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Abstract: Hinai green tuff, which is found in Akita Prefecture, Japan, is used for the production
of building materials, etc. About 60% of all stone is emitted as waste powder and therefore it
is important to find ways for recycling it. In this work, the characteristics of green tuff powder
have been investigated. The results of scanning electron microscope (SEM) and elemental map
observations indicate that the green tuff contains TiO2 on zeolite. The green tuff can therefore be used
as a natural catalyst for producing hydrogen peroxide with moisture and oxygen with light. The
optimum calcined temperature of the green tuff powder is about 800 ◦C, producing the hydroxyl
radical from hydrogen peroxide decomposition without ultraviolet light (UV) and decomposition
of the superoxide anion. As the application of green tuff powder, Cavendish banana trees found in
the Philippines infected by a new Panama disease were treated with powder suspension in order
to remove the fungus (a type of Fusarium wilt) due to the photocatalyst characteristics of powder.
The suspension, prepared by using the powder was sprayed on the infected banana trees for about
one month. Photograph observation indicated that the so-called 800 ◦C suspension spray was more
effective in growing the infected banana trees.

Keywords: green tuff; calcination; photocatalyst; TiO2; zeolite; banana tree; new Panama disease;
Fusarium; SEM; radical; Philippines

1. Introduction

Green tuff is a sedimentary rock formed in rivers and lakes from 20 million to 15 million years
ago and distributed widely along the Sea of Japan coast of the Japanese archipelago [1]. Nowadays,
Hinai green tuff, a beautiful greenish color block (Towada stone) found in Akita Prefecture, Japan, is
utilized in building walls and floors, etc. [2]. However, when the tuff stone is quarried and ground,
about 60% of all quarried stone becomes waste powder and about 4000 t of powder per year have been
discharged and wasted. It is important to utilize large amounts of produced green tuff powder. Several
applications have been suggested for using the cutting powder of green tuff, for example, utilization in
food processing [3], activation of microorganisms [4], as a reagents for precipitation impurities during
a wastewater treatment [5], as an adsorbent for adsorption of chemical substances [6], and for the
removal of formaldehyde [7]. The zeolitic adsorbent is synthesized from green tuff by hydrothermal
treatment and the silver ion adsorption has been studied [8]. As the application of a natural zeolitic
tuff (Nereju, Romania), a textile dye adsorption characteristic was studied [9]. The clinoptilolite-type
zeolite is found in part of the green tuff belt of Northern Iran [10].
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Davari et al. reported that the synthesized ZnO/Fe2O3 and TiO2/Fe2O3 on zeolite could decompose
organic substance [11]. ZnO nanoparticles are effective on fungi like Fusarium as antimicrobial
agents [12]. Complexation of TiO2 particles with rutin shifts the photogeneration of hydroperoxyl
(HOO) and hydroxyl (HO) radicals toward visible light (lambda > 400 nm) [13]. As the green
tuff contains small amounts of similar components, the elemental distribution is measured and
investigated especially for TiO2 existence on zeolite. If the natural photocatalyst is possible, the
synthetic photocatalyst production cost can be reduced. Photocatalysis describes the excitation of
titanium dioxide nanoparticles (a wide-band gap semiconductor) by UV light to produce reactive
oxygen species (ROS) that can destroy many organic molecules including fungi by the addition of
inorganic salt potassium iodide [14]. Many kinds of photocatalytic productions of hydrogen peroxide
on a semiconductor, such as TiO2, have been reported using water and oxygen with UV, however,
hydrogen peroxide can be produced by using visible light [15,16]. The produced hydrogen peroxide
can be decomposed by higher alkaline [17], UV light irradiation, and the Fenton reaction with the Fe2+

ion. For the application of this phenomena, the removal of banana tree fungi is investigated.
Banana (Musa spp.) is a staple food for more than 400 million people, and over 40% of world

production and virtually all the export trade is based on the Cavendish banana. However, the
Cavendish banana is under threat from a virulent fungus, Fusarium oxysporum f. sp. cubense (FOC),
Tropical race 4 (TR4), for which no acceptable resistant replacement has been identified [18]. FOC
infection causes the oxidative stress to the banana and the development of stacked antimicrobial genes
in the banana also is studied [19]. The photograph in Figure 1 shows the early symptoms such as wilting
and leaf-yellowing of the banana tree in this experimental field in the Philippines. An typical example
of an infected banana tree is shown in the reference [18], which indicates that the disease caused
the yellowing and dropping of the leaves, known as the pseudostem cracking. The typical example
shows more brown leaf structure and plant collapse. In the experiment, the suspensions of green tuff

powder and calcined green tuff powder were sprayed on the infected banana trees periodically and the
situation of the banana trees was observed after about one month. As the green tuff does not dissolve
in water, the green tuff powder and water suspension are environmentally friendly materials.
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Figure 1. Photograph of early symptoms such as wilting and leaf-yellowing of a banana tree in this
experimental field in the Philippines.

2. Results and Discussion

2.1. Calcined Green Tuff Powder

The green tuff powder was calcined at temperatures ranging from 200 ◦C to 1200 ◦C for 30 min,
and the calcined powder was then kept dry. XRD patterns of each calcined powder are shown in
Figure 2, which indicates mainly quartz and albite peaks. Chlorite peaks exist in the green tuff calcined
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at 500 ◦C, however, they disappear at temperatures higher than 600 ◦C. Green color chlorite disappears
by calcination at higher than 600 ◦C and Fe2+ in chlorite has oxidized to Fe3+. Albite is stable at
all calcined temperatures. Stilbite and laumontite exist at temperatures lower than 700 ◦C and they
disappear at temperatures higher than 800 ◦C. Both zeolite of stilbite and laumontite contain Ca and as
they decompose, small peaks of CaO appear between 600 ◦C and 800 ◦C, while it was disappeared at
temperature above 900 ◦C.
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Figure 2. XRD of green tuff after calcination at each temperature for 30 min.

Next, the green tuff powder and the shape of the calcined powder were investigated by SEM, and
results are shown in Figure 3, which shows that: 1. the fine ground green tuff powder has coagulated
as calcination temperature increases; and, 2. the particle size of 1100 ◦C calcined powder becomes
larger. The compared specific surface areas and pore diameters of green tuff powder and 800 ◦C
calcined powder are listed in Table 1, while Figure 4 shows the mesoporous size distribution of green
tuff powder and 800 ◦C calcined powder using the Saito–Foley (SF) method. The specific surface area
16.79 m2/g of green tuff powder decreased to 6.25 m2/g by calcination at 800 ◦C, however, the average
diameter of the micropore was the same, while the mesopore size and surface area of calcined powder
decreased comparing to the as-received green tuff powder. The fungus Fusarium cannot enter the
pores of porous green tuff for the larger size of fungus, comparing with tuff pore size shown in Table 1.
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Figure 3. Photographs of as-received green tuff powder and calcined powder at 800 ◦C and 1100 ◦C for
30 min.

Table 1. Specific surface area and pore diameter of green tuff powder and 800 ◦C calcined powder.

Type As-Received 800 ◦C Calcined

Surface area, (m2/g)
BET 16.79 6.25

Mesopores 11.65 4.68

Pore Diameter, (nm)
Average 10.00 21.97

Mesopores 3.38 3.06
Micropores 0.45 0.45

Micropores: 0–2 nm; Mesopores: 2–100 n; Micropores area-diameter have been calculated using SF method;
Mesopores are-diameter have been calculated using BJH method.
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Figure 4. Mesopore size distribution of green tuff powder and 800 ◦C calcined powder using Saito and
Foley (SF) method.

Figure 5 shows the Ca and Ti elemental maps of the powder calcined at 800 ◦C compared with
the original green tuff particles. The corresponding places of Ca and Ti are shown in the circle marks.
Considering the mineral composition shown in Table 1, the Ca map shows mainly zeolite in Table 1.
A concentrated Ti map corresponds to the Ca map and this phenomenon is observed in all different
calcined green tuff samples [7]. The fine grains of TiO2 on zeolite may be a photocatalyst in any
green tuff.
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Figure 5. EDS elemental maps of Ca and Ti for as-received green tuff (top two photos) and 800 ◦C
calcined green tuff powder (bottom two photos). The Ca and Ti corresponding places are shown in the
red circle marks.

2.2. Radical Measurement by Adding Green Tuff and Calcined Powder

A general scheme for the production of reactive oxygen species where oxygen is acting as the
electron acceptor and water or hydroxyl ions act as the electron donor is shown in Figure 6 [20]. Here,
TiO2 is the semiconductor. The valence band hole may have an electrochemical reduction potential
positive enough to oxidize water for hydroxyl radical production and the conduction band should
be negative enough to reduce molecular oxygen for production the superoxide anion radical. The
oxygen and water (as a moisture) on the TiO2 in tuff powder may cause the above reaction and a
mixture of reactive oxygen species (ROS) has a possibility of killing the fungi on the banana leaves. The
mechanism of photocatalytic inactivation of microorganisms is reviewed by Byrne et al. [20]. If TiO2

on zeolite in green tuff and calcined ones is a photocatalyst, the hydrogen peroxide can be produced in
the following equation as positive hole h+ [15,21].

H2O + 2 h+
→ 1/2O2 + 2H+ (1)

O2 + 2H+ + 2e−→ H2O2 (2)

By irradiating UV light, H2O2 produces the hydroxyl radical (·OH) in the following equation [22].
Here, h is Planck’s constant and ν is light frequency

H2O2 + hν = 2 ·OH. (3)

Instead of the production radical, in this experiment the reaction of the already prepared oxygen
species (H2O2, OH, O2

−) in water by adding green tuff and calcined powders are investigated. The
effect of pH on the calcined temperature of green tuff by dispersing 1 wt% of powder in water is shown
in Figure 7. The green tuff powder calcined at around 800 ◦C shows higher pH compared with the
original green tuff one, while the higher than 1100 ◦C calcined tuff powder suspension shows lower
pH. As shown in Figure 2 the CaO (small peaks) is observed from 600 ◦C to 800 ◦C and that dissolved is
responsible for increasing the pH. The pH increase by calcination is similar to the calcined dolomite [23].
The hydrogen peroxide is unstable at higher pH [17], it means that the alkaline solution can decompose
it, and it is noteworthy that the 800 ◦C calcined green tuff has a large decomposition ability.
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Figure 7. Effect of pH on the calcined temperature of green tuff by dispersing 1wt% of powder in water.

ESR spectra with or without UV illuminated for hydrogen peroxide solution (0.1 w/v%) for
as-received green tuff as well as 800 ◦C calcined green tuff is shown in Figure 8. Only H2O2 solution
does not produce a hydroxyl radical, however, the 800 ◦C calcined tuff powder addition produces
the hydroxyl radical without UV irradiation. Under UV, both solutions showed the hydroxyl radical
peaks largely, while by the addition of calcined powder, the hydroxyl radical peak is smaller than only
the H2O2 solution. H2O2 decomposition to hydroxyl radical has already started with the addition
of powder.
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ESR spectra in superoxide solution, 800 ◦C calcined green tuff, and no additive of powder as
background are shown in Figure 9. The additives of calcined powder decrease the superoxide anion
compared with no additive powder background with no UV. The additives of 800 ◦C calcined green
tuff powder can react faster with the produced H2O2 and superoxide anion. The produced hydroxyl
radical on the 800 ◦C calcined tuff might kill the fungus on the banana trees by photocatalysis.
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2.3. Result of Infected Banana Trees after about One Month

The infected banana tree after being sprayed 10 times for about one month is shown in Figure 10.
The brown color suspension spray containing 800 ◦C calcined tuff powder showed better leaf growth
than the green color suspension spray containing as-received original green tuff spray. The fungus
Fusarium oxysporum f. sp. cubense (Foc) on the petiole of the leaf blade, throat of the plant, and leaf
sheaths in Figure 12 might have been killed by photocatalysis of 800 ◦C calcined brown tuff powder.
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The green tuff powder is collected from the Towada stone cutting place in the quarry to produce
the architectural materials for walls and flat floor tiles in Odate city in Akita Prefecture, Japan. The
composition of the green tuff cutting waste powder less than −100 mesh in size is listed in Table 2.
The composition was analyzed by X-ray fluorescence spectroscope (XRF). It was found that the iron
oxide is mainly ferrous. The main composition minerals are albite (NaAlSi3O8) 35%, quartz 25%,
chlorite (Mg,Fe,Al)6(Si,Al)4O10(OH)8 7% and zeolite (stilbite 3% and laumontite 2%), identified by
X-ray diffraction (XRD) and the average density is 2.1 g/cm [4]. The zero point of charge (pHpzc) is
about pH 2.5 [5]. Next, the green tuff powder was calcined at 200 ◦C to 1200 ◦C for 30 min and the
calcined powder was kept dry. The shape and elemental distribution of the green tuff powder and the
calcined powder were investigated by SEM and Energy Dispersive X-ray Spectroscopy (EDS).

Table 2. Chemical and mineral composition of green tuff powder [4].
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3.2. Radical Measurement by Electron Spin Resonance (ESR)

The effects of a green tuff powder addition into hydroxyl radical and superoxide radical solutions
were investigated using ESR. A JEOL JES-TE25X ESR spectrometer was used and typical ESR
measurement conditions were as follows: microwave power, 4 mW; microwave frequency, 9.2 GHz;
magnetic field, 328.0 mT; field sweep width, ±7.5 mT; field modulation, 0.16 mT; sweep time, 1 min;
0.003663 mT/Point, 4096 points in total. The measurements were performed at room temperature. To
investigate the effect of the radicals, 2% w/v green tuff powder was mixed in two kinds of solution.
One contained 0.1% w/t hydrogen peroxide aqueous solution to produce the hydroxyl radical with
ultraviolet light (UV) as well as without UV. The other solution was a hypoxanthine/xanthine oxidase
(HX/XO) system solution to produce the superoxide radical (mixture of 1.8 vol% of 10.97 units/mL
XO and 10 vol% of 20 mM HX). In this study, a novel radical trapper, G-CYPMPO [24], was used for
trapping the free radicals.

3.3. Fusarium Wilt and Experimental Method in a Banana Plants in Luzon Island, Philippines

Banana production is seriously threatened by Fusarium wilt, a disease caused by the soil-borne
fungus Fusarium oxysporum f. sp. cubense (Foc). Foc TR4 has been restricted to the East and parts
of Southeast Asia for more than 20 years, but since 2010 the disease has spread westward into five
additional countries in Southeast and South Asia and at the transcontinental level into the Middle
East and Africa (Mozambique) [25]. Nowadays, the most common banana subgroup is the Cavendish,
which makes up most of the global market. There are large banana plantations in Mindanao Island,
Philippines, as well Fusarium wilt problems.

Fusarium wilt is considered as one of the most important and destructive diseases in banana crops
worldwide. Also of concern is the spread of another fungal disease, black Sigatoka, whose spores
travel through the air, causing infecting plants and reducing fruit yields. Climate change also assists in
the spread of this fungus. The uptick in weather conditions favorable to black Sigatoka has boosted
the risk of infection by almost 50% since 1960 in some parts of the world [26]. The spread of Foc TR4 is
of great concern due to the limited knowledge about key aspects of the disease epidemiology and the
lack of effective management models, including resistant varieties and soil management approaches.
The infection process, plant–pathogen interaction, and disease developments have been reported by
Dita et al. that shows the lifecycle of Fusarium oxysporum f. sp. clubense (Foc) in bananas [25]. An
actinobacteria strain (named SCA3-4) was screened against Fusarium oxysporum f. sp. cubense, Tropical
race 4 (Foc TR4, ATCC 76255) [27] and a photograph of the mycelium of the actinobacteria strain is
shown in Figure 11. The spherical spore size is about 1 µm and strain width ranged from 0.2 to 0.5 µm.
Fusarium wilt will not grow in a pore size smaller than 100 nm.
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The banana plants were dissected in two places as shown in Figure 12; first directly under the
throat (Figure 12, zone D), and second, at the soil level (Figure 12, zone F) approximately 2 cm above
the rhizome [28]. Within the non-senescing leaf sheaths, the migration of Foc was confined to the
xylem vessels and hyphal growth was apparent on the outer surface of senescing leaf sheaths. In this
experiment, the green tuff suspension and 800 ◦C calcined tuff suspension were sprayed in the throat of
the plant (D) and leaf sheaths (E) as in Figure 13 for killing the fungus. The suspensions were prepared
as follows: 1 wt% of −100-mesh size green tuff powder and calcined powder at 800 ◦C for 30 min were
mixed well with water and kept in the vessel. Before the suspension was sprayed on the banana trees,
it was well-agitated and then sprayed on the infected banana trees (500 cc per one time). The spraying
times are shown in Figure 13. The experimental place was Barangay Hoyo, Silang, Cavite, Philippines.
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dispersing as-received green tuff powder in water and brown color suspension dispersing 800 ◦C 30
min calcined green tuff powder).

4. Conclusions

The wasted green tuff powder produced by cutting Towada stone was analyzed and utilized to kill
the fungus on the banana trees on a Philippine farm. The fine TiO2 that exists on zeolite in green tuff

powder was treated with the calcined powder, which is considered to be a natural photocatalyst. The
800 ◦C calcined green tuff powder decomposed hydrogen peroxide and superoxide anions. The brown
color suspension spray containing 800 ◦C calcined tuff powder showed better leaf growth than the
green color suspension spray containing as-received green tuff spray after 10 spray times for about one
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month. The fungus Fusarium oxysporum f. sp. cubense (Foc) on the petiole of the leaf blade, throat of the
plant, and leaf sheaths might have been killed by photocatalysis of 800 ◦C calcined brown tuff powder.
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