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Abstract: Previous studies reveal that combining non-thermal plasma with cheap metal catalysts
achieved a significant synergy of enhancing performance of NH3 decomposition, and this synergy
strongly depended on the properties of the catalyst used. In this study, techniques of vacuum-freeze
drying and plasma calcination were employed to improve the conventional preparation method of
catalyst, aiming to enhance the activity of plasma-catalytic NH3 decomposition. Compared with
the activity of the catalyst prepared by a conventional method, the conversion of NH3 significantly
increased by 47% when Co/fumed SiO2 was prepared by the improved method, and the energy
efficiency of H2 production increased from 2.3 to 5.7 mol(kW·h)−1 as well. So far, the highest energy
efficiency of H2 formation of 15.9 mol(kW·h)−1 was achieved on improved prepared Co/fumed
SiO2 with 98.0% ammonia conversion at the optimal conditions. The improved preparation method
enables cobalt species to be highly dispersed on fumed SiO2 support, which creates more active sites.
Besides, interaction of Co with fumed SiO2 and acidity of the catalyst were strengthened according
to results of H2-TPR and NH3-probe experiments, respectively. These results demonstrate that
employing vacuum-freeze drying and plasma calcination during catalyst preparation is an effective
approach to manipulate the properties of catalyst, and enables the catalyst to display high activity
towards plasma-catalytic NH3 decomposition to produce H2.
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1. Introduction

NH3 decomposition has been considered to be an attractive route to supply COx-free H2 for
proton exchange membrane fuel cell (PEMFC) vehicles [1–3]. Until now, the noble metal Ru, due to its
high turnover frequency (TOF), is still the most active component for NH3 decomposition, and the
formation rate of H2 reached as high as 4.0 mol/(h·gcat)−1 using K-Ru/MgO-CNTs catalyst with
complete conversion of ammonia at 450 ◦C, but the scarcity and high price of Ru limits its use on a
large scale [4–6]. Whereas, cheap metal catalysts show low activity towards NH3 decomposition due
to the strong adsorption of N atoms onto the surface of cheap metal catalysts [1,7–10]. As far as we
know, the highest formation rate of H2 was 2.0 mol/(h·gcat)−1 using CeO2-doped Ni/Al2O3 catalyst
with 98.3% ammonia conversion at 550 ◦C [7]. Recently, the combination of non-thermal plasma with
cheap metal catalyst displayed a powerful ability in enhancing NH3 decomposition [11–13]; 99.9%
conversion of NH3 was achieved in combination mode, but only 7.4% and 7.8% was obtained for
Fe-based catalyst alone and plasma alone, respectively, which experienced an unexpected strong
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synergy between plasma and catalyst [11], and this synergy strongly depended on the properties of
catalyst [12,14].

The preparation approach of catalyst could directly affect the properties of the catalyst, such as
crystal size, shape, composition, acidity, and basicity [15–17]. Normally, catalyst preparation was
operated in a thermodynamic equilibrium state of gas, liquid, and solid state, but faces the limitation of
thermodynamic equilibrium. For example, the calcination temperature for supported metal catalysts
is usually over 500 ◦C, and high temperature operation causes aggregation of metal particles, but low
temperature operation results in incomplete decomposition of catalyst precursors. Besides, it is difficult
to achieve a high dispersion of catalyst with a high metal loading above 20 wt % in a thermodynamic
equilibrium state.

Non-thermal plasma is the fourth state of matter and characterized by non-equilibrium character.
Typically, the overall gas temperature in a field of non-thermal plasma can be as low as room
temperature, while the generated free electrons are highly energetic with a typical electron temperature
of 1–10 eV, which can collide with carrier gas to produce chemically reactive species such as radicals,
excited species, and ions [18]. Such a characteristic of plasma enables some thermodynamically
unfavorable chemical reactions to proceed at moderate conditions, especially for inert molecule
conversion, such as CO2, CH4, and N2 [19–24].

Similarly, the non-equilibrium character of non-thermal plasma also benefits catalyst preparation
to achieve controllable morphology and chemical property by controlling the reaction rate of nucleation
and crystal growth in a non-equilibrium environment. Different from the conventional thermal process,
the catalyst preparation with plasma is not based on the thermal effect, but on the inelastic collision of
those energetic species (free electrons, radicals, excited species and ions) with catalyst precursors to
accomplish the purpose of calcination or treatment. Catalyst preparation with plasma has attracted
increasing interest since the 1990s [25–34], and a variety of plasmas, such as glow discharge, radio
frequency discharge, microwave discharge, and dielectric barrier discharge, were employed for
calcination and reduction of supported catalyst, which can make metal highly dispersed on a support
with a narrow distribution of particle size, manipulate metal–support interaction, and shorten the time
of catalyst preparation due to high reaction rates in the plasma process. Besides, with regard to the
characteristic of low temperature, plasma removal of template was well developed for synthesis of
microporous and mesoporous materials, instead of thermal removal that could destroy the porous
structure of the materials [35]. Bogaerts and coworkers found that plasma could be formed inside
pores of material with pore size above 200 µm at 20 kV by two-dimensional fluid modeling, and the
possibility of discharge forming inside pores and discharge behavior strongly depended on pore
size and applied voltage [36]; this observation helps to understand the process of plasma removal
of template. Very recently, Wang, et al. and Di, et al. summarized the advances in preparation of
catalyst with plasmas, and the mechanism of preparation was discussed as well [29,30]. Although low
temperature operation of non-thermal plasma enables catalyst preparation in a more efficient and
more controllable way, normally, low temperature operation leads to incomplete decomposition or
removal of precursors, along with poor growth of materials with residues.

In this study, a novel combination of vacuum-freeze drying technique with atmospheric pressure
dielectric barrier discharge (DBD) calcination technique was proposed for the preparation of supported
Co catalyst with a high Co loading of 30 wt %. To calcine catalyst completely, DBD reactor was placed
in a furnace to prevent heat dissipation of electric heat from discharge, so as to keep plasma calcination
at a temperature of about 400 ◦C by tuning energy input of power supply (note that the furnace here is
not used to heat the reactor, but used for electric heat preservation). Compared to Co/fumed SiO2

with conventional preparation method, the improved preparation method enabled the conversion
of plasma-catalytic NH3 to increase by 47%, and greatly enhanced the formation rate of H2. Besides,
the reaction performance can be further improved through increasing specific energy input.
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2. Results and Discussion

2.1. Characterization

The physicochemical properties of as-prepared Co catalysts were examined using various
characterization techniques, including X-ray diffraction (XRD), X-ray fluorescence (XRF),
transmission electron microcopy (TEM), H2 temperature-programmed reduction (H2-TPR), and NH3

temperature-programmed desorption (NH3-TPD). In this study, the fumed SiO2 used as a support
for Co catalyst was an amorphous material with a Brunauer–Emmett–Teller (BET) surface area of
297.8 m2·g−1. The theoretical Co loading was designed to be 30 wt %, but the actual Co loading
through XRF analysis was 27.7 wt % and 27.4 wt % for the improved prepared catalyst and the
conventional prepared catalyst, respectively (see Tables S1 and S2 in Supporting Information). Figure 1
shows the XRD patterns of as-prepared fumed SiO2-supported Co catalysts using conventional and
improved preparation methods, respectively. Besides, pure fumed SiO2 was analyzed as a reference in
Figure 1 (a). Clearly, the same diffraction peaks were observed at 2θ of 31.1, 36.7, 44.6, 59.2, and 65.2 as
shown in Figure 1 (b) and (c), which matched well with the characteristic structure of Co3O4 (JCPDS
file No: 43-1003), and those diffraction peaks represented the (220), (311), (400), (511), and (440) planes
of Co3O4, respectively [37,38]. Namely, the difference in preparation approach did not influence
the phase structure of Co catalysts, and they both finally existed in the form of Co3O4 over fumed
SiO2 support. However, by contrast, the intensity of diffraction peaks of Co catalyst prepared with
improved method was weaker than that with conventional preparation method, suggesting that the
average particle size of the former is smaller than that of the latter according to the Debye–Scherrer
formula [39]; this observation is also supported by the results of TEM as follows.
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difficult to obtain such smaller nanoparticles with a high metal loading of about 27 wt % using the 
conventional preparation method. 

Figure 1. XRD patterns of as-prepared Co/fumed SiO2 catalysts using different approaches (Co3O4,
JCPDS file No: 43-1003): (a) pure fumed SiO2, (b) improved preparation method, and (c) conventional
preparation method.

TEM images of as-prepared Co catalyst supported on fumed SiO2 using different approaches
were shown in Figure 2. Clearly, a very poor dispersion of Co catalyst was observed on fumed SiO2

using the conventional preparation method, and the particle size of Co was much larger than 5 nm;
some particle sizes were around 50 nm, as shown in Figure 2a,b. However, the use of combining
vacuum-freeze drying and plasma calcination techniques in the process of catalyst preparation enabled
the Co particles to disperse highly and homogeneously onto the fumed SiO2 support, and the average
Co particle size was less than 5 nm, mostly around 2–3 nm in Figure 2c,d. Actually, it is difficult to
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obtain such smaller nanoparticles with a high metal loading of about 27 wt % using the conventional
preparation method.Catalysts 2018, 8, x FOR PEER REVIEW  4 of 13 

 

 

Figure 2. TEM images of as-prepared Co/fumed SiO2 catalysts using different approaches: (a) and (b) 
conventional preparation method; (c) and (d) improved preparation method. 

Using NH3 as probe molecule, the influence of preparation approach on the chemical properties 
of catalyst was evaluated through NH3-TPD, as displayed in Figure 3. Clearly, two major desorption 
peaks were observed, one at the low temperatures of 150–220 °C corresponded to the weak 
adsorption of NH3 on the catalyst, and the other at the high temperatures of 220–350 °C was attributed 
to the strong adsorption of NH3. It is worth noting that the desorption amount of NH3 over Co catalyst 
prepared with the improved method was much higher than that with the conventional preparation 
method, revealing that the improved method leads to an increase in the number of active sites for 
NH3 adsorption; this finding can be ascribed to the high dispersion of Co nanoparticles, as evidenced 
by the results of TEM in Figure 2. In addition, the desorption temperature of adsorbed NH3 on the 
catalyst with improved preparation method shifted towards higher temperature, reflecting that the 
binding ability of NH3 with the catalyst was stronger than that with the catalyst prepared using 
conventional preparation method. This inferred that the acidity of catalyst was strengthened by the 
improved preparation method as well and, more importantly, the increase in active site number and 
acid strength both facilitated the adsorption of NH3 on the catalyst, finally promoting the dissociation 
of NH3 on the catalyst. 

Figure 2. TEM images of as-prepared Co/fumed SiO2 catalysts using different approaches: (a) and (b)
conventional preparation method; (c) and (d) improved preparation method.

Using NH3 as probe molecule, the influence of preparation approach on the chemical properties
of catalyst was evaluated through NH3-TPD, as displayed in Figure 3. Clearly, two major desorption
peaks were observed, one at the low temperatures of 150–220 ◦C corresponded to the weak adsorption
of NH3 on the catalyst, and the other at the high temperatures of 220–350 ◦C was attributed to the
strong adsorption of NH3. It is worth noting that the desorption amount of NH3 over Co catalyst
prepared with the improved method was much higher than that with the conventional preparation
method, revealing that the improved method leads to an increase in the number of active sites for NH3

adsorption; this finding can be ascribed to the high dispersion of Co nanoparticles, as evidenced by the
results of TEM in Figure 2. In addition, the desorption temperature of adsorbed NH3 on the catalyst
with improved preparation method shifted towards higher temperature, reflecting that the binding
ability of NH3 with the catalyst was stronger than that with the catalyst prepared using conventional
preparation method. This inferred that the acidity of catalyst was strengthened by the improved
preparation method as well and, more importantly, the increase in active site number and acid strength
both facilitated the adsorption of NH3 on the catalyst, finally promoting the dissociation of NH3 on
the catalyst.
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Figure 3. NH3-TPD profiles of as-prepared Co/fumed SiO2 catalysts using different approaches.

H2-TPR technique was used to evaluate the reduction behavior of Co3O4/fumed SiO2 prepared
with different methods, and the resulting profiles are displayed in Figure 4. Clearly, the reduction
of Co3O4 on fumed SiO2 support occurred in the temperature range of 275–550 ◦C. Two groups of
reduction peaks were observed, i.e., the low temperature reduction peaks (α) consisted of α1 and α2

in the range of 275–400 ◦C, and the high temperature reduction peaks (β) with a consecutive-broad
peak consisted of β1 and β2 in the range of 370–550 ◦C. More importantly, by contrast, the reduction
temperature of catalyst with improved preparation method shifted towards higher temperature,
representing that the improved method strengthened the interaction of Co with fumed SiO2 support.
This difference in metal–support interaction can be explained by the difference in particle sizes of
Co catalyst prepared by different methods (Figure 2). Actually, the reduction process of as-prepared
catalyst was very complicated, since these peaks obtained were heavily overlapped. Therefore,
the analysis of each peak area using peak fit function (Gaussian) of Origin software was employed to
understand the H2-TPR profiles obtained (see Figure S1 in Supporting Information), the area ratio of
β1/β2 was found to be 1/3, which is quantitatively consistent with the theoretical value (1/3) of area
ratio of Co3O4 reduction peaks [40,41]. This indicates that β1 and β2 corresponded to the two-step
reduction of Co3+→ Co2+→ Co0 of Co3O4, as do α1 and α2 based on 5/16 (≈ 1/3) area ratio of α1/α2.
Besides, the result of XRD in Figure 1 also supported the assignment of α and β to Co3O4. According
to the reduction temperature of Co3O4, the low temperature reduction peaks (α1 and α2) could be
due to the reduction of bulk Co3O4, whereas the high temperature reduction peaks (β1 and β2) were
attributed to the reduction of Co3O4 that interacted with fumed SiO2 [42,43].

Interestingly, the above results reveal that the application of vacuum-freeze drying and plasma
calcination techniques in the preparation process of catalyst not only results in highly dispersed metal
nanoparticles along with the increase of active site number, but also strengthens the acidity of catalyst
and the metal–support interaction. Thus, it is feasible and crucial to manipulate the properties of
catalysts through exploiting novel preparation techniques.
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2.2. Performance of Prepared Catalyst in Plasma-Catalytic NH3 Decomposition

Our previous studies showed that Co-based catalyst exhibited the best activity towards NH3

decomposition to H2 in the presence of DBD plasma [12]. Here, the influence of catalyst preparation
method on the performance of plasma-catalytic NH3 decomposition was investigated, as shown in
Figure 5. Compared to the conventional preparation method, Co/fumed SiO2 catalyst prepared with
the improved method greatly promoted the reaction performance, and the conversion of NH3 increased
from 25.8 to 72.7% at the reaction temperature of 400 ◦C in Figure 5a, increased by a factor of almost 3
and, correspondingly, the energy efficiency of H2 formation increased from 2.3 to 5.7 mol(kW·h)−1 in
Figure 5b. In addition, changing the reaction temperature from 300 ◦C to 450 ◦C through increasing
DBD energy input resulted in a significant increase of NH3 conversion by 80.8% (from 16.1 to 96.9%)
in the case of catalyst prepared by the improved method whereas, at the same conditions, the NH3

conversion only increased by 47.3% (from 4% to 51.3%) over catalyst using the conventional preparation
method. Note that the reaction temperature required for complete conversion of NH3 in the case
of using improved preparation method shifted towards lower temperature, at least 50 ◦C lower in
comparison with that using conventional preparation method in Figure 5a.
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Figure 5. Plasma-catalytic NH3 decomposition over Co/fumed SiO2 catalyst with different preparation
methods: (a) the conversion of NH3; (b) the energy efficiency of H2 generation (NH3 feed rate
40 mL/min−1, supported catalyst 0.88 g, discharge gap 3 mm, discharge frequency 12 kHz; The
reaction temperature originated from electric heat released by discharge, and was determined using an
IR camera and thermocouple tightly attached to the outer wall of the reactor [12]).
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Combining the results of characterizations in Figure 1 to 4, the improved preparation method did
not affect the phase composition of catalyst (Figure 1), but significantly increased the dispersion of
catalyst with a narrow particle size of 2–3 nm (Figure 2), which actually creates much more active sites
for NH3 decomposition, enhancing the specific reactivity of catalyst, and this is also directly evidenced
by the result of NH3-probe experiments presented in Figure 3. Notably, the adsorption amount of
NH3 over the catalyst with improved preparation method is much larger than that with conventional
preparation method (Figure 3), this directly points to the fact that enhancing the adsorption step of
NH3 decomposition is one of the reasons for the high activity of catalyst with improved preparation
method. Recently, CoPt/TiO2 with Co particle size of ~1 nm displayed a much higher Fischer–Tropsch
reaction rate, which was also found to be due to increasing the amount of active site caused by using
plasma-assisted preparation [44]. More importantly, in this study, the improved preparation method
increased the acid strength of catalyst as well (Figure 3), as demonstrated by the increase in adsorption
strength of NH3 over catalyst, which can promote the dissociation step of NH3; this is another crucial
reason that explains the high activity of catalyst with the improved preparation method. Besides,
the improved preparation method strengthened the interaction of Co with fumed SiO2 (Figure 4),
indicating the difference in electronic structure of catalyst with different preparation methods, and this
could influence the activity of catalyst as well.

In addition, using Co/fumed SiO2 catalyst prepared by the improved method, the influence of
the combining mode of plasma and catalyst was investigated on the performance of plasma-catalytic
NH3 decomposition, as shown in Scheme 1 and Figure 6. About 3 g Co/fumed SiO2 was packed in
the reactor with a packing volume of about 3.1 mL, and the combining mode of plasma and catalyst
changed through changing discharge volume “V”, but the packed catalyst was fixed. Namely, changing
“V” from 3.3 to 0.4 mL enabled the catalyst to be partly packed in the field of plasma, as shown in
Scheme 1.
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voltage; catalyst was fixed at about 3 g , but the discharge volume changes with the shortening of the
length of the HV electrode, which results in the catalyst being partly packed in the field of plasma by
changing the discharge volume “V” from 3.3 to 0.4 mL).

In Figure 6a, interestingly, the conversion of ammonia was greatly enhanced with discharge
volume decrease, and partly packing catalyst into the discharge area was found to be better than
that of full-packing mode. Among the cases studied, the discharge volume with 0.4 mL showed
the best activity towards NH3 decomposition, in this case, the reaction temperature with 98.0%
NH3 conversion was only 380 ◦C, which was 140 ◦C lower than that in the case of catalyst alone.
At the reaction temperature of 380 ◦C, the conversion of NH3 over Co/fumed SiO2 is only 6.2%
without plasma whereas, at the same conditions, the use of DBD plasma significantly enhanced the
reaction performance, and the conversion of NH3 increased by a factor of 16 (from 6.1% to 98.0%)
with decreasing discharge volume from 3.3 to 0.4 mL. Correspondingly, the energy efficiency of H2

formation increased from 11.9 to 15.9 mol(kW·h)−1; this is the highest H2 formation rate obtained
in ammonia decomposition so far, as shown in Figure 6b. In addition, Figure 6c displayed that the
specific energy input (SEI) significantly increased with decreasing discharge volume, which might be
the reason for the high performance shown in Figure 6a,b. To exclude the effect of heat caused by SEI
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increasing on the reaction performance, the reaction temperatures with different discharge volumes
were all controlled at around 350 ◦C by adjusting energy input, then the relationship of ammonia
conversion and SEI was presented in Figure 6d. Clearly, the conversion of ammonia increased with SEI
increasing, demonstrating that the high performance resulting from high SEI was not due to heating of
the catalyst. Furthermore, our previous studies revealed that increasing energy input of discharge can
significantly facilitate the desorption of the strong-adsorbed N from catalyst surface (rate-limiting step
in ammonia decomposition) [11], thus, the nature of the contribution of high SEI was to accelerate the
rate-limiting step of ammonia decomposition.
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formation, (c) specific energy input (SEI) and (d) relationship of ammonia conversion with SEI (NH3

feed rate 40 mL/min, discharge gap 3 mm, discharge frequency 12 kHz, and the packing amount and
packing volume of catalyst in the reactor was fixed at about 3 g and 3.1 mL, respectively. Changing the
discharge volume “V” from 3.3 to 0.4 mL enabled the catalyst to be partly packed in the discharge area,
as shown in Scheme 1, and the catalyst was fully packed in the field of plasma only when the discharge
volume was over 3.1 mL; The reaction temperature originated from electric heat released by discharge,
and was determined using an IR camera and thermocouple tightly attached to the outer wall of the
reactor [12]).

3. Materials and Methods

3.1. DBD Plasma-Catalytic Reactor

NH3 decomposition for H2 generation was carried out in a DBD reactor with a catalyst bed in the
discharge area at atmospheric pressure (Scheme 2). The DBD reactor was a typical cylindrical reactor
using a stainless-steel rod (2 mm o.d.) as a high-voltage electrode placed along the axis of a quartz tube
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(10 mm o.d. × 8 mm i.d.) which was used as a discharge dielectric. An aluminum foil sheet tightly
covered the outside of the quartz cylinder and served as a ground electrode. A 3 mm of discharge gap
was used, and catalyst was fully packed in the discharge area unless otherwise noted. The DBD reactor
was connected to an AC high voltage power supply with a peak voltage of up to 30 kV and a variable
frequency of 5–20 kHz. In this study, the discharge frequency was fixed at 12 kHz, and NH3 with a
purity of 99.999% was fed into the DBD reactor at a total flow rate of 40 ml/min. The products of NH3

decomposition were analyzed on-line using a gas chromatograph (Shimadzu GC-2014) equipped with
a thermal conductivity detector (TCD). The input power driving the reaction was determined from
the product of the apparent voltage and current of AC power supply, and the discharge power was
measured using a four-channel digital oscilloscope (Tektronix DPO 3012, high-voltage probe Tektronix
P6015A, Tektronix Tech. Corp., Beaverton, OR, USA, current probe Pearson 6585, Pearson Electronics,
Inc., San Jose, CA, USA).
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Scheme 2. Schematic diagram of experimental setup.

To evaluate the reaction performance of plasma-catalytic NH3 decomposition to produce H2,
the conversion of NH3 was calculated using Equation (1). The energy efficiency of H2 formation
(mol(kW·h)−1), defined as the number of moles of H2 produced per kilowatt hour, was calculated
using Equation (2). The specific energy input (SEI), defined as the energy input per discharge volume,
was calculated using Equation (3).

XNH3(%) =
moles of NH3 converted

moles of initial NH3
× 100 (1)

EH2 =
3·XNH3 ·FNH3 × 60

2× 1000× 22.4× P
(2)

EH2 : Energy efficiency of H2 formation, mol(kW·h)−1

XNH3 : Conversion of NH3 , %
FNH3 : NH3 flow rate, mL·min−1

P: Plasma power, kW
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SEI =
energy input (W)

discharge volume (mL)
(3)

3.2. Catalyst Preparation

Cobalt nitrate was provided by the Tianjin Kermel Chemical Reagent Co., Ltd (Tianjin, China).
Fumed SiO2 was purchased from the Dalian Luming Nanometer Material Co., Ltd (Dalian, China).
Catalysts were synthesized either using the conventional preparation method and improved
preparation method. Incipient wetness impregnation was used in this study. Briefly, cobalt nitrate (the
theoretical metal loading was 30 wt %) was dissolved in deionized water. The support of fumed SiO2

was calcined, in advance, at 400 ◦C for 5 h to remove impurities, such as H2O, before impregnation,
and then the pretreated support was added to the cobalt nitrate solution and stirred until it was
thoroughly mixed. For “conventional preparation method”, the resulting mixture was kept at room
temperature for 3 h and dried in air overnight at 110 ◦C. The dried sample was finally calcined in air at
540 ◦C for 5 h. Different from the conventional preparation method, for the “improved preparation
method”, the resulting mixture was kept at room temperature for 3 h, followed by vacuum-freeze
drying overnight at −50 ◦C before dried in air at 120 ◦C for 5 h, then the dried sample was calcined in
a He-DBD plasma environment at 400 ◦C for 3 h to obtain the as-prepared catalyst. In addition, all the
as-prepared catalysts were treated in NH3-DBD plasma at 400 ◦C for 0.3–1.0 h to reduce catalysts
before evaluating their activity in NH3 decomposition.

3.3. Catalyst Characterization

X-ray diffraction (XRD) patterns of as-prepared catalysts were recorded using a Rigaku D-Max
2400 X ray diffractometer with Cu Kα radiation. Transmission electron microcopy (TEM) was used
to characterize metal particles formed on the support surface (FEI Tecnai G2 F30 microscope, point
resolution 0.2 nm, operated at 300 kV, Utrecht, Netherlands).

The reduction behavior of as-prepared catalyst was evaluated by H2 temperature-programmed
reduction (H2-TPR) using a Chemisorption instrument (ChemBET 3000, Quantachrome, Boynton Beach,
FL, USA). The sample (100 mg) was pretreated at 500 ◦C for 1 h under He flow (20 mL/min), and then
cooled to 50 ◦C. The pretreated sample was exposed to a H2/He mixture (10 vol% H2) and was heated
from 150 to 800 ◦C at a constant heating rate of 14 ◦C/min to get a H2-TPR profile. The acid–base
properties of the as-prepared catalyst were tested by NH3 temperature-programmed desorption
(NH3-TPD) using the same Chemisorption instrument with operating H2-TPR. The sample (140 mg)
was pretreated at 500 ◦C for 1 h under He flow (20 mL·min−1), and then cooled to 150 ◦C. The pretreated
sample was saturated with NH3 for 30 min, and then purged with He flow for 1 h at 150 ◦C. The TPD
profile was recorded while the sample was heated from 150 to 600 ◦C at a constant heating rate of
14 ◦C·min−1 under He flow.

The specific surface area (Sg) of fumed SiO2 support was tested by N2 physisorption at −196 ◦C
(Micrometrics ASAP 2020, Norcross, GA, USA). Prior to the N2 physisorption measurement, fumed
SiO2 was degassed at 350 ◦C for 3 h, and Sg was calculated using the Brunauer−Emmett−Teller
(BET) equation.

The metal loading of fumed SiO2 supported catalyst with different preparation methods was
determined using X-ray fluorescence (XRF, SRS-3400, Bruker, Germany).

4. Conclusions

COx-free H2 generation from plasma-catalytic NH3 decomposition has been significantly
promoted over Co/fumed SiO2 catalyst prepared with an improved preparation method,
which featured the use of vacuum-freeze drying and DBD plasma calcination techniques during
catalyst preparation. Compared with the activity of the catalyst prepared by the conventional
preparation method, the conversion of NH3 increased by 47% on Co/fumed SiO2 catalyst prepared
by improved method and, correspondingly, the energy efficiency of H2 production increased from
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2.3 to 5.7 mol(kW·h)−1. The enhanced activity was mainly attributed to the high dispersion of Co
particles on fumed SiO2 with a narrow particle size distribution (2–3 nm), which brought more active
sites, stronger acidity, and a strong metal–support interaction. In addition, the reaction performance
was significantly improved with the increase of specific energy input. At 380 ◦C, the highest energy
efficiency of H2 formation achieved, so far, was 15.9 mol(kW·h)−1 over improved prepared Co/fumed
SiO2 catalyst with 98.0% ammonia conversion at the optimal conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/2/107/s1.
Figure S1. Peak analysis of H2-TPR profile obtained over Co3O4/fumed SiO2 catalyst; Table S1. XRF analysis of
Co/fumed SiO2 with improved preparation method; Table S2. XRF analysis of Co/fumed SiO2 with conventional
preparation method.
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