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Abstract: Titania photocatalysts have been intensively examined for both mechanism study and possible
commercial applications for more than 30 years. Although various reports have already been published
on titania, including comprehensive review papers, the morphology-governed activity, especially for
novel nanostructures, has not been reviewed recently. Therefore, this paper presents novel, attractive,
and prospective titania photocatalysts, including zero-, one-, two-, and three-dimensional titania
structures. The 1D, 2D, and 3D titania structures have been mainly designed for possible applications,
e.g., (i) continuous use without the necessity of particulate titania separation, (ii) efficient light
harvesting (e.g., inverse opals), (iii) enhanced activity (fast charge carriers’ separation, e.g., 1D
nanoplates and 2D nanotubes). It should be pointed out that these structures might be also useful
for mechanism investigation, e.g., (i) 3D titania aerogels with gold either incorporated inside the 3D
network or supported in the porosity, and (ii) titania mesocrystals with gold deposited either on basal
or lateral surfaces, for the clarification of plasmonic photocatalysis. Moreover, 0D nanostructures
of special composition and morphology, e.g., magnetic(core)–titania(shell), mixed-phase titania
(anatase/rutile/brookite), and faceted titania NPs have been presented, due to their exceptional
properties, including easy separation in the magnetic field, high activity, and mechanism clarification,
respectively. Although anatase has been usually thought as the most active phase of titania,
the co-existence of other crystalline phases accelerates the photocatalytic activity significantly,
and thus mixed-phase titania (e.g., famous P25) exhibits high photocatalytic activity for both oxidation
and reduction reactions. It is believed that this review might be useful for the architecture design
of novel nanomaterials for broad and diverse applications, including environmental purification,
energy conversion, synthesis and preparation of “intelligent” surfaces with self-cleaning, antifogging,
and antiseptic properties.
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1. Introduction

Titania (titanium(IV) oxide, TiO2) is one of the most famous and widely studied photocatalysts.
Titania is a naturally occurring oxide of titanium, including anatase, rutile, brookite, TiO2(B), TiO2(H),
TiO2(R), and akaogiite (new-found and exceedingly rare [1]) polymorphs. However, in nature,
various mixtures of titania could be found, e.g., ilmenite (a black iron–titanium oxide with a chemical
composition of FeTiO3, which is commonly used for titania synthesis via the sulfate method), rather
than its pure crystals. Titania has been used extensively in our daily life, i.e., as a pigment, in the textile
and paper industry, food, drugs, cosmetics, and as photocatalysts.

The application of titania for photocatalysis is probably the most important for future human
development, since titania might be used to solve (at least in part) three out of 10 of humanity’s top
problems (problems proposed by Professor Smaley [2]), i.e., energy, environment, and water. Under
irradiation with energy equal or larger than its bandgap, titania is excited with electron transfer from
valence band (VB) to conduction band (CB), and thus formed charge carriers (electrons in CB and
holes in VB) might either recombine or migrate to the surface, where they can initiate redox reactions.
Accordingly, solar energy conversion into electricity or/and fuels (including “artificial photosynthesis”),
water treatment, and environmental purification, which are mainly by formed reactive oxygen species
(ROS), are initiated by photogenerated charge carriers (electrons and holes).

The unique photocatalytic properties of titania are not only impacted by its intrinsic
physicochemical characteristics, but also by the morphological and structural properties of titania
particles, and it is particularly important to consider them to design an efficient and applicable
photocatalysts. Understanding the correlation between the mentioned properties and photocatalytic
activity is still unsatisfactory, which contributes to the slow development of technologies based on
photocatalysis. The vision of highly selective photocatalysts arising from the potential achievements in
the considered issue would reach a crucial milestone in the titania application, including environmental
purification, energy conversion, synthesis, and “intelligent” surfaces with self-cleaning, antifogging,
and antiseptic properties.

A huge number of various reports on titania photocatalysts have been published annually (Figure 1a)
for different applications, including several insightful review papers, e.g., Hashimoto et al. [3], Zaleska [4],
Kowalski et al. [5], and Tsang et al. [6]. Despite these papers, there is still a lack of comprehensive review
focusing on the influence of the morphology and the structure on the photocatalytic performance.
Therefore, in this paper, special emphasis will be put on the novel trends in the architecture design of
titania and titania-based photocatalysts, such as faceted titania, inverse opal, microspheres, aerogels,
core–shells, and mixed-phase structures.
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Catalysts 2019, 9, 1054 3 of 30

2. Titania Polymorphs and Mixed-Phase Samples

2.1. Photocatalytic Activity of Titania Polymorphs

Two main polymorphs of titania, i.e., anatase and rutile (Table 1), have been extensively investigated
both for photocatalysis and other applications (pigments, sunscreen creams), and recently, the high
photocatalytic activities of brookite have been also reported [7,8]. Anatase, rutile, and TiO2(H) belong to
tetragonal system, brookite, and TiO2(R) to orthorhombic, whereas TiO2(B) and akaogiite to monoclinic
one (akaogiite will not be discussed in this paper, since its photoactivity has not been investigated yet.).
Rutile is the most abundant and the most thermodynamically stable polymorph of TiO2; it is widely
used in pigments and cosmetic products, mainly due to its high refractive index. In contrast, anatase
and brookite are metastable, and thus thermal treatment results in their phase transition into rutile.

Anatase has been commonly reported as the most photocatalytically active form of titania; thus, it
has been mainly investigated and used for many photocatalytic reactions, as shown in Figure 1b. Various
reasons for its higher activity than other phases (including amorphous titania) have been proposed,
such as a wider bandgap (and thus high oxidation and reduction ability), lower content of defects,
higher content of hydroxyl groups on the surface, higher mobility of charges (i.e., mainly electrons),
lower content of deep electron traps (ETs; and thus a lower rate of charge carriers’ recombination).
It should be also mentioned that usually anatase has a much larger specific surface area than rutile
(higher temperatures of rutile preparation results in nanoparticles (NPs)’ sintering and aggregation),
and thus a larger content of adsorption sites for reacting molecules on its surface has been also proposed
as another reason for its high photocatalytic efficiency.

The comparison of 35 titania photocatalysts showed that the photocatalytic efficiency did not
depend only on the titania properties (specific surface area, polymorphic composition, defects’ content,
crystallite, and particle sizes), but also on the kind of photocatalytic reaction [9]. Accordingly, it has
been proposed that (i) large particle sizes result in efficient oxygen evolution, (ii) large specific surface
areas (small crystallite and particle sizes) result in methanol dehydrogenation, (iii) anatase presence
results in the oxidative decomposition of acetic acid, (iv) rutile presence and defects’ content result
in the oxidative decomposition of acetaldehyde, and (v) rutile presence results in the synthesis of
pipecolinic acid. Moreover, it should be pointed that mixed-phase rather than single-phase titania
photocatalysts have been used in photocatalysis (as pure phase samples are rather rare), and thus
the impact of the minor phase on the overall activity cannot be omitted. Interestingly, “phase-mixed”
titania samples have been proposed as more active than single-phase samples [10–14], as discussed in
Section 2.2.

Table 1. Properties of titania polymorphs.

Rutile Anatase Brookite

atomic spacing (Å) a a = 4.596
c = 2.958

a = 3.793
c = 9.510

a = 5.456
b = 9.182
c = 5.143

axial ratios a:c = 1:0.64388 a:c = 1:2.50725 a:b:c = 0.5942:1:0.5601

molecule/unit cell a 2 4 8

density (g cm−3) a 4.25 3.88 4.12

crystal system a tetragonal (ditetragonal
dipyramidal)

tetragonal (ditetragonal
dipyramidal)

orthorombic
(dipyramidal)

bandgap (eV) 3.02 d 3.23 d 3.14 e

absorption
edge (nm)

calculated b 410 384 395
measured c 413 f 388 f 395 e

a—data from webmineral.com; b—calculated from bandgap energy; c—experimentally estimated from absorption
spectra; d–f—exemplary data (might slightly differ depending on properties): d—[15]; e —[16]; f —[17].
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2.2. Photocatalytic Activity of Mixed-Phase Titania

Different kinds of mixed-phase titania have already been prepared by various methods (sol–gel,
sonochemical, hydrothermal, etc.) from different titania precursors (titanium isopropoxide, titanium
butoxide, TiCl4, etc.) for diverse applications (degradation of organic pollutants, water splitting,
reduction of CO2, etc.), as shown in Table 2.

Table 2. Mixed-phase TiO2 photocatalysts: synthesis method, specific surface area, and applications.

Ti Precursor Method Crystalline Structure a BET b Application Ref.

TIP sol–gel A(21%–86%)
R(14%–79%) 50–94 degradation of MB,

phenol, and 4ClP [18]

TIP sol–gel A(60%–83%)/B(17%–40%) 115 conversion of CO2 [19]

TIP sol–gel A(76.2%–84.6%)/B(12.8%–3.8%)/
R(0%–2.6%) 48–276 degradation of MB [20]

TIP sol–gel A(53%–96%)/R(4%–47%) 62–90 - [21]

TIP sol–gel (+ US) A(79.6%–91.6%)/B(9.4%–20.4) 75.5 oxidation of acetone [22]

TIP sonochemical A(49.5%–60%)/B(40%–50.5%) 112–172 n-pentane oxidation [23]

TIP EISA A(29%–95%)/R(5%–71%) 145–161 generation of H2 [24]

TIP/HCl EISA A(36%–70%)
R(19%–61%)/B(3%–25%) 96.1–77.8 water splitting [25]

TBu sol-gel A(65.5%–80.1%)/R(17.7%–34%) 134–169 CH3OH oxidation [26]

TBu sol-gel A(18.1%–73.3%/R(16.8%–52.7%) 35–165 phenol degradation [27]

TBu sol-gel and H2
plasma A/B 271.8–427.5 degradation of

phenol, RhB and RB5 [28]

TBu hydrothermal A(72%)/R(28%) 54.1 lithium-ion batteries [29]

TBu hydrothermal A/B 129–174 HCHO degradation [30]

TBu hydrothermal A(64.9%)/R(35.1%) 260 MB degradation, H2
evolution [31]

TBu hydrothermal
self-assembly

A(32–61.4
R(0%–20%)/B’(0%–48%) 104.3–129.9 reduction of nitrate [32]

TBu coordination-
self-assembly

A(40%–77%)
R(23%–60%) 63.6–78.4 water splitting [33]

TBu electrospinning A(94.6%)
R(5.4%) 27.2 H2 generation and

RhB degradation [34]

TBu/TiCl4 EISA A(73%–98%)/R(2%–27%) 92–135 phenol degradation [35]

TBu/TiCl4 EISA A(64%–91%)/R(9%–30%) 90–118 water splitting [25]

TBu/TiCl4 EISA A(74%–92%)/R(8%–26%) 73 H2 generation [36]

K2Ti2O5
soft-chemistry
template-free A/B’ 129

degradation of
CHCl3 and H2

generation
[37]

Ti2(SO4)3 hydrothermal A(64%–87%)/B(13%–36%) 30–72 IBU degradation [38]

Ti2(SO4)3 hydrothermal C/N-A/B 20.5–66 MC-LR degradation [39]

Ti2(SO4)3 hydrothermal A(61.8%)
B(38.2%) 62.3

IBU, 4AAP, CYN,
and MC-LR
degradation

[40–43]

Crystalline structure a—A: anatase, B: brookite, R: rutile, B’: TiO2(B); BET b—specific surface area (m2 g−1); TIP—titanium
isopropoxide; TBu—titanium butoxide; US—ultrasounds; EISA—Evaporation-induced self-assembly (EISA);
RhB—Rhodamine B; MB—methylene blue; 4ClP—4-chloro phenol; RB5—reactive black 5; MC-LR—microcystin-LR;
CYN—cylindrospermopsin; IBU—ibuprofen; 4AAP—4-amino antipyrine.

Titania P25, known also as Degussa P25, Evonik P25, and Aeroxide P25, is probably the most famous
mixed-phase titania, due to its extremely high photocatalytic activity in various photocatalytic reactions.
For example, P25 was used for the decomposition of organic [44–50] and inorganic [51] compounds
present in water and wastewater, the degradation of gas-phase pollutants [52–56], the purification of
indoor environments (e.g., allergens’ removal [57]), inactivation of microorganisms [58–63], self-cleaning
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surfaces [64–66] and solar energy conversion [67]. The number of cited papers using “P25”and
“photocatalysis” as keywords has exceeded 10,000 per year, as shown in Figure 2.
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Figure 2. Number of cited papers published annually on: P25 photocatalysis (searched in Web of
Science using: “P25” and “photocatalysis”; November 2019).

P25 is a white powder with fine NPs (ca. 30 nm) and hydrophilic nature, and thus its surface is coated
with hydroxyl groups. Fine NPs form aggregates, in which primary NPs are loosely bound together.
The density and specific surface area of P25 reached ca. 3.9 g cm−3 and ca. 50 m2 g−1, respectively [68,69].
The different composition of P25 might be found in the literature, i.e., 70%–85% anatase and 15%–30%
rutile, and the content of the amorphous phase is usually not even considered [70–72]. It was reported
that small crystals of anatase (ca. 25 nm) surrounded the large crystals of rutile [73–75]. Although P25
is commonly used as “standard” titania photocatalyst for activity comparison between different titania
samples [69,74,76–80], the phase composition might vary between each P25 sample. Even P25 powders
sampled from the same container possessed different content of anatase, rutile, and amorphous
phase, i.e., 73%–85%, 13%–17% and 0%–13%, respectively [68,69], which is not surprising, since the
composition depends on the flame conditions (and even the location of formed particles in the flame;
P25 is produced by gas-phase flame synthesis). Therefore, for reliable comparison among samples,
the homogenization of P25 powder has been proposed, resulting in the preparation of almost uniform
sample, containing 78 ± 0.3% anatase, 14 ± 0.1% rutile, and 8 ± 0.8% amorphous phase [68].

Many explanations and possible reasons for the high photocatalytic activity of P25 and other
mixed-phase titania have been proposed. The most popular one deals with the charge carriers’
transfer between different phases, resulting in the inhibition of charge carriers’ recombination, which is
commonly named the “synergistic effect” [74,81,82]. Although usually electrons’ transfer from anatase
to rutile has been proposed, due to the more negative CB of anatase than that of rutile [83–90], some
reports have claimed an opposite direction of charges’ migration, e.g., (i) holes from an anatase core to a
rutile overlayer and opposite electron transfer [82], and (ii) electrons from rutile to lattice trapping sites
in anatase [75,81,91,92]. Mi and Weng have proposed five possible band alignments in mixed-phase
(anatase/rutile) titania, as shown in Figure 3 [93]. Interestingly, type V (CBs being aligned) has been
suggested as the most probable structure, which is based on transient infrared absorption-excitation
energy scanning spectroscopy data. Therefore, the direction of electron migration must be controlled
by dynamic factors, such as particle size, the presence of electron/hole scavengers on either the surface
of anatase or rutile, or both.

Other proposed reasons for the high photocatalytic activity of P25 include the presence of
amorphous phase and/or impurities (e.g., iron cations) [94], its low content of trapping sites (slow
charge carriers’ recombination) [71], and its “excellent” surface properties (small NPs, large specific
surface area, high crystallinity). However, it should be pointed out that P25 does not have the best
surface properties among various titania photocatalysts, but it does have one of the best photocatalytic
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activities. Accordingly, titania photocatalysts with much better properties (larger specific surface
area, smaller crystallites) than P25 showed lower photocatalytic activities. In 1991, Bickley et al.
proposed that the high activity of P25 (and other mixed-phase titania photocatalysts) was caused by
the enhancement in “the magnitude of the space-charge potential”, as a result of the interface between
different phases and localized electronic states in amorphous titania [82].
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Although it is unclear who first used the term “synergy” (or “synergistic effect”) between
anatase and rutile to explain the high activity of P25, many reports have used it interchangeably
for an interparticle electron transfer (IPCT) between polymorphs in P25 and other mixed-phase
titania photocatalysts [86,95–98]. However, commonly, no experimental evidence has been shown,
and “synergy” has been only speculated based on the results showing a higher activity of mixed-phase
titania than that of the single phase one. Moreover, in many cases, the activity of P25 (or other
mixed-phase samples) was only slightly higher than that of the most active phase (usually anatase,
depending on the reaction system), but not higher than the simple sum of its parts (activity of anatase
plus activity of rutile—“synergy”). Therefore, even the term synergy has been used incorrectly in
some reports.

Fortunately, some reports have tried to confirm a “synergistic effect” and/or IPCT for mixed-phase
titania, mainly by the simple physical methods, such as mixing and thermal treatment. The phase
mixing might be performed either in an aqueous suspension of different titania polymorphs or by
grinding (It should be pointed that grinding might result in a slight change of surface properties, e.g.,
a decrease in particle size by abrasion). For example, Ohno et al. proved synergy between anatase
and rutile for the photocatalytic oxidation of naphthalene for samples prepared by two methods, i.e.,
grinding (different ratios of anatase to rutile) and thermal treatment (influencing anatase-to-rutile
phase transition) [11]. The synergetic effect was found in both kinds of samples (Figure 4), and IPCT
was proposed as its main reason. Interestingly, the highest activity was obtained for mixed-phase
titania, which was prepared by grinding with similar composition to that of P25 (Figure 4a). Therefore,
it was suggested that similar “synergy” could be responsible for high activity by P25, i.e., electron
transfer between anatase and rutile, resulting in a prolonged lifetime of charge carriers.

It is obvious that metastable anatase and brookite convert irreversibly into rutile upon heating.
Therefore, during thermal treatment, the mixture of anatase and rutile can be easily obtained, e.g.,
anatase particles could be loaded with thermally formed rutile. For example, Zhang et al. proposed
the synergy between anatase and rutile in the anatase-rutile mixed-phase sample, prepared by the
calcination of anatase obtained by the precipitation method [99]. However, in that study, La2O3 was
loaded on the surface of titania also; thus, a possible synergy between anatase and rutile could not be
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confirmed directly. Moreover, it should be pointed that thermal treatment might change not only the
composition of samples (anatase/rutile ratio), but also all other properties, e.g., crystallite/particle size,
specific surface area, morphology, defects’ content. In some studies, “synergy” in P25 was suggested in
comparison to anatase and rutile samples with quite different properties than those in P25, and usually
these samples did not originate from P25 samples. Additionally, some activity tests have been carried
out in the presence of loaded co-catalysts, and thus the properties of co-catalysts, which could be
decisive for the overall activity, should be also considered.Catalysts 2019, 9, x FOR PEER REVIEW 7 of 30 
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Although IPCT between anatase and rutile in P25 was suggested by electron paramagnetic
resonance (EPR) spectroscopy [75,81], the reference samples of anatase and rutile did not originate from
P25, and thus it was impossible to decide unequivocally that IPCT was responsible for the high activity
of P25. Accordingly, another approach was proposed by Ohtani, i.e., an isolation of rutile and anatase
from P25 [68,69,100]. The successful isolation of crystalline phases by chemical methods, which was
proposed first by Ohno et al. [101] and Ohtani et al. [100] for rutile and anatase isolation, respectively,
was confirmed by various methods, e.g., XRD and diffuse reflectance spectroscopy (DRS), as shown in
Figure 5 [68]. The photocatalytic activity data revealed another possible reason for the high activity by
P25, i.e., the high intrinsic activity of anatase and rutile for different reactions. For example, anatase
exhibited much higher activity than rutile and P25 for the oxidative decomposition of acetic acid and
acetaldehyde, whereas rutile was the most active for oxygen liberation [69] and the dehydrogenation
of methanol [68].
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3. Nanostructured Titania: Zero-, One-, Two-, and Three-Dimensional Structures

Titania and other nanomaterials could be classified according to their dimension confinement in
nanoscale (usually defined as less than 100 nm) measurements, and thus 0-dimensional (0D) might
be referred to NPs, and nanospheres, whereas 1D and 2D have one and two dimensions larger than
the nanoscale size, e.g., nanotubes and nanoplates, respectively. The structures with repeated bulk
arrays could be designed as 3D titania, where none of their dimensions are confined to the nanoscale,
except for their inner structure, e.g., composed of fine NPs, nanovoids, etc. Based on this concept,
various types of titania nanostructures have been designed and reported. The most interesting, novel,
and perspective examples are shortly presented in this chapter.

3.1. Zero-Dimensional Titania

Titania NPs (already presented in Section 2), nanospheres, nanorods, and nanorice NPs have been
commonly used for photocatalytic reactions. Here, two kinds of nanostructures are shortly described,
i.e., core–shells and faceted NPs.

3.1.1. Core–Shell Titania Composites

Core–shell titania nanostructures belong to titania composites, i.e., titania and other materials as
mixed-phase composites. There are two main reasons for the preparation and usage of core–shells in
photocatalysis, i.e., (i) reusability and (ii) enhanced activity. Although nanoparticulate titania is highly
recommended for application, due to high activity (large specific surface area), the separation of the
suspended photocatalyst might be costly (ultrafiltration). Therefore, photocatalyst supports, e.g., steel
plates, molecular sieves, glass plates, Raschig rings, zeolites, activated carbon, and silica [102–105]
have been applied. Glass microspheres recovered from fly ash were also used as titania support,
and interestingly, higher activity was found for phenol degradation on microsphere/titania, despite it
having a much lower surface area than that on particulate titania samples [106,107]. It was proposed
that the composition of microspheres (the presence of Fe2O3) could influence the overall activity, i.e.,
the possible transfer of charges (both electrons and holes) from titania to Fe2O3 hindering charge
carriers’ recombination. However, it should be pointed out that there is a risk that titania support might
be mechanically destroyed during photocatalytic tests (pumps, stirrers, etc.), as has been observed
for these microspheres [106,108]. Therefore, a mechanically stable core has been proposed, such as
magnetic Fe3O4, which additionally allows the fast and easy separation of photocatalysts after reactions
in the magnetic field [109–111]. However, the photoreaction between a core and a shell might result in
the instability of the photocatalyst (e.g., dissolution of iron), and thus an insulator interlayer has been
applied by Zielinska-Jurek et al. between a magnetic core and titania shell, as shown in Figure 6 [110].
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Figure 6. Core–interlayer–shell NPs composed of Fe3O4 (core), SiO2 (interlayer), and TiO2 (shell):
(a) Nanostructure scheme; and (b) Mapping of Fe3O4, SiO2, and TiO2 in Fe3O4/SiO2/TiO2) photocatalyst
prepared by the microemulsion method (Fe–red, Si–green, and Ti–blue); adapted from [110]. Copyright
2017 Creative Commons Attribution.
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3.1.2. Faceted Titania

The concept of titania synthesis as crystals with specific facets has been a hot research topic,
especially since 2008 when Yang et al. prepared anatase crystals with a large percentage of reactive
{001} facets [112]. Earlier in 1998, Vittadini et al. theoretically predicted the exceptional dissociative
adsorption of water on an anatase {001} surface [113]. It is known that the reactivity of photocatalysts
is strictly connected with a surface atomic arrangement and coordination, which determines the
adsorption of reactant molecules, surface transfer between photoexcited electrons and reactant
molecules, and finally the desorption of product molecules. The arrangement of crystal facets with
different orientations changes the surface atomic arrangement and coordination, influencing the
photocatalytic activity [114]. Pertaining to this, crystal facets engineering might be the solution for
how to improve the usually poor selectivity of heterogeneous photocatalytic transformations by the
minimization of dispersity of surface atomic structures [115].

Taking into consideration the surface energies of crystal facets, it is possible to estimate the
equilibrium morphology of each titania polymorph using the Wulff construction theory [114], as shown
for anatase, rutile, and brookite in Figure 7a–c. Accordingly, the equilibrium anatase shape is a slightly
truncated bypiramid, which is enclosed with eight isosceles trapezoidal surfaces of {101} and two
{001} facets located on the top/bottom of the crystal. The percentage of {001} facets in this equilibrium
crystal is 6%. The surface energy of {001} (0.90 J m−2) is higher than for {101} (0.44 J m−2) [116,117].
Among titania crystals, anatase faceted particles have been most intensively studied. It is possible to
find research works where anatase crystals with low-index facets, such as {101}, {001}, {010}, and {110},
and high-index facets such as {103}, {105}, {107}, {201}, {401}, {301}, and {106} have been prepared.
In the case of rutile crystals, the facets of {110}, {011}, {001}, and {111} have been identified, whereas for
brookite, the {100}, {001}, {101}, {111}, {210}, and {201} facets have been achieved [117]. The main crystal
shapes of anatase, rutile, and brookite are presented in Figure 7d.
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resultant faceted particles [112,120]. Other compounds, including polyvinyl alcohol [121] and 
carbonate ions, are generated during the decomposition of urea [122], and sodium chloride and/or 
sodium perchlorate [123] have also been used to control the shape. Dinh et al. used oleic acid (OA) 
and oleyl amine (OM) as capping agents with titanium n-butoxide (TBu) as the titania precursor. 
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2011 American Physical Society); (b) rutile (adapted with permission from [118]. Copyright 1994
American Physical Society); (c) brookite (adapted with permission from [119]. Copyright 2007 American
Physical Society); (d) Main crystal shapes of titania (adapted with permission from [117]. Copyright
2014 American Chemical Society).

Faceted TiO2 crystals can be prepared by different methods, such as the wet-chemistry route
(hydrothermal, solvothermal) and gas oxidation route. The wet-chemistry approach commonly
involves the application of fluorine-containing species (e.g., hydrogen fluoride, ammonium fluoride,
titanium(IV) fluoride, and tetrafluoroborate ion) as morphology-controlling agents to achieve the
resultant faceted particles [112,120]. Other compounds, including polyvinyl alcohol [121] and carbonate
ions, are generated during the decomposition of urea [122], and sodium chloride and/or sodium
perchlorate [123] have also been used to control the shape. Dinh et al. used oleic acid (OA) and
oleyl amine (OM) as capping agents with titanium n-butoxide (TBu) as the titania precursor. Various
shapes of titania-faceted particles (bar, dog-bone, rhombic, elongated rombic, truncated rombic)
were obtained by controlling the ratio of TBu:OA:OM and the reaction temperature (Figure 8) [124].
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However, the disadvantage of this approach is the strong adsorption of shape-control reagents
(e.g., fluoride ions) on the crystal surface or their doping into the lattice, which may result in a decrease
in photocatalytic activity [121]. Moreover, at high temperatures, fluorine compounds generate toxic
and corrosive products.
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The solution for these problems might be the development of methods based on gas-phase
reactions [78,125]. The adjustment of one of the main parameters of gas-phase synthesis of decahedral
anatase particles (DAP), e.g., concentration of titania precursor—TiCl4 vapors, resulted in the
morphological changes of the faceted particles (Figure 9).
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Figure 9. SEM images of decahedral anatase particles (DAP) samples prepared at different TiCl4 vapor
concentrations: (a) 0.34 vol%; (b) 0.86 vol%; (c) 1.30 vol%, and (d) 2.13 vol%; adapted with permission
from [78]. Copyright 2016 Elsevier.

One of the most important properties resulting from the presence of different predominant
crystal facets is the photocatalytic activity that is connected with synergistic effects of different facets.
The majority of studies reported that the photocatalytic activity of anatase crystals in the reaction of
oxidation of organic compounds increased with an increase in the percentage of {001} facets [122].
It has been proposed that the coexistence of different crystal facets, e.g., {101} and {001}, might
result in enhanced activity due to the synergistic effects between different facets. First, in the early
studies, Ohno et al. reported the selective photodeposition of Pt and PbO2 particles on different
facets of anatase and rutile crystals [73]. They postulated the existence of oxidation and reduction
sites on {001} and {101} facets of anatase, and {011} and {110} facets of rutile, respectively. In the
next research, Murakami et al. prepared DAP with a different aspect ratio between {001} and {101}
facets (Figure 10a–c) [121]. They observed that the photocatalytic activity for the decomposition of
acetaldehyde increased with an increase in the ratio of {101}/{001} exposed crystal facets, which might
indicate that the spatial separation of redox sites requires the existence of different types of crystal facets.
In another study, Murakami et al. analyzed the dependence of photocatalytic activity on the aspect
ratio of shape-controlled rutile nanorods (nanorods—1D nanostructure) [123]. The photocatalytic
activity for acetaldehyde decomposition increased with the decreasing aspect ratio, which was not due
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to an increase in the number of adsorption sites, but rather to a more optimal ratio of the surface areas
of oxidation and reduction sites (Figure 10d) [13]. The significant study confirming facet-dependent
reactions has been performed by Tachikawa et al., in which selective oxidation on {001} and reduction
on {101} facets have been proved by single-molecule imaging and kinetic analysis [126]. It should be
pointed that both the selective deposition of metal/oxides (e.g., [73]) and an appearance of reaction
products on selective facets (e.g., [126]) do not unequivocally confirm whether that particular reaction
happens on that facet. For example, Kobayashi et al. has shown that the adsorption of noble metals
depends on the surface charges and pH value of the reaction mixture [127].
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Moreover, it was proposed that faceted NPs contained a larger content of shallow than deep electron 
traps (ETs), which facilitated electrons’ migration instead of their permanent trapping, as assumed 
by photoacoustic spectroscopy (total content of ETs) and time-resolved microwave conductivity 
(electron mobility and lifetime; shallow ETs) [128].  

The development of titania crystals with exposed facets provides an important platform for the 
rational design and production of efficient photocatalytic materials, including facet-dependent 
properties, and improving the performance in various applications. However, there are still unclear 
issues mostly regarding the mechanisms responsible for the unique photocatalytic properties of 
titania crystals with different facets. Despite that, it is thought that facet-dependent reaction 
selectivity is undoubtedly the most promising research direction in the further development of the 
efficient photocatalytic materials with high application potential.  

3.2. One-Dimensional Titania  

Titania nanotubes, nanowires, 1D-oriented nanopores, and other 1D nanostructures (such as 
nanorods) have been extensively investigated for various applications, including solar cells, 
photocatalysis, batteries, filtration membranes, biomedical use, and as templates for the synthesis of 
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Figure 10. Schematic images of: (a–c) spatial separation of redox sites on anatase with exposed
crystal facets: (a) DAP with a larger surface area of oxidation sites and smaller area of reduction
sites; (b) DAP with a smaller surface area of oxidation sites and larger area of reduction sites;
(c) stacked-structure particle with larger surface area of both oxidation and reduction sites (adapted
with permission from [121]; Copyright 2009 American Chemical Society); (d) dependence of aspect
ratio of shaped-controlled rutile rods on the surface area ratio of oxidation to reduction sites (adapted
with permission from [123]; Copyright 2011 American Chemical Society).

Although DAP particles have shown extremely high photocatalytic activity for both oxidation
and reduction reactions (even higher than famous P25) [78], single-facet titania seems to be very
attractive for mechanism study. For example, octahedral anatase particles (OAP) with eight {101}
facets showed very high photocatalytic activity for the oxidation of acetic acid [128,129]. Although,
various reports (as also shown in this review) have claimed that faceted morphology was beneficial
for photocatalytic activity, the direct proof was not presented until the study by Wei et al. [128,129].
In that study, OAP-containing samples, which differed only by morphology (same specific surface area,
crystalline size, crystallinity, composition, etc.), i.e., the content of faceted particles in the final product,
were prepared by hydrothermal–ultrasonic reaction. Indeed, it was proven that faceted morphology
was beneficial, since with an increase in the content of faceted NPs, activity increased. Moreover, it was
proposed that faceted NPs contained a larger content of shallow than deep electron traps (ETs), which
facilitated electrons’ migration instead of their permanent trapping, as assumed by photoacoustic
spectroscopy (total content of ETs) and time-resolved microwave conductivity (electron mobility and
lifetime; shallow ETs) [128].

The development of titania crystals with exposed facets provides an important platform for
the rational design and production of efficient photocatalytic materials, including facet-dependent
properties, and improving the performance in various applications. However, there are still unclear
issues mostly regarding the mechanisms responsible for the unique photocatalytic properties of titania
crystals with different facets. Despite that, it is thought that facet-dependent reaction selectivity
is undoubtedly the most promising research direction in the further development of the efficient
photocatalytic materials with high application potential.
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3.2. One-Dimensional Titania

Titania nanotubes, nanowires, 1D-oriented nanopores, and other 1D nanostructures (such as
nanorods) have been extensively investigated for various applications, including solar cells,
photocatalysis, batteries, filtration membranes, biomedical use, and as templates for the synthesis
of other nanostructures [5,130–133]. Kasuga et al. were probably the first who prepared titania
nanotubes (TNTs) by the chemical method [134,135], whereas Imai et al. obtained TNTs in porous
alumina membrane by a deposition technique [136]. Since then, huge effort has been put toward the
preparation of highly uniform and well-oriented TNTs. The most famous and popular is probably
the preparation of TNTs by the electrochemical method, i.e., the anodization of titanium film, which
was started by Grimes and Schmuki [137–139]. It should be pointed that different morphologies
could be obtained by changing the anodization conditions, e.g., TNTs, as well as the mesoporous
and nanoporous structures, as shown in Figure 11. Recently, a very interesting approach has been
proposed by the Zaleska-Medynska group, i.e., the anodization of titanium alloys to prepare modified
titania by a one-step reaction, e.g., TiO2/Ag2O/Ag [132] and TiO2/CuxOy [131] from Ti/Ag and Ti/Cu
alloys, respectively.
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Although 1D nanostructures are very interesting, this chapter does not discuss them in detail since
many review reports on TNTs (including also other 1D titania structures) have already been published,
e.g., review papers on TNTs [5,140–143] and modified TNTs toward vis-response [144]. Here, only
TNTs photonic crystals (PCs) are presented as novel and not well-explored titania nanostructures.

The designing of PCs, periodic optical nanostructures that affect the motion of photons, has been
identified as an efficient method to enhance light harvesting, i.e., by using longer wavelengths (vis and
IR). The uniqueness of PCs arises from the consistent spatial periodicity of the refractive index (n) in
the well-ordered structure, which prevents the electromagnetic wave pathway at certain frequencies,
resulting in the formation of the stop band and the photonic bandgap (PBG) [145]. The presence of
PBG results in the formation of “slow photons” at both the red and blue edges of PBG, whereby the
photons are scattered and reflected, causing the reduction of photons’ group velocity [145,146], which
might be utilized for light absorption enhancement in titania-based photocatalysts.

Although PCs are usually designed as 3D nanostructures (e.g., opal and inverse opal), which are
also discussed in this review (Section 3.4.2), TNT-PCs have been also reported [147,148]. TNT-PCs
have been prepared by applying basic electrochemical anodization methods by alternating current and
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voltage, e.g., anodic oxidation [147] or two-step anodization [149–151]. The preparation techniques
are critical for titania-based PCs, e.g., the roughness of the Ti foil before anodization has affected the
light absorption properties, which are directly related to the periodic modulation properties [147,150].
The smoothness of the material surface after anodization would reflect the unique formation of
PCs, which was observed by the appearance of various shiny colors (iridescence), as illustrated in
Figure 12a [150]. TNT-PCs have been designed and explored in terms of the enhancement of the light
harvesting. Many parameters of their preparation have been investigated, especially in consideration
of the correlation between the photocatalytic activity and the PBG effects. For example, bamboo-like
TNT-PC arrays with different nodes’ lengths were designed by adjusting and maintaining the applied
voltage, as shown in Figure 12b–c [147]. Interestingly, it was found that PBG was bathochromic shifted
with the shortening of TNT. Moreover, Chiarello et al. reported that the PBG position was directly
related to the diameter of TNT, the distance between each nanotube, and their thickness [148]. It was
concluded that the PBG positions shifted to longer wavelengths with an increase in the diameter of
TNTs, resulting in an enhanced photogeneration of hydrogen.
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years, especially for solar energy conversion, e.g., with C3N4, MoS2, and graphene-like materials 
(graphene, graphene oxide, reduced graphene oxide), due to their relatively large surface area, fast 
transfer of charge carriers to the photocatalyst surface, and thus low recombination of charge carriers, 
and thus high photocatalytic activity. Although various materials have been prepared as 2D 
nanostructures, 2D titania nanostructures have been rarely prepared and reported. Of course, films 
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antiseptic materials), but these are not 2D “nano” structures.  

Although well-organized titania nanostructures might be easily obtained by a convenient 
hydrothermal method, such as nanowires (1D), nanotubes (1D), and faceted NPs (0D), other methods 
are used for the preparation of 2D titania nanostructures since titania films are usually deposited on 
some supports, such as glass, polyvinyl chloride, and quartz. Therefore, chemical vapor deposition 
(CVD) [152], plasma-enhanced chemical vapor deposition (PECVD) [153], dc-sputtering [154], 
anodization (exemplary shown in Figure 11 as “mesopores”) [155] and successive-ionic-layer-
adsorption-and-reaction (SILAR) [156] methods have been proposed for the preparation of 2D titania 
photocatalysts. However, hydrothermal methods have been also used for the preparation of titania 
nanoplates (shown in Figure 13) for application as sensors to detect toxic gases [157].  

Figure 12. Characteristics of titania nanotubes photonic crystals (TNT-PCs): (a) UV-vis-NIR diffuse
reflectance absorption spectra, the inset presents a digital photograph of the TNT-PCs; adapted with
permission from [150]. Copyright 2014 Copyright Clearance Center, Inc.; (b) FE-SEM image and
(c) diffraction spectrum of TNT-PCs arrays (prepared TiO2 with different node lengths); adapted with
permission from [147]. Copyright 2017 Elsevier.

3.3. Two-Dimensional Titania

It is probable that 2D titania nanostructures, such as nanofilms, nanoplates, nanosheets,
and nanobelts are the least examined for photocatalysis among all others, especially comparing
with a huge number of studies on particulate titania (0D), titania nanotubes (1D), and 3D titania
nanostructures. The investigations on 2D nanostructures have been intensively growing in recent years,
especially for solar energy conversion, e.g., with C3N4, MoS2, and graphene-like materials (graphene,
graphene oxide, reduced graphene oxide), due to their relatively large surface area, fast transfer of
charge carriers to the photocatalyst surface, and thus low recombination of charge carriers, and thus
high photocatalytic activity. Although various materials have been prepared as 2D nanostructures, 2D
titania nanostructures have been rarely prepared and reported. Of course, films of titania have been
intensively studied and commercially applied (self-cleaning, antifogging, and antiseptic materials),
but these are not 2D “nano” structures.

Although well-organized titania nanostructures might be easily obtained by a convenient
hydrothermal method, such as nanowires (1D), nanotubes (1D), and faceted NPs (0D), other methods are
used for the preparation of 2D titania nanostructures since titania films are usually deposited on some
supports, such as glass, polyvinyl chloride, and quartz. Therefore, chemical vapor deposition (CVD) [152],
plasma-enhanced chemical vapor deposition (PECVD) [153], dc-sputtering [154], anodization
(exemplary shown in Figure 11 as “mesopores”) [155] and successive-ionic-layer-adsorption-and-
reaction (SILAR) [156] methods have been proposed for the preparation of 2D titania photocatalysts.
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However, hydrothermal methods have been also used for the preparation of titania nanoplates (shown
in Figure 13) for application as sensors to detect toxic gases [157].Catalysts 2019, 9, x FOR PEER REVIEW 14 of 30 
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permission from (after formatting) [157]. Copyright 2016 Elsevier.

An interesting study has been conducted by Deng et al. for amorphous titania nanofilms, prepared
by the SILAR method from titanium isopropoxide [152]. Surprisingly, the authors obtained higher
activity for formaldehyde mineralization on amorphous titania film than that on anatase film. It was
concluded that abundant hydroxyl groups and a large surface area, allowing an efficient adsorption
of formaldehyde, were responsible for its high photocatalytic activity. Moreover, it was proposed
that rapid electron transfer along CB (>TiIIIOH)—which allocated terminal hydroxyl groups and
minimized transfer length from bulk to surface (nanofilm layer)—resulted in a hindered recombination
of charge carriers.

It should be pointed that similar to magnetic core–shell NPs (Section 3.1.1.) and TNT (1D), 2D
titania materials have been mainly designed for possible commercial application, considering their
continuous use. Therefore, 2D titania nanostructures have been tested for gas and liquid phases’
purification, e.g., (i) formaldehyde mineralization in the gas phase [152], (ii) the degradation of
2-(phosphomethylamino)acetic acid and methylene blue, and the inactivation of Micrococcus lutes bacteria
in liquid phase [156]. All these studies concluded that titania nanofilms were highly recommended
for commercial applications, e.g., using films inside photocatalytic reactors (covering of wall or lamp
surfaces) for environmental remediation and disinfection purposes.

The various composites of titania with 2D nanostructures of other materials (titania/graphene,
titania/graphene oxide, titania/reduced graphene oxide, and titania/C3N4) have been also investigated.
Although these 2D nanostructures have been indicated as probably the most prospective for commercial
applications, they are not discussed in this review, since well-written review papers have already been
published, e.g., [158,159].

3.4. Three-Dimensional Titania

Three-dimensional titania structures, e.g., mesoporous structures, aerogels, opals, and inverse
opals have been designed and prepared for two main purposes, i.e., possible commercial applications
(to avoid the expensive recovery of particulate titania) and for mechanism study. Here, three kinds
of 3D titania structures are shortly presented, i.e., aerogels, inverse opal photonic crystals (IO-PCs),
and mesocrystals.

3.4.1. Titania Aerogels

Titania aerogels are very interesting nano/microstructures, due to their low density, porosity,
high pore volume, and large specific surface area [160–163]. Although they are commonly composed
of NPs of titania, the resultant aerogel structure is much larger, and thus titania aerogels might be
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classified as 3D structures. Titania aerogels has been proposed as efficient photocatalysts with activities
similar to those by P25 [162]. An interesting approach was used by Pietron and coworkers to study
the mechanism of plasmonic photocatalysis. Plasmonic photocatalysis, heterogeneous photocatalysis
under vis irradiation on a wide bandgap semiconductor (usually titania) modified with plasmonic
NPs, such as gold, silver, and copper (metals with localized surface plasmon resonance at vis range
of solar spectrum), has been a hot topic recently [164]. Although plasmonic photocatalysts showed
activity at broad irradiation ranges for various reactions, the mechanism has not been clarified yet.
Two main mechanisms of plasmonic photocatalysis have been considered, i.e., energy and charge
(usually electron) transfer. Accordingly, two kinds of titania aerogels have been prepared, i.e., with
5-nm gold NPs incorporated inside the 3D titania aerogel network (3D Au–TiO2) or not (Au/TiO2),
as shown in Figure 14 [165,166]. Interestingly, it was found that 3D Au–TiO2 possessed much higher
activity than that prepared by the simple deposition of gold on the surface of titania aerogel (Au/TiO2),
suggesting that direct contact (interface) between gold and titania was crucial. Although authors
discussed the possibilities of both mechanisms, the key factor of morphology (gold position inside the
aerogel, resulting in a large interface of gold–titania) could suggest that the charge transfer mechanism,
i.e., “hot” electron transfer from gold to the CB of titania, has been the predominant one in the case of
gold–titania plasmonic photocatalysts under vis irradiation.
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Figure 14. Schemes showing titania aerogels (blue) with gold NPs (yellow dots): (a) incorporated
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3.4.2. Inverse Opal Photonic Crystals (IO-PCs)

The 3D titania PCs (1D PCs in Section 3.2) have been intensively studied in recent years, due to the
many advantages of the obtained meso/microporous structures, such as efficient mass transport, large
surface area, and tunable porosity [167–169]. Inverse opal PCs (IO-PCs) comprise the exact replica
structure obtained by using the opal as a template, as shown in Figure 15a. IO-PCs structures are
usually obtained after undergoing three-step synthesis, namely (1) the self-assembly of monodispersed
colloidal particles to form an opal structure, (2) infiltration of the precursor (here titania precursor),
and finally (3) the removal of opal, which acts as a sacrificial template for the IO structures. All these
steps are critical and need to be carried out by considering the optimum synthesis conditions to prevent
defects and cracks, which could affect the final quality of the titania IO-PCs [170–172]. Different types
of colloidal particles, e.g., silica (SiO2), polystyrene (PS), and polymethyl methacrylate (PMMA) have
been used for IO formation. It should be pointed that the monodispersity of particles (<5% variation
in the size/shape [171,173]) is necessary to form opal. The variety in the sizes and shapes of particles
would result in disordered arrangement, which affects the quality of opal and IO structures. In contrast,
some reports have claimed that polydispersed large SiO2 particles could also form close-packed arrays
under negative pressure [174,175]. However, it should be pointed that for optical applications of opal
and IO-PCs, monodispersed colloidal particles are the most recommended. The assembly process
might be carried out by a few methods, i.e., vertical capillary deposition [176–178], spin coating [179],
gravitational sedimentation [180], and sedimentation assisted by centrifugation [181]. Post-thermal
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treatment has been suggested as a good method to provide better mechanical stability and to form a
neck between the particles [182]. Probably, the most difficult step is to obtain the stable IO structure,
i.e., efficient titania infiltration/impregnation. Various approaches have been proposed for the IO
structure, including drop casting and capillary force [178,183], vacuum infiltration [178,183], atomic
layer deposition (ALD) [184,185], spin-coating [186], and chemical vapor deposition (CVD) [187].
Finally, the crystallization of titania is performed, which results in 15%–30% shrinkage of the structure,
causing the pore size reduction [188–191]. The final step is to remove the template, which might be
done by calcination (for polymers) [177,178,183,192] and chemical treatment with a concentrated base,
sodium hydroxide, or hydrofluoric acid (for silica) [193]. In order to enhance light harvesting and/or
the resultant properties and photocatalytic activities, modifications with metals, e.g., gold [179,191],
silver [193], nickel [186,194], and semiconductors, e.g., cadmium selenide, cadmium sulfide quantum
dots (QDs) [184,195], and zinc oxide NPs [196], have been proposed.
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Figure 15. Characteristics of opal (polystyrene (PS) spheres) and inverse opal (IO) titania structures:
(a) FESEM images of PS opal with: (i) 200-nm and (ii) 250-nm sphere sizes, and replicated titania IO
films with: (iii) 180-nm and (iv) 207-nm voids; reflection spectra of: (b) PS templates and (c) titania IOs;
adapted with permission from [178]. Copyright 2019 Creative Commons Attribution.

The PBG of IO-PCs could be tuned by various approaches, including the nanovoid diameter
(as shown in Figure 15b,c) and the angle of the light irradiation. It was found that the PBG was
hypsochromic shifted with an increase in the calcination temperature, resulting in a decrease in the
nanovoids’ diameter [190]. The photocatalytic activities of IO-PCs have been investigated under
both UV [149,197] and vis [186,191,193] irradiation, as summarized in Table 3. The most important
property of IO structures is tunable nanovoid dimensions, resulting in the scattering and reflection
of light. Many reports have reported how the nanovoid diameter could be related to the PBG,
and thus the resultant photocatalytic activity. For example, the reduced velocity of photons and
hindered recombination of charge carriers were the most evident for titania IO with the largest voids
of 610 nm [198]. In contrast, the smallest voids in CdS-QD-sensitized titania IO gave the highest
photoelectrochemical enhancements [184]. Hence, although the nanovoid diameter plays a vital role in
PBG, the resultant photocatalytic activity might differ depending on various factors, including the
specific surface area, porosity, and various co-modifications.

Apart from the nanovoid diameter, the slow photon effect, affected by the angle of irradiation
source [183,188], would influence the overall photocatalytic activity. For example, PBG was blue-shifted
with an increase in the irradiation angle [183,188,190]. Kim and Choi found that the degradation of
stearic acid on IO with 247-nm voids was two times higher under irradiation at 40◦ than at different
irradiation angles [147]. In contrast, Jovic et al. did not find the direct correlation between the
voids’ sizes and the photocatalytic activity [183]. However, the overlapping between the bandgap of
titania and the red-edge wavelength of PBG gave rise to the slow photon effect, and thus enhanced
activity [183,188]. Similar correlation was found by Rahul et al. on the overlapping of the red-edge
of PBG and the bandgap of titania by titania IO film with 215-nm voids [199], resulting in the
complete decomposition of RhB dye in only 2 min. The importance of IO structures was confirmed
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in research on the comparison between original titania IOs and slightly destroyed structures, e.g., by
ultrasonication [197] and grinding [189], where the undestroyed IOs structure was the most efficient.

Moreover, heterostructure engineering, e.g., the coupling of titania IO-PCs with other semiconductors
and modifications with noble metals, has been shown to have a positive effect on the overall activity.
Although various reasons have been proposed, including the separation of charge carriers, enhanced
light harvesting, synergy, and a higher specific surface area, it is still unclear what properties are the
most recommended for specific application. Considering photocatalytic reactions, it seems that the
modification of titania IO-PCs with NPs/composites with the ability to absorb photons at or near PBG
would result in photocatalytic materials of extremely high efficiency. Moreover, such materials might
be very helpful for mechanism study, e.g., plasmonic photocatalysis (as discussed in Section 3.4.1).
For example, the preparation of titania IO containing gold NPs (in each void) of the sizes corresponding
to LSPR (localized surface plasmon resonance) of gold, the same or different to PBG of titania IO
(λLSPR = λPBG, λLSPR > λPBG and λLSPR < λPBG), might enable finding (i) the direct correlation between
the photoresponse and the properties (e.g., by action spectrum analysis), (ii) the difference between
electron and energy transfer mechanism, and (iii) the key factor of photocatalytic activity.

Table 3. Titania IO-PCs: preparation method, applications and important findings.

IO-PCs Opal/Template Infiltration
Method Photocatalytic Tests Findings Ref.

IO film PMMA CF SA degr. at 400 nm (0–50◦) PBG max = 490 nm
most effective at 40◦ [192]

IO films PS CF
MB degr.; λ = 450 nm
CH3CHO(g) degr. at

365 nm
high activity [188]

IO films PS ALD IO as photoanode (DSSCs) PCE of 2.22% [185]
IO films PS CF RhB degr. at 250800 nm 95% degr. at 0◦ [190]
IO films PS SW RhB degr. λ = 320–800 nm VSDA [200]

LP-IO film PMMA CF MB degr. at 400 nm high film stability [177]

IO film with LC PS SW-vacuum - PBGmax = 452 and 528 nm
switchable PCs [178]

IO powd. and
films PMMA vacuum

CF
ethanol(g) oxidation

λmax = 365 nm VSDA [183]

IO powd. PS CF MB degr. λ >400 nm VSDA [198]

IO powd. PMMA vacuum phenol degr.
λmax = 365 nm VSDA [189]

Au/ IO powd. PMMA CF water splitting (H2)
under UV and solar Au/IO—H2 generation [201]

Au/IO film PS CF PEC water splitting Au/st-IO with high PD [179]

Ag/IO film SiO2 dip coating MB degr. λ = 254 nm
and λ = 400–760 nm Ag-enhanced activity [193]

CdSe/IO PS dip coating SERS for MO
PEC measurement

CdSe-IO as SERS substrate
with a high sensitivity [195]

CdS/IO film PS ALD PEC; solar CdS/IO with high PD [184]
Ni/

IO film PS spin coating SERS for 4-MBA
MO degr. λ >400 nm

Ni/IO for SERS with high
detection ability [186]

BIO/Ni film PS SW and CF CO evolution; λ >400 nm high rate of CO generation [194]
Au/F/IO film PS SW and CF H2 evolution; λ >400 nm high rate of H2 generation [202]

(N-F)/IO film PS SW aided by CF RhB degr.; solar PBG max = 336 and 850 nm
100% RhB degr. [199]

IO/Au PS LPD 2,4-DCP degr.; λ >420 nm VSDA [191]
H/IO powder PS forced impregn. H2 evolution; solar VSDA [203]
ZnO/IO film PS SW MO degr.; λ = 320–800 nm VSDA [196]

2,4-DCP—2,4-dichlorophenol; 4-MBA—4-mercaptobenzoic acid; ALD—atomic layer deposition; Au—gold NPs;
Au/F/IO—gold-loaded fluorinated IO; BIO—black titania inverse opal; CF—capillary force; degr.—degradation;
DSSCs—dye-sensitized solar cells; FTiO2-IO: fluorinated titania inverse opal; g—gas phase; H—hydrogenated;
IO—titania inverse opals; IO-PCs: inverse opal photonic crystals. LC—liquid crystal; LP—liquid precursor;
LPD—liquid phase deposition; MB—methylene blue; MO—methyl orange; (N-F)—nitrogen and fluorine co-doped;
NP—nanoparticle; PBG—photonic bandgap; PCE—power conversion efficiency; PEC—photoelectrochemical;
PD—photocurrent density; PMMA—polymethylmethacrylate; PCs—Photonic crystals; PS—polystyrene;
RhB—rhodamine B; SA—stearic acid; SERS—surface-enhanced Raman scattering; solar—experiments under
solar irradiation; st—surface-textured; SW—sandwich; VSDA—void-size-dependent activity.
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3.4.3. Titania Mesocrystals

Mesocrystals are a quite new and fascinating nanostructure, which is composed of aligned
nanocrystals [204–206]. The mesocrystal structure might be synthesized from the primary nanocrystals
by self-assembly-based crystallization (non-classical crystallization, as shown in Figure 16 [204]) and
a template method (e.g., polyethylene template [207]). For example, Wu et al. confirmed that rutile
titania mesocrystals have been formed by the rapid crystallization by particle attachment (CPA),
i.e., non-classical crystallization [208]. The mesocrystal structure has been considered as a potential
functional material, combining both the properties of NPs (e.g., the shape, specific surface area,
photocatalytic activity) and “advanced super structure” (e.g., increased crystallinity, improved charge
transfer). Titania mesocrystals have been proposed for various applications, e.g., photocatalytic
purification, solar energy conversion, and energy storage. Thanks to their 3D structure, titania
mesocrystals can be also used for mechanism clarifications, such as titania aerogels (Section 3.4.1).
For example, Bian et al. prepared titania mesocrystals with gold deposited either on basal or lateral
surfaces of mesocrystals and on titania NPs [209]. They found that the deposition of gold on the
basal structure resulted in enhanced photocatalytic activity, since “hot” electrons could easily migrate
through the titania nanocrystal network to the edges of the plate-like mesocrystals, where they were
temporary stored for further reactions. Due to this anisotropic electron flow, which hindered the
recombination of charge carriers (back electron transfer to gold (Au→TiO2→Au) has been considered
as the main reason for the low activity of plasmonic photocatalysts), this structure was characterized
by long electron lifetime, and thus enhanced photocatalytic activity.
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4. Summary and Conclusions

A large number of studies on the crystalline composition- and morphology-governed
photocatalytic activity of titania-based materials have been extensively carried out until now.
The advances performed in research in this field during the last decade are immensely significant
and noteworthy. In this review, the state-of-the-art has been presented on the correlation between the
structural/morphological aspects and TiO2 photocatalytic activity with a special emphasis directed on
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the new trends in the architecture design of titania and titania-based photocatalysts, such as faceted
titania, inverse-opal structures, aerogels and core–shells.

First, the role of titania polymorphs for the photocatalytic activity has been discussed, including
the exceptional importance of mixed-phase titania photocatalysts. In the literature, one can find
many attempts to obtain such mixed-phase materials. They are applicable to the different types of
photocatalytic reactions, such as the oxidation of organic pollutants, hydrogen generation, or CO2

conversion. Among them, a special role is played by commercially available P25, which is recognized
as a reference material that is applied in various types of reactions due to its unique photocatalytic
efficiencies. However, an explicit explanation of the phenomenon of the “synergistic effect” responsible
for the high activity of mixed-phase TiO2 materials is still a challenge.

In the further part of the review, plenty of nanostructured titania materials have been discussed.
The formal division of these materials into zero-, one-, two-, and three-dimensional structures has been
performed and shortly summarized in Table 4. Among 0D titania nanostructures, the preparation of
core–shell composites gives the possibility of incorporating additional functions to the photocatalytic
titania-based materials, such as magnetic properties resulting from the presence of magnetic core,
and thus enabling easy separation in the magnetic field. In the case of another 0D-structural approach:
faceted titania particles, the role of different crystal facets, and the synergistic effect between them have
been emphasized to clarify the high application potential of these materials, including the concept of
facet-dependent reaction selectivity.

Table 4. Structure, synthesis, and exemplary applications of titania materials with different
morphology. CVD: chemical vapor deposition, PECVD: plasma-enhanced chemical vapor deposition,
SILAR: successive-ionic-layer-adsorption-and-reaction.

Dimension Morphology Preparation Schemes Applications References

0D

nanorice,
core–shells,
NPs faceted

particles

sol–gel,
hydrothermal,
solvothermal,

gas-phase
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In the discussion of 1D and 3D nanostructures, the exceptional role of photonic nanocrystals in
the form of titania nanotubes and 3D structures has been shown. The exceptional property of IO-PCs is
the possibility of PBG tuning. Therefore, the modification of titania IO-PCs with other NPs (e.g., gold)
or composites might introduce the ability of photoabsorption at or near the photonic bandgap,
resulting in exceptionally efficient photocatalytic materials. Other promising 3D nanostructures can
be recognized as titania aerogels with unique properties, such as low porosity, high pore volume,
and large specific surface area, which are especially efficient as plasmonic photocatalysts with high
visible-light activity. Two-dimensional (2D) structures (e.g., nanofilms, nanoplates, nanosheets), which
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are less often described in the literature, have been also considered in this review. Their application
potential can be connected with environmental remediation and disinfection purposes (nanofilms).

The proper selection of the type of titania nanostructure together with considering the
heterostructure engineering (e.g., coupling) or titania modification is the complex strategy to design
the photocatalytic materials, which are oriented for the specific reaction systems. Despite the wide
discussion about the mechanisms and reasons responsible for the specific properties of different
morphological titania structures, it is still unclear which properties are the most recommended for
the specified application. However, this review might be useful for the architecture design of novel
titania-based nanomaterials for broad and diverse applications.
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