Highly Dispersed Co Nanoparticles Prepared by an Improved Method for Plasma-Driven NH₃ Decomposition to Produce H₂

Li Wang 1,2,*, YanHui Yi ², HongChen Guo ², XiaoMin Du ¹, Bin Zhu ¹ and YiMin Zhu ^{1,*}

- ¹ College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; duxiaomin1202@163.com (X.D.); binzhu@dlmu.edu.cn (B.Z.)
- ² State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; yiyanhui@dlut.edu.cn (Y.Y.); hongchenguo@163.com (H.G.)
- * Correspondence: liwang@dlmu.edu.cn (L.W.); ntp@dlmu.edu.cn (Y.Z.); Tel.: +86-411-84724357 (L.W.)
- 1. Co loading analysis of fumed SiO₂ supported Co catalysts with different preparation methods, Table S1 and Table S2.

The theoretical Co content was 30 wt%, and the actual loading was expected to be similar with the theoretical loading because the incipient-wetness impregnation was employed to prepare fumed SiO₂ supported Co catalysts in this study. In addition, the actual loading of catalyst was measured using X-ray fluorescence (XRF, SRS-3400, Bruker, Germany) as following Table S1 and S2. Through calculating CoO to Co, 27.7 wt.% and 27.4 wt.% was achieved for Co/fumed SiO₂ prepared with "improved" and "conventional" methods, respectively.

SiO ₂	CoO	Fe ₂ O ₃	CaO	Cl	Compton	Rayleigh	Norm.
22.2	117.1	0.6 KCps	0.1 KCps	0.1 KCps			
KCps	KCps						
64.5%	35.2%	0.241%	0.0527%	0.0493%	0.77	1.08	100.00%
Table S2. XRF analysis of Co/fumed SiO ₂ with conventional preparation method							

Table S1. XRF analysis of Co/fumed SiO₂ with improved preparation method

Table S2. ARF analysis of Co/runled SiO ₂ with conventional preparation method							
SiO ₂	CoO	Fe ₂ O ₃	CaO	Cl	Compton	Rayleigh	Norm.
20.8	109.2	0.3 KCps	0.2	0.1			
KCps	KCps		KCps	KCps			
64.7%	34.9%	0.259%	0.0659%	0.0625%	0.68	1.01	100.00%

2. Analysis of each peak area of the H₂-TPR profiles obtained using peak fit function (Gaussian) of Origin software, Figure S1.

The area ratio of β_1/β_2 was found to be 1/3, which is quantitatively consistent with the theoretical value (1/3) of area ratio of Co₃O₄ reduction peaks as shown in Eq (1) and Eq (2). This indicates that β_1 and β_2 was the two-step reduction of Co³⁺ \rightarrow Co²⁺ \rightarrow Co⁰ of Co₃O₄, so does for the case of α_1 and α_2 based on 5/16 (\approx 1/3) area ratio of α_1/α_2 .

$Co_3O_4 + H_2 \rightarrow 3CoO + H_2O$	(1)
$3CoO + 3H_2 \rightarrow 3Co + 3H_2O$	(2)

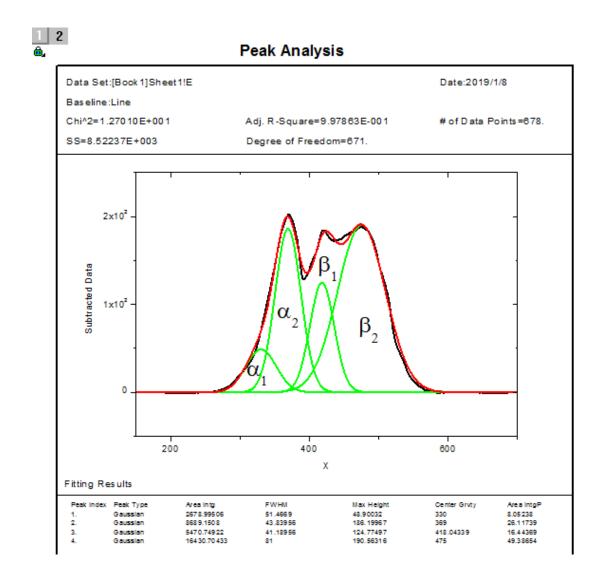


Figure S1. Peak analysis of H₂-TPR profile obtained over Co₃O₄/fumed SiO₂ catalyst.