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Abstract: Cobalt nanoparticles modified with N-doped hierarchical porous carbon derived from
biomass are found to be a highly efficient, reusable heterogeneous catalyst for the coupling of
nitroarenes with alcohols, selectively affording imines and amines via the borrowing hydrogen
strategy for the first time. The product selectivity between imine and amine may be precisely tuned
by simple alteration of the reaction conditions without changing the catalyst in one reaction system.
In this study, a broad set of complex imines and amines was successfully synthesized in good to high
yields with various functional groups tolerated for both nitroarenes and alcohols, highlighting the
potentially practical utility of the protocol. This heterogeneous catalyst can be easily removed from
the reaction medium by external magnet and can be reused at least four times without significant
loss in activity and selectivity.

Keywords: nanostructured cobalt catalyst; borrowing hydrogen; imine synthesis; amine synthesis;
nitroarenes

1. Introduction

Imines as versatile building blocks are ubiquitous in useful organic molecules such as
pharmaceuticals, natural products and bioactive heterocycles [1]. The traditional method for the
synthesis of imines is the condensation of highly reactive carbonyls with amines under the catalysis
of a Lewis acid. They can also be prepared by the oxidative strategy of self-condensation of primary
amines [2–6], dehydrogenation of secondary amines [7–10], or by the oxidative coupling of alcohols
with amines [11–16]. However, the procedures mentioned above generally suffer from practical
drawbacks such as poor selectivity, low catalytic activity, harsh reaction conditions, difficulty for
catalyst reuse, and so on. Furthermore, these well-developed procedures of preparing imines generally
use aryl amines as starting materials, which are usually produced by reduction of nitroarenes with
stoichiometric metals or catalyzed by transition metals under high pressure of hydrogen. As such, from
both an economic and environmental perspective, it is desirable to develop a heterogeneous base-metal
catalytic approach for highly efficient and selective synthesis of imines from readily available and
inexpensive nitroarenes.

The borrowing hydrogen strategy has been widely applied in organic transformations to construct
various C-X (X = C, N, S) compounds in the last decade [17–19]. In this context, of particular
importance is the N-alkylation of amines with alcohols to synthesize structurally complex primary
and/or secondary amine compounds, which represents one of the most straightforward, efficient
and eco-friendly methodologies for amine synthesis. As a consequence, a number of homogeneous
and heterogeneous metal catalysts (e.g., Pt [20,21], Pd [22], Ru [23–29], Ir [30–34], Au [35], Fe [36–39],
Mn [40,41], and Co [42–45]) have been developed for such a reaction (Scheme 1a). Despite great
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achievements, direct synthesis of imines by the coupling of nitroarenes and alcohols with high activity
and selectivity via the borrowing hydrogen strategy remains challenging. To date, only a handful of
examples enabled by noble metal catalysts (e.g., Pd [46,47], Ru [48], Ir [49], and Au [50,51]) have been
reported; however, their catalytic activities and selectivities are rather low and accompanied by limited
substrate scopes (Scheme 1b). In addition, the high cost and limited reserve on earth of noble metal
catalysts significantly impedes their large-scale industrial application. Notably, no successful direct
imine formation from nitroarenes and alcohols catalyzed by heterogeneous base metal catalysts has
been described, to the best of our knowledge.
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strategy.

In a continuation of our studies to develop green catalysis for sustainable organic synthesis,
we have recently developed highly efficient and recyclable inexpensive cobalt nanocomposites on
an N-doped hierarchical carbon derived from biomass for the chemoselective hydrogenation of
functionalized nitroarenes [52]. Inspired by the results that we obtained, we are eager to extend the use
of this catalyst to the reductive coupling of nitroarenes with alcohols through the borrowing hydrogen
strategy without H2. Herein, we report a heterogeneous catalyst based on cobalt nanoparticles modified
with N-doped hierarchical porous carbon which exhibits outstanding catalytic performance for direct
imine synthesis from the reductive coupling of nitroarenes with alcohols via the borrowing hydrogen
pathway under mild conditions. The hybrid nanostructured catalyst was prepared by pyrolysis of
naturally renewable biomass in combination with low-cost and earth-abundant cobalt salts in a simple
and eco-friendly manner. A broad set of nitroarenes were able to efficiently couple with various benzyl
alcohols to deliver imines in good to high yields. Remarkably, the product selectivity between the
imine and amine could be readily tuned by simple modification of reaction conditions. To the best of
our knowledge, this is the first report of direct and selective synthesis of C-N compounds from readily
available and inexpensive nitroarenes and alcohols catalyzed by a heterogeneous base-metal catalyst
via the borrowing hydrogen strategy (Scheme 1c).

2. Results and Discussion

The hybrid nanostructured cobalt nanoparticles modified with N-doped hierarchical porous
carbon were synthesized by a facile cascade process of hydrothermal-pyrolysis (see details in
Supporting Information (SI)). Fresh bamboo shoots were chosen as naturally renewable biomass which
contain nearly 8 wt% of N from their intrinsic proteins and amino acids. The bamboo shoots were first
cut into slices, dried, and ground into powder, followed by the hydrothermal process. The resulting
solids were homogeneously mixed with CoCl2 followed by pyrolysis under a N2 atmosphere at varying
temperatures to obtain the hybrid nanostructured material, hereafter denoted as CoOx@NC-T (where
T represents the pyrolysis temperature). This method of preparing catalysts has been published before.
In [52] full characterization is discussed.
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Inspired by the recently impressive progress of cobalt nanoparticles (NPs) supported on carbons
for reduction of nitro compounds [53,54], we commenced the reductive coupling of nitrobenzene (1a)
and benzyl alcohol (2a) as a model reaction to demonstrate the feasibility of the catalysts CoOx@NC-T
for C-N bond construction. The representative results are summarized in Table 1. The reaction was
initially performed in the presence of CoOx@NC-800 and two equivalents of tBuOK in toluene at
120 ◦C for 15 h (Table 1, Entry 7). To our surprise, 63% GC conversion of 1a with high selectivity (98%)
to 3a was observed (Table 1, Entry 6). To further optimize the reaction conditions, a set of factors was
screened. The screening of several different bases showed that tBuOK gave the best catalytic efficiency
in terms of activity and selectivity (Table 1, Entries 1–4 and 8). Among the solvents investigated,
toluene showed superior catalytic performance (Table S6 (See Supplementary Materials)). A decrease
in the reaction temperature led to a lower catalytic activity without influencing the selectivity to
3a (Table S7 (See Supplementary Materials)). Subsequently, the testing of the catalysts prepared at
variable pyrolysis temperatures (700, 800, and 900 ◦C) showed CoOx@NC-800 to be the best candidate
(Table S5 (See Supplementary Materials)). The catalyst CoOx@NC-T is indispensable for the success of
this reductive coupling reaction. A considerably lower reactivity with poor selectivity to 3a or even
no reactivity was observed in the presence of CoCl2, pure Co3O4, or pure nano Co3O4 (100 nm) as a
catalyst, or in the absence of a catalyst under otherwise identical conditions (Table 1, entries 13–16).

Table 1. Optimization of the reaction conditions a.
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Entry Catalyst Base (equiv.) Conv. (%) b
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TON h
3a 4a

1 CoOx@NC-800 Na2CO3 (3.0) 0 0 0 0
2 CoOx@NC-800 NaOH (3.0) 21 81 19 2.1
3 CoOx@NC-800 KHMDS (3.0) 100 57 43 10
4 CoOx@NC-800 KOH (3.0) 27 78 22 2.7
5 CoOx@NC-800 - 0 0 0 0
6 CoOx@NC-800 tBuOK (1.0) 34 100 0 3.4
7 CoOx@NC-800 tBuOK (2.0) 63 98 e 2 6.3
8 CoOx@NC-800 tBuOK (3.0) 100 98(87) e 2 10

9 c CoOx@NC-800 tBuOK (4.0) 100 20 80(72) e 10
10 d CoOx@NC-800 tBuOK (3.0) 100 95(86) e 5 10
11 d CoOx@NC-800 tBuOK (4.0) 100 4 96(84) e 10
12 CoOx@NC-800 tBuOK (4.0) 100 2 98 10
13 CoOx@C-800 f tBuOK (3.0) 98 35 63 9.8
14 tBuOK (3.0) 47 45 40 4.7
15 CoCl2 tBuOK (3.0) 25 73 27 2.5
16 Co3O4 tBuOK (3.0) 57 63 37 5.7
17 Nano Co3O4

g tBuOK (3.0) 64 58 42 6.4
a Reaction conditions: nitrobenzene (0.2 mmol), benzyl alcohol (0.6 mmol), catalyst (10 mol%), solvent (5 mL),
120 ◦C, 15 h. b Determined by GC using dodecane as an internal standard and conversion based on the conversion
of nitrobenzene. c 0.6 mmol benzyl alcohol was used. d 0.8 mmol benzyl alcohol was used. e Isolated yields are
in parentheses. f The catalyst was prepared by pyrolysis of the mixture of CoCl2 and activated carbon without
any N-doping. g Nano Co3O4 particle size is equal to 100 nm. h TON was calculated as the mole of nitrobenzene
converted to desired product normalized per Co.

Further investigations disclosed that the base tBuOK played a key role not only in boosting the
reaction but also in affecting the product selectivity between imine (3a) and amine (4a). In the absence of
base, the reaction did not proceed at all with recovery of the starting materials under standard reaction
conditions (Table 1, Entry 5). However, the reductive coupling reaction was evoked upon addition of
one equivalent of tBuOK and the reaction efficiency was gradually improved with increasing molar
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equivalents of base (Table 1, Entries 6–9). Surprisingly, the amount of tBuOK was found to significantly
alter the product selectivity as shown in Scheme S2 (See Supplementary Materials) and Table 1. More
specifically, 87% isolated yield to 3a was achieved in the presence of three equivalents of base and
benzyl alcohol (Table 1, Entry 8), while 84% isolated yield to 4a was afforded with four equivalents of
base and benzyl alcohol (Table 1, Entry 11) under otherwise identical conditions. These results clearly
evidence the crucial effect of tBuOK on reaction efficiency and the tunability of product selectivity
from imine to amine. To the best of our knowledge, this is first report of a heterogeneous non-noble
metal catalyzed reductive coupling of nitroarenes with benzyl alcohols with switchable selectivity for
imines or amines by simple modification of reaction conditions in one reaction system.

To explore the general applicability of this protocol, a variety of benzyl alcohols and nitroarenes
were subjected to optimized reaction conditions for selective synthesis of imines, and the results
are summarized in Table 2. Nitroarenes bearing different functional groups could efficiently couple
with benzyl alcohol to form their corresponding imines in good to excellent yields. Nitroarenes
containing electron-donating substituents (e.g., -Me, -OMe) gave relatively higher yields than those
with electron-withdrawing substituents (e.g., -F, -Cl, -Br, -CF3) (Table 2, 1b–1i). Importantly, the
pharmaceutically relevant trifluoromethyl- and F-substituted nitroarenes gave the corresponding
products with satisfactory isolated yields. The ortho-substituted nitroarenes (Table 2, 1d and 1e)
generally provided moderate yields due to steric effects. It should be noted that the heterocyclic
nitro-compounds (Table 2, 1k and 1l) were also compatible with the present conditions and gave
the corresponding imines in 65% and 72% yields, respectively. Likewise, a set of benzyl alcohols
containing ether (1m and 1n), halogen (Table 2, 1o–1q), hydroxyl (Table 2, 1r), and cyano (Table 2,
1s) were also successful for the reductive coupling with nitrobenzene giving the desired products in
68–86% yields under standard reaction conditions. Furthermore, the combination of both various
substituted benzyl alcohols with nitroarenes could also undergo the reductive coupling reaction
smoothly to afford structurally more complex imines in 70–84% yields (Table 2, 3u–3x), highlighting
the generally synthetic utility of the present catalysis system. In addition, the secondary alcohols,
such as 1-phenylethanol, 1-(4-methoxyphenyl) ethanol, and 4-(1-hydroxyethyl)benzonitrile) were also
subjected to the optimized conditions for the synthesis of imines. Pleasantly, the secondary alcohols
also worked with the present catalysis conditions to give their corresponding imines, albeit with
relatively lower isolated yields. This is mainly because of the more difficult condensation of aniline
with acetophenone than benzaldehyde. (Table 2, 3y–3ab).
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Table 2. Synthesis of imines from various alcohols and nitroarenes a.
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To demonstrate practical applicability, we performed a gram-scale reaction of 2-nitroaniline as
substrate to undergo the coupling reaction with benzyl alcohol (Scheme 2). To our satisfaction,
a one-pot cascade reaction of reductive coupling and cyclization took place smoothly under
optimized conditions. Benzimidazole was successfully isolated in 72% yield, which is ubiquitous in
pharmaceuticals and biologically active compounds such as Pimobendan [55] and N-(2-phenyl-1H-
benzo[d]imidazol-6-yl)quinolin-4-amine [56]. This one-pot cascade procedure provides an expedient
synthesis for benzimidazole.
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Scheme 2. Gram-scale synthesis of benzimidazoles under standard conditions.

In addition to the reductive coupling of nitroarenes with alcohols to form imines and imidazole,
we subsequently performed the reaction for direct synthesis of amines from benzyl alcohols and
nitroarenes by following the developed conditions in Table 1 (Entry 11) and Scheme S2d (See
Supplementary Materials). As illustrated in Table 3, various nitroarenes and benzyl alcohols could be
employed for the reductive coupling reaction, affording their corresponding amines in moderate to
high yields irrespective of the nature of substituents on the phenyl ring, which demonstrates the high
activity and good functional group tolerance of the present protocol for the synthesis of amines under
optimal reaction conditions.

Table 3. Synthesis of amines from various alcohols and nitroarenes a.
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a Reaction conditions: nitroarene (0.2 mmol), benzyl alcohol (0.8 mmol), CoOx@NC-800 (10 mol%), tBuOK (0.8
mmol), toluene (5 mL), 120 ◦C, 15 h. Yields of isolated product are reported.

Durability and recyclability of a catalyst is critical for practical applications. Upon completion
of the coupling of nitrobenzene with benzyl alcohol, the CoOx@NC-800 catalyst was recollected
by external magnet, washed, and dried after completion of a reductive coupling experiment for
subsequent cycles. As shown in Figure 1, the activity and selectivity remained, with negligible changes
after four recycling experiments, demonstrating the high durability of the catalyst.
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To gain insight into the reaction pathway, additional experiments were performed (Scheme S3 (See
Supplementary Materials)). A control experiment of acceptorless dehydrogenation of benzyl alcohol
revealed that the combination of tBuOK and CoOx@NC-800 is essential for efficient benzaldehyde
formation (See Supplementary Materials), which is generally considered the rate-determining step in
the coupling of anilines with benzyl alcohols [17,18,57]. Of note is that the dehydrogenation reaction
rate is considerably slower, mainly due to the lack of a hydrogen acceptor to drive the reaction
equilibrium to the desired aldehyde. The reduction of nitrobenzene in the presence of one atmosphere
of molecular hydrogen did not proceed under standard reaction conditions (See Supplementary
Materials), indicating that nitrobenzene is reduced by in-situ generated cobalt hydride species rather
than molecular hydrogen. No hydrogen was detected out for the headspace gas after reaction by GC
analysis, in support of cobalt hydride formation. Furthermore, in a separate reaction, we reacted freshly
prepared N-diphenylmethanimine (3a) with benzyl alcohol and tBuOK (1 equivalent to alcohol) under
otherwise identical conditions, which resulted in 93% isolated yield of the desired N-benzylaniline (4a)
together with quantitative formation of benzaldehyde (Scheme S3e (See Supplementary Materials)).
This experiment indicates that a hydrogen borrowing mechanism is operative. The reaction profiles
for the synthesis of amine and imine as a function of reaction time were performed, and the respective
results are shown in Figure 2. From these results, we were able to find that the reaction rate for the
reduction of nitrobenzene is relatively faster in the presence of 4 equivalents of benzyl alcohol and
tBuOK than that with 3 equivalents of them under otherwise identical conditions. For the synthesis
of amine, nitrobenzene was rapidly converted toward imine (3a) without formation of amine (4a) at
the early stage (e.g., 4 h). With an elapse of the reaction time, the remaining nitrobenzene was further
converted; meanwhile, the formation of 4a began to dominate the reaction due to the reduction of
3a. However, for the synthesis of imine, a negligible formation of 4a was observed over the whole
reaction process. Apparently, the additional 1 equivalent of benzyl alcohol and tBuOK in the reaction
preferentially facilitates the reduction of the formed 3a to 4a. The results above indicated that the
amount of tBuOK made a significant contribution to producing enough cobalt hybrid species for
the reduction of nitrobenzene or imine, which accounts for the reaction selectivity and the switch of
product distribution between imine and amine. In addition, the reductive coupling of nitrobenzene
with benzyl alcohol in the presence of TEMPO as a radical scavenger showed negligible difference in
activity and selectivity under standard reaction conditions (See Supplementary Materials), thereby
excluding the possibility of a radical pathway based on a single electron transfer (SET).
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Figure 2. Kinetics of Amine 4a and Imine 3a. Reaction conditions: (A) nitrobenzene (0.2 mmol), benzyl
alcohol (0.8 mmol), CoOx@NC-800 (10 mol%), tBuOK (0.8 mmol), 120 ◦C, toluene (5 mL), 15 h; (B)
nitrobenzene (0.2 mmol), benzyl alcohol (0.6 mmol), CoOx@NC-800 (10 mol%), tBuOK (0.6 mmol),
120 ◦C, toluene (5 mL), 15 h.

Based on these experiments, a plausible reaction pathway is proposed as shown in Scheme 3,
which involves (i) dehydrogenation of the alcohol to generate 3 equiv. aldehyde and cobalt hydride
species with assistance of a base, (ii) reduction of nitroarenes to anilines via the in-situ formed hydride,
(iii) condensation of aldehyde and aniline to form imine with excess aldehyde remaining, and (vi)
further reduction of imine to amine in the presence of excess amounts of alcohol and base.
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Scheme 3. Proposed reaction pathway of the reductive coupling of nitroarenes with alcohols via the
borrowing hydrogen strategy.

3. Conclusions

In conclusion, we have developed an inexpensive, active, and heterogeneous hybrid
nanostructured cobalt catalyst modified with N-doped hierarchical porous carbon derived from
biomass. The resultant catalyst allows for efficient and selective synthesis of various amines and
imines directly from the reductive coupling of readily available nitroarenes with benzyl alcohols via
the borrowing hydrogen strategy, and it is easily separable and recyclable. To our knowledge, this is
the first example of using a heterogeneous base metal catalyst for such organic transformation. Further
investigation regarding the applications of this base metal’s NPs supported on N-doped porous carbon
hybrid material is currently underway in our laboratory.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/2/116/s1:
Scheme S1: The schematic illustration of the fabrication of CoOx@NC catalyst; Scheme S2: Switchable product
selectivity for coupling of nitrobenzene and benzyl alcohol catalyzed by CoOx@NC-800 by simple modification
of reaction conditions; Scheme S3: Control experiments; Figure S1: High-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM) image and elemental mapping of Co, C, O, and N for the
catalyst CoOx@NC-800; Figure S2: XRD patterns of CoOx@NC-700, CoOx@NC-800, and CoOx@NC-900; Figure
S3: N2 sorption isotherms and pore size distribution calculated using a nonlocal density function theory (NLDFT)
method for the catalysts CoOx@NC-700, CoOx@NC-800, and CoOx@NC-900; Figure S4: Raman spectra of the
catalysts CoOx@NC-700, CoOx@NC-800, and CoOx@NC-900; Figure S5: Co 2p3/2, C 1s, N 1s, and O1s XPS
spectra of the catalysts CoOx@NC-700, CoOx@NC-800, and CoOx@NC-900; Table S1: Chemical composition of
the catalysts CoOx@NC-T by elemental analysis; Table S2: The textural properties of the catalysts CoOx@NC-Tl;
Table S3: The nitrogen types and respective contents in the carbon matrix for the catalysts CoOx@NC-T by XPS
analysis; Table S4: The different cobalt phases and respective contents in the catalysts CoOx@NC-T by XPS

http://www.mdpi.com/2073-4344/9/2/116/s1


Catalysts 2019, 9, 116 9 of 11

analysis; Table S5: Screening of solvents; Table S6: Screening of reaction temperature; Table S7: Screening of
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