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Abstract: Biomass conversion via pyrolysis has been regarded as a promising solution for bio-oil
production. Compared to fossil fuels, however, the pyrolysis bio-oils from biomass are corrosive and
unstable due to relatively high oxygen content. Thus, an upgrading of bio-oil is required to reduce
O component while improving stability in order to use it directly as fuel sources or in industrial
processes for synthesizing chemicals. The catalytic hydrodeoxygenation (HDO) is considered as one
of the promising methods for upgrading pyrolysis bio-oil. In this research, the HDO was studied
for various catalysts (HZSM-5, metal, and metal-phosphide catalysts) to improve the quality of
bio-oil produced by fast pyrolysis of Saccharina japonica (SJ) in a fluidized-bed reactor. The HDO
processing was carried out in an autoclave at 350 ◦C and different initial pressures (3, 6, and 15 bar).
During HDO, the oxygen species in the bio-oil was removed primarily via formation of CO2 and H2O.
Among the gases produced through HDO, CO2 was observed to be most abundant. The C/O ratio of
produced bio-oil increased when CoMoP/γ-Al2O3, Co/γ-Al2O3, Fe/γ-Al2O3, or HZSM-5 was used.
The Co/γ-Al2O3 resulted in higher HDO performance than other catalysts. The bio-oil upgraded with
Co/γ-Al2O3 showed high HHV (34.41 MJ/kg). With the use of catalysts, the kerosene-diesel fraction
(carbon number C12–C14) was increased from 36.17 to 38.62–48.92 wt.%.

Keywords: S. japonica alga; fast pyrolysis; upgrading bio-oil; catalytic hydrodeoxygenation; autoclave

1. Introduction

Biomass has attracted considerable attention as an alternative energy resource to replace
nonrenewable fossil fuels. Biomass feedstocks including agricultural residues [1], forestry waste [2,3],
plastic [4], aquatic plant [5,6], and sewage sludge [7], are inexpensive and can be further utilized to
produce a variety of valuable chemicals and biomaterials as well as energy [5,8]. Among the various
resources for renewable energy, macroalgae offers great promise as feedstock for biofuel production due
to its higher growth rate even in wastewater and seawater, higher yield, and shorter harvesting cycle,
compared to terrestrial biomass. Thermal conversion via pyrolysis has received a lot of attention as
a promising technique to produce biofuel from macroalgae. Kim et al. [9,10] investigated the pyrolysis
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characteristics and kinetics of Saccharina japonica (SJ) alga and Sargassum sp. and found that the bio-oil
produced at optimum conditions showed a higher heating value (HHV) of 31.9 MJ/kg and an O/C
molar ratio of 0.16. Ly et al. [5] produced bio-oils with HHVs in the range of 24.75–28.72 MJ/kg by fast
pyrolysis of SJ. By pretreating Enteromorpha clathrata alga with diluted HCl, Cao et al. [11] enhanced
the yield of the bio-oil by 9.6%.

However, pyrolytic bio-oils contain a lot of oxygen-containing compounds, leading to a decrease
in the bio-oil quality [3,12]. For this reason, in order for bio-oil to be directly used as transportation
or boiler fuel, an upgrading process to lower the oxygen content in bio-oil is required. Catalytic
pyrolysis is known as one of the most promising methods for upgrading bio-oil. In the presence of
catalyst, the O-species in the bio-oils are released as forms of CO2, CO, and/or H2O, or converted
directly to hydrocarbons at atmospheric pressure, resulting in improvement of bio-oil quality [12].
Ly et al. [3] also studied the catalytic pyrolysis of tulip tree (Liriodendron) in a fluidized-bed reactor
with dolomite catalyst. They reported that oxygen content in the bio-oil was mostly removed as water
via dehydration. In addition, gaseous products released together were found to have a high H2/CO
ratio. The effect of HZSM-5 as a catalyst on the composition of pyrolyzed bio-oil from microalgae with
high contents of nitrogen and oxygen was investigated by Lorenzetti et al. [13]. They found that the
upgraded bio-oil contained high amounts of aromatic hydrocarbon, while contents of oxygen and
nitrogen were relatively small. The catalytic deoxygenation over hydrotreating, known as catalytic
hydrodeoxygenation (HDO), has been accepted as a potential method for efficient removal of oxygen
in bio-oil. Due to high catalytic activity along with inexpensive material cost, alumina, zeolites,
silica, and activated carbon have been commonly employed as supports for various HDO catalysts.
Selecting 2-furyl methyl ketone (FMK) as a model compound, Ly et al. [14] obtained relatively high
conversion (>83%) of FMK with Ni-based catalysts (Ni/γ-Al2O3). They also found that HDO was
enhanced by addition of phosphorous, which influences the structural properties of active phase [14].
In particular, transition metal phosphide catalysts have been reported to show excellent activities on
HDO [14–16]. The HDO processes with supported-metallic catalysts were investigated to upgrade
pyrolytic bio-oils [17,18]. Cheng et al. [18] studied the HDO of bio-oil from pine sawdust with
Fe-Co/SiO2 catalysts and found that the bimetallic Fe-Co/SiO2 catalysts (Fe/Co ratio of 1:1) showed
better performance, as compared to monometallic catalysts (e.g., Fe/SiO2 and Co/SiO2).

In the present study, different catalysts including HZSM-5, metal (Fe and Co), and metal
phosphide (Fe2P, CoP, and CoMoP) supported on γ-Al2O3 were examined for upgrading bio-oil
obtained by pyrolysis of SJ. In addition, the feasibility of applying inexpensive catalysts to HDO
processes was investigated, by testing in an autoclave at 350 ◦C and pressure varying from 3 to
15 bar. Finally, the compositions of the products and the catalysts were systematically analyzed using
various techniques.

2. Results and Discussion

2.1. Catalysts and Sample Characterization

The X-ray diffractogram of catalysts was reported in Figure 1. The peaks at 2θ = 31.93◦, 37.67◦,
45.78◦, and 66.35◦ were associated with γ-Al2O3 support. Two main peaks for HZSM-5 were displayed
at 22.86◦ and 23.89◦ [19]. The peaks related to Fe phase in 10 wt.% Fe/γ-Al2O3 catalyst were observed
at 2θ = 44.64◦ and 65.05◦. The peaks of Fe3O4 appeared at 2θ values of 18.77◦, 35.87◦, 57.64◦, and
62.91◦. This result indicates that the Fe2O3 phase was transformed into Fe3O4 phase and further to
Fe metallic phase. The peak corresponding to Fe2P could be observed at 38.4◦. In the XRD patterns
for Co-containing catalysts, the peaks of CoP phase appeared at 2θ = 31,62◦, 35.23◦, 40.12◦, 48.19◦,
and 56.69◦, Co at 42.39◦, 51.24◦, 54.01◦, and 75.45◦, and the peaks of spinel Co3O4 at 31.89◦, 37.02◦,
59.64◦, and 65.86◦. The peaks 25.94◦, 36.98◦, and 69.88◦ were attributed to MoO2, while the signals at
28.03◦, 32.28◦, and 43.20◦ for the spinel MoP. These XRD results were consistent with those reported in
previous studies [14–16].
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Figure 1. XRD patterns of (a) HZSM-5 and γ-Al2O3-supported catalyst with (b) 10 wt.% Co, (c) 10 wt.%
CoP, (d) 10 wt.% CoMoP, (e) 10 wt.% Fe, and (f) 10 wt.% Fe2P.

The BET surface area (SBET), the pore volume, and the average pore size of HZSM-5 were
determined to be 132.49 m2/g, 0.14 cm3/g, and 6.70 nm, respectively. As presented in Table 1,
the prepared catalysts (Co, CoP, Fe, Fe2P, and CoMoP on γ-Al2O3) showed the textual properties with
specific surface area ranging from 184.82 to 211.08 m2/g, the pore volume 0.40–0.43 cm3/g, and the
average pore size 7.05–8.09 nm. As reported in our prior study [9], the moisture and ash contents of SJ
sample were 6.90 wt.% and 20.21 wt.%, respectively. Table 2 shows the characteristics of SJ and SJO.
As shown in Table 2, the HHV of SJO was determined to be 26.10 MJ/kg, which was higher than that of
woody biomass such as tulip tree (18.87 MJ/kg) [3] and Pinyon pine (18.94 MJ/kg) [2].

Table 1. Pore structure data of different catalysts.

Catalyst Calcination
Temperature (◦C)

Surface Area
(m2/g)

Pore Volume
(cm3/g)

Average Pore Size
(nm)

HZSM-5 550 132.49 0.04 6.7
10 wt.% Co/γ-Al2O3 600 184.82 0.40 7.79
10 wt.% Fe/γ-Al2O3 600 203.71 0.43 8.09

10 wt.% CoP/γ-Al2O3 600 209.87 0.43 7.05
10 wt.% Fe2P/γ-Al2O3 600 204.72 0.41 7.67

10 wt.% CoMoP/γ-Al2O3 600 211.08 0.42 7.56
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Table 2. Characteristics of Saccharina japonica (SJ) and raw Saccharina japonica bio-oil (SJO).

Proximate
Analysis (wt.%) Moisture a Ash b Volatile

Matter c
Fixed

Carbon c

Elemental Analysis d (wt.%) HHV
(MJ/kg)C H N O e

S.J [9] 6.90 20.21 68.79 4.10 32.89 6.17 0.93 60.01 12.11
Raw SJO 2.14 - - - 61.96 8.02 2.21 27.81 27.45

a ASTM E1756, Standard test method for the determination of the total solids of biomass. b ASTM E1755, Standard
test method for determination of ash content of biomass. c Calculating based on sample after drying. d On dry, ash
free basis (for biomass material). e By difference.

2.2. Thermogravimetric Analysis of Biomass Samples

The thermogravimetric analysis (TGA) combined with differential thermogravimetric analysis
(DTG) is a high-precision technique to understand the characteristic of thermal decomposition of
solid materials. The TGA enables to monitor the degree of conversion with temperature, while the
differential rate of conversion (dX/dt) vs. temperature is expressed by DTG. Both TGA and DTG curves
for original SJ and SJO at a heating rate of 20 ◦C/min are illustrated in Figure 2. Starting at −40 ◦C,
most of SJO conversion was obtained below 500 ◦C, which is ascribed to the decomposition of organic
components in the SJO. According to the simulated distillation by TGA [3,12,20], this decomposition
temperature range (40–500 ◦C) corresponded to the boiling point of the organic products with carbon
numbers from C5 to C38. It is also noteworthy that 80% of SJO was recovered within 350 ◦C, and the
maximum differential rate of conversion was observed at 200.43 ◦C in the DTG curve (b).Catalysts 2019, 9, x FOR PEER REVIEW 5 of 17 
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Figure 2. TGA and differential thermogravimetric analysis (DTG) of weight loss curves at a heating
rate of 20 ◦C/min: (a) Saccharina japonica (SJ) macroalgae and (b) Saccharina japonica bio-oil (SJO).
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2.3. Effect of Reaction Conditions on Product Distribution

The effect of initial pressure on the HDO of SJO was investigated. With increasing reactor pressure,
the gas yield decreased, while the liquid yield increased. It is likely because increased pressure
results in the suppression of volatiles. The moisture content in the oil decreased with increasing
reaction pressure, whereas the content of organic matter increased. The HHV of the bio-oil was in the
range of 33.09–33.99 MJ/kg, which was little influenced by the pressure. As compared to raw bio-oil,
however, the HHV of the bio-oil upgraded by HDO increased because oxygen species are reduced
via dehydration, decarboxylation, and decarbonylation. The HHV of the upgraded bio-oils was
higher than that of pyrolysis bio-oils from biomass such as tulip tree (24.37 MJ/kg) [3] and S. japonica
(26.1–28.27 MJ/kg) [9].

The effect of catalysts on the HDO of SJO was also investigated for HZSM-5 and various catalysts
with 10 wt.% metal loading at 350 ◦C and the initial pressure of 15 bar. As shown in Table 3, the product
distributions were different for the catalysts tested, which were likely due to different reaction pathways.
When HDO of SJO was conducted without catalyst, the liquid yield decreased, whereas the gas yield
increased, compared to catalytic HDO. The maximum liquid yield was 78.60 wt.%, observed for
HZSM-5. The highest value of gas yield was 15.21 wt.%, achieved by HDO using Co/Al2O3. As a result,
the addition of metal on γ-Al2O3 support (Co/γ-Al2O3 and Fe/γ-Al2O3) decreased the liquid and
char yields, while the gas yield was increased. This might be due to the catalytic cracking reaction,
which produced lower molecular weight compounds and non-condensable gas, followed by a series
of deoxygenation reactions [12]. When HZSM-5 was applied, the liquid yield was decreased, but
the char yield was increased, compared to HDO in the absence of the catalyst. An increase in the
char yield might be due to the formation of coke on the surface of HZSM-5 by repolymerization and
aromatization of aromatic compounds in liquid products [12].

When phosphorus was added into the metal catalysts, however, significant changes in the solid
yield were observed. The solid yield of P-containing catalysts was higher than those of the P-free
counterpart. The solid yields for Co/γ-Al2O3 and Fe/γ-Al2O3 were determined to be 15.21% and
14.39%, respectively. On the other hand, they were decreased to 8.8% and 7.92% with an addition
of phosphorus (CoP/γ-Al2O3 and Fe2P/γ-Al2O3). This might be because the addition of phosphorus
enhanced the acidity of catalyst, leading to the decrease of solid yield on active sites of catalysts.
The HHVs of bio-oils through HDO were determined to be 34.41 MJ/kg (Co/γ-Al2O3) and 34.28 MJ/kg
(Fe/γ-Al2O3), while for phosphide catalysts in the range of 28.87–33.94 MJ/kg.
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Table 3. Product distribution of Saccharina japonica bio-oil for different conditions in an autoclave reactor at reaction time of 60 min.

Reaction Conditions 350 ◦C,
3 Bar

350 ◦C,
6 Bar

350 ◦C,
15 Bar

350 ◦C,
15 Bar,

HZSM-5

350 ◦C,
15 Bar,

Co/γ-Al2O3

350 ◦C,
15 Bar,

Fe/γ-Al2O3

350 ◦C,
15 Bar,

CoP/γ-Al2O3

350 ◦C,
15 Bar,

Fe2P/γ-Al2O3

350 ◦C,
15 Bar,

CoMoP/γ-Al2O3

Product Yield
(wt.%)

Liquid 77.24 ± 0.21 78.09 ± 0.18 80.17 ± 0.08 78.60 ± 0.11 74.28 ± 0.20 73.63 ± 0.16 75.14 ± 0.11 72.76 ± 0.07 68.58 ± 0.16
Moisture 19.87 ± 0.08 17.61 ± 0.10 11.52 ± 0.05 19.57 ± 0.19 22.39 ± 0.22 17.89 ± 0.13 17.33 ± 0.09 21.22 ± 0.10 31.97 ± 0.25
Organic 80.13 ± 0.08 82.39 ± 0.10 88.48 ± 0.05 80.43 ± 0.19 77.61 ± 0.22 82.11 ± 0.13 82.67 ± 0.09 78.78 ± 0.10 68.03 ± 0.25

Solid 13.93 ± 0.28 13.87 ± 0.14 13.29 ± 0.15 14.97 ± 0.28 10.51 ± 0.37 11.98 ± 0.27 16.06 ± 0.18 19.42 ± 0.26 25.23 ± 0.40
Gas 8.83 ± 0.07 8.04 ± 0.31 6.54 ± 0.22 6.43 ± 0.17 15.21 ± 0.18 14.39 ± 0.42 8.8 ± 0.30 7.82 ± 0.20 6.19 ± 0.23

Elemental
Analysis (wt.%)

C 72.44 71.46 72.60 73.16 73.39 73.42 70.16 63.83 72.48
H 8.46 8.39 8.59 8.38 8.54 8.42 8.43 8.22 8.58
N 3.21 3.27 3.37 3.19 3.44 3.62 3.07 2.97 3.03
O 15.89 16.88 15.44 15.26 14.63 14.54 18.34 24.98 15.91

HHV (MJ/kg) 33.74 33.09 33.99 33.99 34.41 34.28 32.51 28.87 33.94

Gas Selectivity
(mol%)

CH4 7.61 8.25 10.32 9.05 10.24 12.05 9.27 5.22 5.17
C2H4 0.76 0.82 1.05 1.02 0.62 0.64 0.82 0.77 0.97
C2H6 1.69 1.75 2.10 2.08 1.79 1.77 1.43 1.35 1.10
C3H6 1.46 1.54 1.92 1.95 2.05 1.85 1.02 1.38 0.97
C3H8 0.54 0.56 0.62 0.83 0.87 0.60 0.37 0.47 0.29
CO 0.18 0.49 1.67 0.83 0.72 0.90 1.36 0.17 1.83
CO2 87.76 86.59 82.32 84.24 83.71 82.19 85.73 90.64 89.67
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2.4. Compositions of Gas Product

Table 3 also shows gaseous product distributions by non-catalytic and catalytic HDO of SJO.
The gas compositions mostly consisted of CO, CO2, CH4, and other hydrocarbon gases and varied
depending on the reaction conditions. The CH4 was formed by cracking and hydrocracking of alkyl
groups during the upgrading process. Without a catalyst, CH4 content in gas products increased from
7.61 to 10.32 mol% with increasing pressure from 3 to 15 bar. This was probably due to the increase in
the demethylation reaction rate. The demethylation was favored in HDO with Co/γ-Al2O3 (10.24 mol%)
and Fe/γ-Al2O3 (12.05 mol%) catalysts. In this study, CO2 was identified as a major component among
produced gases (82.19–90.64 mol%), indicating that the organic compounds in raw SJO underwent
decarboxylation [12]. For the HDO with catalysts, on the other hand, the decarboxylation reaction
was more predominant than decarbonylation. Particularly for Fe2P/γ-Al2O3 and CoMoP/γ-Al2O3

catalysts, high selectivity to carbon dioxide was observed, which is likely to be attributed to promoted
dehydration and decarboxylation by addition of phosphorus [21,22].

2.5. Bio-Oil Analysis

The atomic C/O ratio of bio-oils obtained by HDO was calculated based on the result of the elemental
analysis of the bio-oil. By performing catalytic HDO, the C/O ratio of bio-oil increased from 4.12
(without catalyst) to 4.75 (HZSM-5), 6.34 (Co/γ-Al2O3), 5.67 (Fe/γ-Al2O3), and 6.75 (CoMoP/γ-Al2O3),
while decreasing to 3.77 and 3.71 for CoP/Al2O3 and Fe2P/γ-Al2O3, respectively. The decrease in O
content after HDO reaction was due to the removal of oxygenates from the gas (CO, CO2) or H2O
via deoxygenation and dehydration reactions. The carbon and oxygen balances of the reactant and
products were shown in Table 4.

Table 4. Carbon and oxygen balance of the reactant and product during HDO reaction.

Reaction
Conditions

350 ◦C,
3 Bar

350 ◦C,
6 Bar

350 ◦C,
15 Bar

350 ◦C,
15 Bar,

HZSM-5

350 ◦C,
15 Bar,

Co/γ-Al2O3

350 ◦C,
15 Bar,

Fe/γ-Al2O3

350 ◦C,
15 Bar,

CoP/γ-Al2O3

350 ◦C,
15 Bar,

Fe2P/γ-Al2O3

350 ◦C,
15 Bar,

CoMoP/γ-Al2O3

Gas
Product (g)

C 0.31 0.27 0.23 0.22 0.64 0.88 0.3 0.4 0.21
O 0.54 0.51 0.45 0.41 0.63 0.91 0.51 0.43 0.33

Char
Product (g)

C 1.344 1.261 1.115 1.261 1.053 1.011 1.471 1.86 2.013
O 0.06 0.09 0.49 0.16 0.11 0.09 0.1 0.08 0.06

Moisture
Phase (g)

C 0.05 0.05 0.05 0.04 0.06 0.09 0.05 0.04 0.03
O 1.36 1.22 0.82 1.37 1.48 1.17 1.16 1.37 1.95

Organic
Phase (g)

C 4.43 4.55 4.74 4.60 4.39 4.19 4.31 3.82 3.86
O 0.95 1.09 1.15 0.97 0.69 0.74 1.14 1.03 0.57

C/O Ratio 4.68 4.18 4.12 4.75 6.34 5.67 3.77 3.71 6.75

The pyrolysis bio-oil is known as a complex mixture consisting of hundreds of components with
a wide range of molecular weight. Table 5 shows the GC–MS analysis data of the bio-oils produced by
HDO reaction at 15 bar and 350 ◦C with/without catalysts (based on peak area %). The bio-oil mainly
contained components such as fatty acids, dianhydromannitol, isosorbide, 2-furyl methyl ketone
(2-FMK), and derivatives of ketones. It can be observed that HZSM-5 was effective in the conversion of
dianhydromannitol and isosorbide and the production of aromatic compounds such as derivatives
of pyrazine, pyridinamine, and indole. This result was in good agreement with other literature [12].
An increase in the alkane selectivity, resulting in a decrease in the selectivity to fatty acids, might
be explained by decarboxylation of fatty acids by catalytic activity of metal catalysts (Fe/Al2O3 and
Fe2P/Al2O3) [23]. As shown in Table 4, the selectivity of ketone derivatives in the produced bio-oils
after HDO, especially 2-FMK, was found to be lower than that of raw SJO. This result was also in good
agreement with our previous study on HDO of bio-oil model compounds [14–16].
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Table 5. Compounds identified by gas chromatograph/mass spectrometry (GC–MS) of bio-oil produced from HDO of Saccharina japonica bio-oil in an autoclave at
350 ◦C under pressure of 15 bar using various catalysts (results are based on peak area %).

Composition of Bio-Oil Bio-Oil at 450 ◦C
4.0 × Umf

w/o
Catalyst

Catalysts
Structure

HZSM-5 Co/γ-Al2O3 CoP/γ-Al2O3 CoMoP/γ-Al2O3 Fe/γ-Al2O3 Fe2P/γ-Al2O3

2-methyl-2-cyclopenten-1-one 1.84 0.41 0.49 0.61 2.14 2.41 2.44
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Table 5. Cont.

Composition of Bio-Oil Bio-Oil at 450 ◦C
4.0 × Umf
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Catalyst

Catalysts
Structure

HZSM-5 Co/γ-Al2O3 CoP/γ-Al2O3 CoMoP/γ-Al2O3 Fe/γ-Al2O3 Fe2P/γ-Al2O3

2,3-Dimethyl-5-ethyl-Pyrazine 1.95 1.89 1.76
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Table 5. Cont.

Composition of Bio-Oil Bio-Oil at 450 ◦C
4.0 × Umf

w/o
Catalyst

Catalysts
Structure

HZSM-5 Co/γ-Al2O3 CoP/γ-Al2O3 CoMoP/γ-Al2O3 Fe/γ-Al2O3 Fe2P/γ-Al2O3

3,7,11,15-tetramethyl-2-Hexadecene 1.2 2.49 4.99 1.65 2.72
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The simulated distillation using TGA, which is based on the boiling point of a carbonaceous liquid,
has been conducted for the SJ bio-oil [3,12]. As shown in Figure 3, the carbon number distribution of
bio-oil could be classified into three groups such as C5–C11, C12–C18, and C20–C38, corresponding to
gasoline, kerosene-diesel, and heavy oil fractions, respectively. The distribution of these fractions in
the SJO (without catalyst) was 36.24 (C5–C11), 36.17 (C12–C18), and 27.38 wt.% (C20–C38), respectively.
However, there were significant changes in the carbon number distribution for the bio-oils by catalytic
HDO. The fractions of C5–C11, C12–C18, and C20–C38 for bio-oil (organic phase) upgraded by HDO
were in the range of 30.7–44.81, 38.62–48.92, and 14.16–28.64 wt.%, respectively.
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Figure 3. Carbon number distribution of bio-oil produced from HDO of Saccharina japonica bio-oil in an
autoclave at 350 ◦C under pressure of 15 bar using different catalysts.
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3. Material and Methods

3.1. Sample and Catalysts Preparation

The SJ biomass used in this study was provided by the Cleaner Production Institute of Pukyong
National University. The samples were subjected to drying at 105 ◦C overnight to achieve equilibrium
moisture before the experiments. The bio-oils (organic phase) were obtained by fast pyrolysis at 450 ◦C
and the HDO was proceeded at the fluidization velocity of 4.0 × Umf.

Following the ASTM standard method (ASTM E 1756-1 and ASTM E 1755-01), the ultimate and
proximate analyses of biomass samples and bio-oil were conducted. The thermal decomposition of the
bio-oil was analyzed using thermogravimetric analyzer (TGA N-1000, SINCO) under a nitrogen flow
rate of 20 mL/min, from room temperature up to 700 ◦C at a heating rate 10 ◦C/min.

All catalysts tested in this study were ground and sieved to 80–100 mesh (150–180 µm).
The commercial HZSM-5 catalyst was provided by Hyundai Petroleum Chem. Co. (South Korea)
and was calcined at 550 ◦C for 5 h before use [24–28]. Alumina-supported monometallic (Co/γ-Al2O3

and Fe/γ-Al2O3) and metal phosphorus (Co/γ-Al2O3 and Fe/γ-Al2O3) catalysts were synthesized by
impregnation method with 10 wt.% metal loading and a molar ratio of phosphorus (P) to metal (M) 1:1.
Before the catalysts were used in the HDO process, they were calcined at 600 ◦C for 3 h and were further
treated in the H2 environment at atmospheric pressure to reduce metal oxides or metal/metal-oxide
phosphate to metal or metal phosphide, respectively. More details on catalysts preparation procedure
and characterization methods are described in our prior work [15,16]. The specific surface area of the
catalyst was determined using the multipoint Brunauer–Emmett–Teller (BET). Powder X-ray diffraction
(XRD, MAC-18XHF, Rigaku, Japan) was also employed to understand the crystallographic structure of
the catalysts.

3.2. Experimental Setup and Analytical Method

Upgrading of Saccharina japonica bio-oil (SJO) was carried out in an autoclave reactor. As shown in
Figure 4, the system consists of a salt bath, a temperature controller, a mechanical stirrer, and a reactor
with an inner volume of 100 mL. A molten salt mixture as heat transfer fluid was prepared from
a eutectic salt of KNO3 (59 wt.%) and Ca(NO3)2 (41 wt.%) [6,10]. The experiments were conducted at
a fixed temperature of 350 ◦C under different initial pressures from 3 to 15 bar using hydrogen. With
the autoclave submerged in the molten salt bath, a ratio of catalyst to bio-oil of 1:10 (i.e., 1 g of catalyst
with 10 g bio-oil sample) was used in the catalytic experiments. The residence time of the reactant in
the salt bath was 60 min for each condition. After each run, the reactor was removed from the bath and
cooled to room temperature.

The samples after HDO were collected to calculate product yields by determining the ratio of mass
of the product to that of the biomass fed to the system. The gas yield was determined by measuring the
difference in the weight of the reactor before and after the reaction. To calculate the solid and liquid
yields, liquid and solid products were first separated by solvent extraction with acetone using a micro
filter paper (pore size: 0.45 µm). Then, the solid yield was calculated by weighing the solid and filter
after drying, while the liquid yield was given by difference. For all the calculations presented, each
data point was an average of more than two experiments.

The elemental compositions of the upgraded bio-oils were characterized by Flash EA1112,
CE Instrument [3,9,10]. The moisture content was measured by a Karl-Fischer (CA-200, Mitsubishi,
Seoul, South Korea). The gas compositions were identified by the gas chromatography (YL 6500GC)
equipped with dual detectors, a flame ionization detector (FID) using Porapak N column to identify
hydrocarbon gases (C1–C4) and a thermal conductivity detector (TCD) using a Molecular sieve 13X
column for H2, CO, CO2, and CH4. The FID was operated at 250 ◦C, using high-purity nitrogen
(99.999%) as a carrier gas with flow rate 20 mL/min, while the TCD detector was held constant at 150 ◦C
with a constant flow rate (20 mL/min) of argon (99.999% purity) as a carrier gas. Using helium carrier gas
with a constant flow rate of 1.0 mL/min, a gas chromatograph/mass spectrometry (GC/MS, 7890A/5975C,
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Agilent, Seoul, South Korea) with a capillary column of HP-5MS (30 m × 0.25 mm × 0.25 µm) was
applied to identify the compositions of bio-oils [3,5]. Starting at 40 ◦C, with a heating rate of 10 ◦C
/min, the oven temperature increased to 280 ◦C and was maintained for 10 min. The temperature of
injector was set constant at 280 ◦C and injection volume was 1 µL.
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(i.e., 1 g of catalyst with 10 g bio-oil sample) was used in the catalytic experiments. The residence 
time of the reactant in the salt bath was 60 min for each condition. After each run, the reactor was 
removed from the bath and cooled to room temperature. 
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Figure 4. Schematic diagram of experimental apparatus for hydrodeoxygenation (HDO) of Saccharina
japonica bio-oil.

4. Conclusions

The HDO process of Saccharina japonica bio-oil was systematically investigated in an autoclave
reactor. The HHVs of bio-oils upgraded by HDO were in the range of 33.74–33.99 MJ/kg in the absence
of a catalyst. Although the liquid yield decreased, however, the quality of bio-oil increased by using
metal catalysts in HDO of Saccharina japonica bio-oil. The HHVs of HDO bio-oils were increased to
34.41 MJ/kg by using Co/γ-Al2O3 catalyst but decreased with metal phosphide catalysts. The C/O
ratio of HDO bio-oil with CoMoP/γ-Al2O3, Co/γ-Al2O3, Fe/γ-Al2O3, and HZSM-5 were higher than
that of raw Saccharina japonica bio-oil and HDO bio-oil with CoP/γ-Al2O3 or Fe2P/γ-Al2O3 catalyst.
Metal phosphide catalysts were likely to promote the decarboxylation, while metal catalyst elevating
the demethylation reactions. The carbon number distribution of bio-oil was mainly distributed in
the range C5–C11 and C12–C18 fractions. Our results revealed the feasibility of upgrading SJO to
high-quality bio-oil using catalysts, and this upgraded bio-oil could be further used as a great source
for manufacturing alternative bio-fuels and/or valuable chemicals.
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