeOC6H4 derivative 68f (96% ee and 94% ee, respectively). 462 

 463 
Scheme 18. Enantioselective spirobarbiturates synthesis from phosphonate isothiocyanate 464 
derivatives. 465 

Scheme 17. Enantioselective synthesis of spiranic 2-pyrrolidinethiones from amino acid isothiocyanate
derivatives and alkylidene barbituric acids. (a) General conditions. (b) Scope and limitations.
(c) Proposed transition state.



Catalysts 2019, 9, 131 18 of 27

Eventually, the Albrecht group envisioned the use of isothiocyanato α-aminophosphonates 67
for the synthesis of spirobarbiturates 68 (Scheme 18) [40]. By switching the solvent from toluene to
THF, the diphenyl derivative 68a was obtained in 99% yield and 98% ee. Albrecht and co-workers
then modified the R1 substituent. Various aryl substituted moieties were tolerated without showing
a significant impact on the enantiomeric excesses of the reaction, as exemplified with 3-ClC6H4 and
2-ClC6H4 derivatives 68b–68c together with 4-MeOC6H4 derivative 68d providing almost the same
ees (92%, 96% and 98%, respectively). Finally, the same trend was observed for the R2 substituents on
isothiocyanate nucleophile 67 as underlined by the excellent level of enantioselection obtained either
for the 4-ClC6H4 derivative 68e or the 4-MeOC6H4 derivative 68f (96% ee and 94% ee, respectively).

Catalysts 2018, 8, x FOR PEER REVIEW  20 of 30 

 

  450 
Scheme 17. Enantioselective synthesis of spiranic 2-pyrrolidinethiones from amino acid 451 
isothiocyanate derivatives and alkylidene barbituric acids. (a) General conditions. (b) Scope and 452 
limitations. (c) Proposed transition state. 453 

Eventually, the Albrecht group envisioned the use of isothiocyanato α-aminophosphonates 67 454 
for the synthesis of spirobarbiturates 68 (Scheme 18) [40]. By switching the solvent from toluene to 455 
THF, the diphenyl derivative 68a was obtained in 99% yield and 98% ee. Albrecht and co-workers 456 
then modified the R1 substituent. Various aryl substituted moieties were tolerated without showing 457 
a significant impact on the enantiomeric excesses of the reaction, as exemplified with 3-ClC6H4 and 458 
2-ClC6H4 derivatives 68b–68c together with 4-MeOC6H4 derivative 68d providing almost the same 459 
ees (92%, 96% and 98%, respectively). Finally, the same trend was observed for the R2 substituents on 460 
isothiocyanate nucleophile 67 as underlined by the excellent level of enantioselection obtained either 461 
for the 4-ClC6H4 derivative 68e or the 4-MeOC6H4 derivative 68f (96% ee and 94% ee, respectively). 462 

 463 
Scheme 18. Enantioselective spirobarbiturates synthesis from phosphonate isothiocyanate 464 
derivatives. 465 

Scheme 18. Enantioselective spirobarbiturates synthesis from phosphonate isothiocyanate derivatives.

MBH adducts have also been used in (3+2) cycloaddition reaction with alkylidenes barbituric
acids 8 as dipolarophile partners. In this reaction, the phosphine catalyst reacts with the MBH adducts
69 to furnish a transient 1,3-dipole giving rise to a (3+2) cycloaddition with the alkylidene barbiturate
8 (Schemes 15b and 19) [41]. In this vein, Guo et al. described in 2016 the first enantioselective
phosphine-catalyzed (3+2) annulation of alkylidene barbiturates 8 with MBH adducts 69 leading to
spirobarbiturates 70 in excellent diastereoselectivities (>20:1 dr) and high to excellent enantiomeric
excesses of 81 to 99% ees (Scheme 19) [41]. Optimization of the catalyst showed that bifunctional
phosphine catalyst 71 afforded the best balance between yield and ee of product 70a for instance
(76% yield and 93% ee in PhCF3). It was also noted that the addition of molecular sieves along with
20 mol% of K2CO3 increased the yield of 70a from 76 to 85% while ee reached 96%. It is believed that
K2CO3 facilitates the formation of the reactive phosphonium zwitterion (See Scheme 15b). Thereafter,
the scope of benzylidene barbituric acids 8 was studied, and it was found that aromatic substituents
were, in general, well tolerated and gave rise to the formation of products 70 with 60–98% yields and
91–99% ee. However, the use of a cyclohexyl moiety (R1 = cyclohexyl) on the corresponding alkylidene
barbituric acid 70d instead of an aromatic ring decreased the yield of product 70d significantly to 30%,
while still affording 81% ee. Guo et al. also showed that the MBH precursors 69 including aromatic
substituents (R2 = Ar) furnished a wide range of cycloaddition products 70 in excellent yields (64–99%)
and enantioselectivities (85–93% ee), independently of the electronic properties of the substituent on
the phenyl ring. However, one should note that the yield decreases when R2 is 3-ClC6H4 (70g, 64%)
and that the presence of an aliphatic group (either a cyclohexyl for 70h or an iso-propyl for 70i) on the
MBH adduct completely inhibits the reaction.
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Scheme 19. (3+2) Cycloaddition between Morita-Baylis-Hillman adducts and alkylidene barbiturates.

In 2017, Guo and colleagues described a (3+2) cycloaddition with alkylidene barbituric acids
involving an ynone as dipole precursor (see Scheme 15c) which upon reaction with the phosphine
catalyst provides the reactive 1,3-dipole [42]. In their publication, the authors only provided one
example of an asymmetric (3+2) cycloaddition between ynone 72 and benzylidene barbituric acid 8b
using the chiral phosphine catalyst 71 (Scheme 20). The expected product 73 was, thus, obtained in 49%
yield and 40% ee [42]. Remarkably, during the screening of the reaction parameters in racemic fashion,
the authors found that using Na2CO3 as a Brønsted base additive (20 mol%) allowed the formation of
the expected (3+2) cycloaddition adduct 73 along with equal amount of the (4+2) cycloaddition
product 74.
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Guo’s team is not the only research group to have studied (4+2) cycloadditions involving
alkylidene barbituric acids. Others have published their work on asymmetric (4+2) cycloadditions,
the details of which will follow in the next part of this Section.

3.2. (4+2) Cycloaddition Reactions

Enantioselective Diels–Alder reaction involving alkylidene dienophile intermediates, such as 78a,
derived from barbituric acid 6, was first tackled by Tolstikov and colleagues in 2009 (Scheme 21a,b) [43].
Indeed, several chiral Diels–Alder adducts 77 were obtained using cyclic sulfone 75 as diene in
the presence of chiral amino-acid or amino-alcohol organocatalysts. While several enantioselective
examples (based upon optical rotation measurement) were reported in the publication, the enantiomeric
excesses were only provided for the product 77a. Accordingly, several chiral catalysts were evaluated
for the reaction between cyclic sulfone 75 and benzylidene 78a, generated in situ from thiobarbituric
acid 6 and 2-methoxybenzaldehyde 76a in dioxane-water (15:3 v/v) at 130 ◦C to afford the spiranic
adduct 77a (Scheme 21c). Whereas (S)-prolinol provided the cycloaddition product 77a under a
racemic form as a 5:1 mixture of diastereoisomer, the use of L-4-(tert-butyldimethylsiloxy)-proline
(L-4-(OTBDMS)-proline) or (-)-ephedrine resulted in a spectacular improvement of the enantiomeric
excesses (up to 80% ee and 86% ee, respectively) while affording acceptable isolated yields (68 and 60%,
respectively) in 77a, which was obtained as a single stereoisomer. The absolute configuration of the
cycloadduct 77a was ascertained by X-ray diffraction analysis.Catalysts 2018, 8, x FOR PEER REVIEW  23 of 30 
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Scheme 21. Enantioselective Diels–Alder reaction involving in situ-generated alkylidene barbituric
acid as dienophile. (a) General conditions. (b) Formation of the alkylidene barbituric acid intermediate.
(c) Catalysts evaluation.

In 2016, Guo, Zhou and co-workers have reported on a (4+2) annulation reaction between
alkylidene barbituric acid 8, 9 or 79 and allenoates 80 in the presence of a chiral phosphine 81
as a nucleophilic organocatalyst. Chiral spirocycloalkenes 82 were, thus, provided even though
architectures are difficult to obtain through regular Diels–Alder reaction (Scheme 22) [44]. Among
all the conditions and chiral phosphines tested, the ones displaying a spiranic architecture and
more particularly 81, previously reported by the same authors, gave the best level of diastereo-,
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enantioselectivity and yields providing that 4 Å molecular sieves (MS) were used as an additive
(Scheme 22b). The organocatalyst 81 (20 mol%) was elected to study the scope and limitations of this
methodology (4 Å MS, toluene, 60 ◦C). Both substitutions on allenoate 80 and alkylidene 8 partners
were evaluated. Generally speaking, excellent ees (above 90%) along with high isolated yields were
obtained for a wide range of functional groups covering simple hydrogen atom to diversely substituted
aromatic or heteroaromatic rings. Even other alkylidene barbituric acid derivatives 79 and 9 possessing
an N-N′-diethyl barbituric acid (R2 = Et, X = O) or N-N′-dimethyl thiobarbituric acid (R2 = Me, X = S)
moiety, respectively, were successfully engaged providing also excellent enantiomeric excesses (97% ee
and 95% ee, respectively). To underline the synthetic utility of the spirocyclohexene products 82,
the authors performed two chemical transformations starting from enantioenriched 82a (R1 = Ph,
R2 = Me, R3 = Ph, X = O, 94% ee, Scheme 22c). These encompassed an epoxidation of the double
bond of the cyclohexene part to give 83a (87%, 94% ee) and a nitration reaction of the aromatic ring to
furnish 84a (78%, 94% ee) without racemization event.Catalysts 2018, 8, x FOR PEER REVIEW  24 of 30 
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limitations. (c) Synthetic transformations.

Another application of alkylidene barbituric acids in (4+2) cycloaddition reaction was reported
recently by Zhao and colleagues during the synthesis of barbiturate-fused spirotetrahydroquinolines 87
from vinyl benzoxazinanones 86 in the presence of chiral palladium(0)-ligand complex (Scheme 23) [45].
Thus, a chiral ligand (20 mol%) derived from BINOL in association with Pd2(dba)3·CHCl3 (5 mol%) as
Pd(0) source in a 4:1 ratio in CH2Cl2 at room temperature were selected as the best conditions to obtain
optimal levels of ee and yields (Scheme 23b,c). By applying the above-mentioned conditions, the scope
and limitations of the reaction were investigated. By using simple N-Ts lactam 86a (R3 = R5 = H),
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high level of ee ranging from 89% to 96% was observed for a wide range of mono- or poly-substituted
phenyl rings and hetero- or poly-aromatic rings along with variable isolated yields (45–89%). Of note,
no reaction was detected with benzylidene barbituric acid having NH moiety (85a, R1 = Ph, R2 = H)
or alkylidene barbituric acid having an NR moiety (8c, R1 = i-Pr, R2 = Me). The substitution of the
vinyl benzoxazinanone partner 86 was also possible providing that R5 substituent remains a hydrogen
atom and R4 substituent a tosyl group. In this case, however, somewhat lower ees were obtained
(35–96% ee). Finally, the best results in terms of ee were obtained by introducing substituents on both
aromatic parts of the benzylidene barbituric acid 85 and vinyl benzoxazinanones 86, thus, providing
the corresponding spirotetrahydroquinolines 87 in up to 97% ee. It should be mentioned that all the
spirotetrahydroquinolines 87 were obtained as a single diastereoisomer where vinyl and R1 group
exhibited a cis relationship. To account for this excellent diastereoselectivity, the authors proposed
a plausible reaction intermediate where Ts and R1 groups are pseudo-trans to each other to avoid
a steric clash in the intermediate resulted from a reversible aza-Michael addition of 88 to 85 or 8c
(Scheme 23d). Then, the intramolecular addition of the carbanion of the barbiturate occurs at the
Si-face of the π-allyl-palladium-ligand complex to provide the cis-adduct. This cyclisation step was
proposed as the rate-limiting and enantio-determining step.
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benzoxazinanones and benzylidene N,N′-dimethyl barbituric acids. (a) General conditions. (b) Scope
and limitations. (c) Ligand structure. (d) Proposed reaction mechanism.
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In 2017, the Myrboh group studied the multi-component reaction involving aromatic aldehydes
76, 1,3-cyclohexanediones 89 and barbituric acid 1 catalyzed by simple L-proline catalyst (15 mol%) to
afford chromano[2,3-d]pyrimidine-triones 90 in high yields (70–96%) and low to excellent enantiomeric
excesses (8–96% ee, Scheme 24) [46]. The strength of this methodology relies on the user- and the
eco-friendly protocol. Indeed, water was used as a solvent at room temperature and pure products
90 were obtained after a simple filtration and recrystallization in ethanol. With these conditions in
hand, the authors studied the scope and limitations of this reaction (Scheme 24c). Regarding the
1,3-dione partners, both dimedone (3, R2 = Me) or 1,3-cyclohexanedione (89, R2 = H) were tested;
the latter providing slightly better results in terms of ee. Nevertheless, this gem-dimethyl substituent
seems to have a strong, erratic impact on the stereoinduction, but this phenomenon was not explained.
For example, 4-fluoro benzaldehyde gave excellent results (96% yield, 96% ee) when reacting with
1,3-cyclohexanedione 89 whereas its reaction with dimedone 3 resulted in a dramatic drop in efficacy
(80% yield, 30% ee). The opposite trend could be observed when 4-methyl benzaldehyde was used
(88% yield, 72% ee with dimedone vs 75% yield, 8% ee with 1,3-cyclohexanedione). Regarding
the aldehyde partner 76, most successful examples involve aromatic aldehydes (substituted by
electron-withdrawing or -donating groups at different positions) tested while only two examples in the
aliphatic or heteroaromatic series were reported with high ee (propanal, 96% ee and 1-naphthaldehyde,
92% ee, respectively). The authors proposed a mechanism where the first step is the formation of the
alkylidene barbituric acid 85 catalyzed by proline (Scheme 24b). These Michael acceptor species then
react with the enamine formed in situ between the catalyst and the 1,3-diketones 3 or 89 to give the
intermediate 91 that cyclizes to provide the desired chromano[2,3-d]pyrimidine-triones 90 thanks to an
oxa-Michael addition along with the regeneration of the catalyst.
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3.3. Other Cycloaddition Reactions

Guo and colleagues recently tackled the challenging higher-order cycloaddition reactions both
in racemic and enantioselective fashion starting from a heptafulvene barbituric acid platform 92 and
functionalized allenoates 80 (Scheme 25) [47]. Upon phosphine catalysis a formal (8+2) cycloaddition
process occurred to furnish the corresponding bicyclo [5.3.0] decanes 93 with excellent ees ranging from
86% to 97%. The authors observed that a rather activated ester moiety on allenoate 80 was required to
secure a good reactivity with sterically hindered chiral phosphine catalyst 94. Thus, for examples,
the arylic esters 93a–93d were obtained with high stereoinduction (86–92% ee) and isolated yields
ranging from 61% to 65%, together with derivatives 93e–93f having either a fluorinated (93e, 92% ee)
or chlorinated (93f, 97% ee) alkyl substituents on the ester moiety.Catalysts 2018, 8, x FOR PEER REVIEW  27 of 30 
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Scheme 25. Phosphine-catalyzed (8+2) annulation of barbituric acid heptafulvenes.

Actually, a screening of chiral phosphines revealed that the best results were achieved using
Kwon’s endo phosphine 94 (Scheme 26). Regarding the mechanism, the authors proposed a formal
(8+2) cycloaddition triggered by the addition reaction of the phosphine organocatalyst 94 to the
allenoate 80 to form the phosphonium betaine intermediate 95. Then, an addition reaction takes place
to the heptafulvene barbituric acid 92 to give 96, giving rise to a cyclization process that leads to the
transient cyclopentane 97. This charged intermediate undergoes the final elimination event allowing
the formation of product 93 along with the concomitant regeneration of phosphine organocatalyst 94.
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4. Conclusions

Despite the long-standing interest in barbituric acid derivatives as useful building blocks
for the elaboration of both bio-relevant products or architectures having interesting properties in
material science, the enantioselective catalytic synthesis of chiral non-racemic barbiturates-derived
products slowly emerged in the 1990s. The marked Brønsted acidity of barbituric acid derivatives
or electrophilicity of alkylidene counterparts have required the development of specific catalysts or
catalytic approaches to manage these unique properties. Furthermore, as far as non-symmetrical
barbituric acid scaffolds are concerned, the challenging stereo-differentiation of rather similar
functionality on both nitrogen atoms required ingenious methodological approaches to be carried
out. Nonetheless, both metal- and organic catalysts are currently able to engage barbituric derivatives
into highly enantioselective addition and cycloaddition reactions to provide original chiral linear,
fused, and spiro-bicyclic architectures. The panel of enantioselective reactions carried out on barbituric
acids remains, however, rather limited and many opportunities to develop new processes still exist.
By giving an overview of the state-of-the-art of catalytic enantioselective transformations, we hope
this review will provide a springboard to elicit new developments in this field of research.
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