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Abstract: Platycodin D has diverse pharmacological activities. An efficient and economical mechanism
for obtaining platycosides (platycodin D in particular) would be very useful. Balloon flower leaf
extract (BFLE) was obtained by recycling leaves discarded from Platycodi radix production, as they
have a high platycoside E content. A recombinant β-glycosidase from Caldicellulosiruptor owensensis
was characterized and applied to BFLE for platycoside bioconversion. The enzyme specifically
hydrolyzed the glucose residue at the C-3 position in platycosides and was suitable for platycodin
D production. Under optimized reaction conditions, β-glycosidase from C. owensensis completely
converted platycoside E from BFLE into platycodin D with the highest concentration and productivity
reported so far. These results greatly improve the production process for deglycosylated platycosides.

Keywords: Caldicellulosiruptor owensensis; β-glycosidase; balloon flower leaf; platycoside;
platycodin D

1. Introduction

Balloon flower (Platycodon grandiflorum) has been known as a health food and a conventional
medicine for treating bronchitis, tuberculosis, asthma, diabetes and other inflammatory diseases in
Northeast Asia. Over the last decade, interest in platycosides, which are balloon flower saponins,
has increased because of their diverse pharmacological activities. Of these, platycodin D, a major
platycoside in the root of Platycodon grandiflorum (Platycodi radix), has shown diverse pharmaceutical
effects such as anti-tumor [1,2], anti-inflammatory [3,4], anti-allergy [5,6] and anti-obesity [7,8] activities.

Platycodin D is comprised of a pentacyclic triterpene aglycone and two-sided sugar components
that contain one glucose molecule at the C-3 and the oligosaccharide residue consisting of
arabinose-rhamnose-xylose-apiose at C-28. It can be converted by deglycosylation from platycoside E
and platycodin D3 (Figure 1), which account for about 20 and 3% of the total platycosides in Platycodi
radix and have two and one more glucose molecules at C-3, respectively [9].

Deglycosylation of saponins improves their biological activity because of their resulting smaller
molecular weight, better permeability through the cell membrane and higher bioavailability [10,11].
Therefore, various methods have been tried for saponin deglycosylation, among which, enzymatic
conversion displayed superior selectivity and the highest productivity. For platycoside deglycosylation,
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not onlyβ-glucosidases from Aspergillus usamii [12], Aspergillus niger [13], snailase [14], laminarinase [15],
and cellulase [16], but thermophile-derived recombinant enzymes such as β-glucosidases from
Caldicellulsiruptor bescii [17] and Dictyoglomus turgidum [18] have been used. Recombinant enzymes are
industrially useful due to the high enzyme expression rate; those derived from thermophiles have a
higher stability and activity that is advantageous for industrial production.

In this study, β-glycosidase from thermophilic bacterium Caldicellulosiruptor owensensis was cloned,
characterized, and applied to produce platycodin D. For the economical production of platycodin D,
balloon flower leaves discarded during Platycodi radix harvesting and containing a large amount
of platycoside E were used as a substrate. Reaction conditions for the production of platycodin D
from balloon flower leaf extract (BFLE) were optimized and, under these conditions, platycodin D was
produced from BFLE with the highest productivity to date.
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Figure 1. Deglycosylation pathway of platycoside E to platycodin D. Red represents the carbon number
in pentacyclic triterpene aglycone.

2. Results and Discussion

2.1. Cloning of Gene, Purification of Enzyme, and Determination of Molecular Mass

The C. owensensis β-glycosidase was expressed in Escherichia coli BL 21 with a soluble form. The
expressed β-glycosidase from C. owensensis was purified using HisTrap affinity chromatography
into a soluble protein with a 17-fold of purification and a final yield of 18%. The specific activity of
recombinant β-glycosidase from C. owensensis was 51.6 µmol/min/mg for pNP-β-d-glucopyranoside
from crude enzyme extract.

The molecular mass of a recombinant β-glycosidase was approximately 53 kDa in SDS-PAGE
(sodium dodecyl sulfate-polyacrylamide gel electrophoresis). The calculated molecular mass of
recombinant β-glycosidase was 54,018 Da based on 458 amino acids containing six histidine residues
(Figure 2a). The native β-glycosidase from C. owensensis was determined to be a homodimer with 106
kDa of molecular mass by gel-filtration chromatography (Figure 2b). No peak other than β-glycosidase
was detected in the chromatography (data not shown).
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Figure 2. SDS-PAGE and gel-filtration chromatography of β-glycosidase from C. owensensis. (a) 

Analysis of SDS-PAGE for β-glycosidase from C. owensensis. Lane 1, molecular weight size marker; 

lane 2, cellular debris; lane 3, crude enzyme extract; and lane 4, purified β-glycosidase from C. 

owensensis. (b) Determination of molecular mass for β-glycosidase from C. owensensis using 

gel-filtration chromatography. The reference proteins and purified β-glycosidase from C. owensensis 

are represented by filled circles and open circle, respectively. 
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Figure 2. SDS-PAGE and gel-filtration chromatography ofβ-glycosidase from C. owensensis. (a) Analysis
of SDS-PAGE for β-glycosidase from C. owensensis. Lane 1, molecular weight size marker; lane 2,
cellular debris; lane 3, crude enzyme extract; and lane 4, purified β-glycosidase from C. owensensis.
(b) Determination of molecular mass for β-glycosidase from C. owensensis using gel-filtration
chromatography. The reference proteins and purified β-glycosidase from C. owensensis are represented
by filled circles and open circle, respectively.

2.2. Hydrolytic Activity According to pH and Temperature Change

The recombinant β-glycosidase from C. owensensis showed maximum hydrolytic activity at pH
5.0 and 80 ◦C (Figure 3). Optimum pH and temperature of recombinant enzymes used for platycoside
deglycosylation, β-glucosidases from Caldicellulosiruptor bescii [17] and Dictyoglomus turgidum [18]
were pH 5.5 and 80 ◦C, and pH 6.5 and 80 ◦C, respectively.
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Figure 3. The activity of β-glycosidase from C. owensensis with changes in pH and temperature.
(a) Effect of pH. (b) Effect of temperature. Data are represented in the means of triplicate experiments,
and error bars are shown by the standard deviation.

The thermostability of β-glycosidase from C. owensensis was examined with the temperature
range of 70 to 90 ◦C. First-order kinetics was displayed for thermal inactivation by the enzyme and
the half-lives of β-glycosidase from C. owensensis were 107, 32, 12.5, 0.6 and 0.1 h at 70, 75, 80, 85
and 90 ◦C, respectively (Figure 4). Platycodin D-producing enzyme β-glucosidase from C. bescii
displayed half-lives of 96, 29, 6.2, 0.1 and 0.03 h at 70, 75, 80, 85 and 90 ◦C, respectively. β-Glycosidase
from C. owensensis had higher thermal stability than β-glucosidase from C. bescii across the board
and β-glycosidase from C. owensensis showed about 2-, 6- and 3-fold higher stability at 80, 85 and
90 ◦C, respectively.
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Figure 4. Thermal inactivation of β-glycosidase from C. owensensis. The enzyme was placed at 70
(closed triangle), 75 (open square), 80 (closed square), 85 (open circle) and 90 ◦C (closed circle) in 50 mM
CPB (pH 5.0) for different time periods and then withdrawn at each time. Data are represented as
means of triplicate experiments and the standard deviation was indicated by error bars.

2.3. Substrate Specificity

The substrate specificity of recombinant β-glycosidase from C. owensensis was measured
using aryl-glycosides and platycosides (Table 1). The enzyme showed the following specific
activity with aryl-glycosides as substrates: pNP-β-d-glucopyranoside > oNP-β-d-glucopyranoside
> pNP-β-d-galactopyranoside > oNP-β-d-galactopyranoside > pNP-α-l-arabinopyranoside >

pNP-α-l-rhamnopyranoside > oNP-β-d-xylopyranoside > pNP-β-d-xylopyranoside. The enzyme
acted on diverse linkages in different glycosides, such as arabinopyranoside, rhamnopyranoside and
xylopyranoside, as well as glucopyranoside and galactopyranoside. Nevertheless, the enzyme did
not cleave the residues of arabinose, rhamnose and xylose at C-28. Based on the deglycosylation
pathway of platycoside E to platycodin D, the enzyme is an exo-type hydrolase that hydrolyzes from
an externally located sugar in turn. Since the enzyme did not hydrolyze the outermost linked apiose
at C-28, the other sugars linked inside at C-28 such as arabinose, rhamnose and xylose could not
be hydrolyzed.

Table 1. Substrate specificity of the β-glycosidase from C. owensensis.

Substrates Specific Activity (µmol/min/mg)

Aryl-glycoside oNP-β-d-glucopyranoside 46.0
oNP-β-d-galactopyranoside 21.0

oNP-β-d-xylopyranoside 6.6
pNP-β-d-glucopyranoside 51.6

pNP-β-d-galactopyranoside 35.7
pNP-β-d-xylopyranoside 5.5

pNP-α-l-arabinopyranoside 11.5
pNP-α-l-rhamnopyranoside 8.6

Platycoside Platycoside E 72.5
Deapi-platycoside E 60.6

Platycodin D3 2.5
Deapi-platycodin D3 1.1

Platycodin D ND
Deapi-platycodin D ND

ND, not detected.

The specific enzyme activity with platycosides as substrates showed the following order:
platycoside E > deapiosylated(deapi-) platycoside E > platycodin D3 > deapi-platycodin D3. Platycoside
E, deapi-platycoside E, platycodin D3 and deapi-platycodin D3 were converted to platycodin D3,
deapi-platycodin D3, platycodin D and deapi-platycodin D, respectively. However, there was no
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activity for platycodin D and deapi-platycodin D, indicating that the enzyme could not catalyze the
inner glucose cleavage at C-3 position of platycosides and had significantly higher activity against the
outermost glucose. The activities of β-glycosidase from C. owensensis for platycoside E, platycodin D3
and deapi-platycodin D3 were 1.06-, 6.25- and 5.5-fold higher, respectively, than those of a platycodin
D-producing enzyme (β-glucosidase from C. bescii) [17]. However, β-glucosidase from C. bescii
represented higher specific activity for deapi-platycoside E as a substrate than β-glycosidase from
C. owensensis.

2.4. Optimization of Reaction Conditions

BFLE was obtained with extraction in 80% (v/v) methanol and the extract contained 5.19 mg/mL
platycoside E, that constituted 92.31% (w/w) of the total platycosides (Table 2). These were 3.8- and
2.3-fold higher values than the concentration and content of platycoside E, respectively, in Platycodi
radix extract (PRE) used for platycodin D production [9,19]. However, platycosides such as platycodin
D3, polygalacin D3, deapi-platycodin D3 and 3′-O-acetyl polygalacin D3 contained in PRE were
absent in BFLE. The content of specific platycosides in the total BFLE platycosides followed the order:
platycoside E (92.31% (w/w)) > deapi-platycoside E (2.89%) > polygalacin D (2.12%) > platycodin D
(1.34%) > deapi-platycodin D (0.53%) > 3”-O-acetyl polygalacin D (0.45%) > platycodin A (0.36%),
indicating that BFLE is an efficient substrate for platycodin D production.

Table 2. Platycoside content in 10% (w/v) BFLE.

Platycoside Content (%, w/w) Concentration (mg/mL)

Deapi-platycoside E 2.89 0.16
Platycoside E 92.31 5.19

Deapi-platycodin D 0.53 0.03
Platycodin D 1.34 0.07
Polygalacin D 2.12 0.12

3”-O-Acetyl polygalacin D 0.45 0.03
Platycodin A 0.36 0.02

Total 100 5.62

The effect of β-glycosidase concentration on platycodin D production was investigated at various
enzyme concentrations of 0.5 to 5 mg/mL using 5 mg/mL platycoside E in BFLE as the substrate
for 3 h (Figure 5a). Platycodin D production increased with raising recombinant β-glycosidase
concentration up to 3 mg/mL. However, the increase in platycodin D production was considerably
reduced at concentrations higher than 3 mg/mL, indicating an optimal enzyme concentration of
3 mg/mL. Platycodin D production was carried out with 3 mg/mL enzyme for 3 h by varying the
concentration of platycoside E in BFLE from 1 to 10 mg/mL (Figure 5b). Molar conversion yield
decreased with increasing concentration of platycoside E in BFLE. However, platycodin D production
constantly increased up to 5 mg/mL platycoside E in BFLE. At above 5 mg/mL platycoside E in BFLE,
platycodin D production was considerably reduced. Thus, 5 mg/mL platycoside E in BFLE was selected
as the substrate concentration for platycodin D production.
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Figure 5. Optimal enzyme and substrate concentrations for platycodin D production from BFLE
by β-glycosidase from C. owensensis. (a) Optimal enzyme concentration. (b) Optimal substrate
concentration. The concentration of produced platycodin D and molar conversion yield are represented
by closed circles and open squares, respectively. Data are represented as means of triplicate experiments
and the standard deviation was indicated by error bars.

2.5. Production of Platycodin D from BFLE by β-Glycosidase from C. owensensis

Under optimized reaction conditions, 3.95 mg/mL platycodin D was produced from 5 mg/mL
platycoside E in BFLE by β-glycosidase from C. owensensis after 6 h and productivity and molar yield
were represented to 658 mg/L/h and 100%, respectively. As a result, platycodin D concentration finally
increased to 4.02 mg/mL from 0.07 mg/mL, the initial concentration in BFLE (Figure 6). The production
was performed by the transformation pathway: platycoside E → platycodin D3 → platycodin D
(Figure 1).

To date, platycodin D production has been carried out using PRE as substrate and enzymes such
as cellulase [16], snailase [14], crude enzyme from Cyberlindnera fabianii [20], β-glucosidase from A.
usamii [12] and β-glucosidase from C. bescii [17]. Of these, C. bescii β-glucosidase produced platycodin
D with the highest concentration and productivity. Nevertheless, β-glycosidase from C. owensensis
indicated 3.5- and 1.8-fold higher concentration and productivity of platycodin D, respectively, than
β-glucosidase from C. bescii. These results would have been derived from the higher stability of
β-glycosidase from C. owensensis at reaction temperature and the use of BFLE as an efficient substrate
with high platycoside E content.
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Figure 6. Time course reactions for platycodin D production from BFLE by β-glycosidase from C.
owensensis. Closed circle, platycoside E; closed square, platycodin D3; and open circle, platycodin D.
Data are represented as means of triplicate experiments and the standard deviation was indicated by
error bars.
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3. Materials and Methods

3.1. Bacterial Strains, Plasmid Vector and Gene Cloning

DNA temperate and expression vector for the β-glycosidase gene (GenBank accession no.
ADQ03897) cloning and host cells of enzyme expression were C. owensensis DSM 13100 (DSMZ,
Braunschweig, Germany), and pET-29b (+) vector (Novagen, Darmstadt, Germany), and E. coli BL21
strain, respectively. The β-glycosidase gene from C. owensensis was cloned by the one-step isothermal
DNA assembly method. The DNA fragments of the β-glycosidase gene and the pET-29b (+) expression
vector were amplified by PCR with the following primers: forward primer for β-glycosidase gene,
5′-AGCAGCGAAAACCTGTATTTTCAGGGACATATGAG TTTTCCAAAAGGATTTTTGTGGGGT-3′;
reverse primer for β-glycosidase gene, 5′-ATCTCAGTGGTGGTGGTGGTGGTG
CTCGAGTTATGAATTTTCCTTTATATA CTGCTGATA-3′; forward primer for expression vector,
5′-TATCAGCAGTATATAAAGGAAAATTCATAACTCGAGCACCACCACCACCACCACTGAGAT-3′;
and reverse primer for expression vector, 5′-ACCCCACAAAAATCCTTTTGGAAAACTCATATGT
CCCTGAAAATACAGGTTTTCGCTGCT-3′. The amplified β-glycosidase gene from C. owensensis
and pET-29b (+) expression vector were synthesized by Phusion High-Fidelity DNA polymerase
(ThermoFisher Scientific, Waltham, MA, USA) using PCR. And the synthesized DNA fragments were
ligated using Master Mix for Gibson Assembly (New England Biolabs, Ipswich, MA, USA) [21] and
the ligated DNA was transformed into E. coli BL21.

3.2. Bacteria Culture for Enzyme Expression

The recombinant E. coli BL 21 for expression of β-glycosidase from C. owensensis were cultivated
in a 2000 mL baffled glass Erlenmeyer flask containing 450 mL Luria-Bertani medium mixed with
50 µg/mL antibiotic (kanamycin) at 37 ◦C with 200 rpm agitation on a shaking incubator. When the
optical density reached 0.6 (at 600 nm) of recombinant E. coli BL21 growth, 100 mM IPTG was added for
expression of β-glycosidase from C. owensensis and the cells were then incubated at 16 ◦C for another
14 h.

3.3. Preparation of β-Glycosidase from C. Owensensis

The cultured recombinant E. coli BL 21 cells were harvested by centrifugation, suspended in
Ni-NTA lysis buffer with 1 mg/mL lysozyme and disrupted using a ultrasonicator (KBT, Sungnam,
Korea) on ice for 20 min. Cell debris and undisrupted cells were removed by centrifugation, and
supernatant was applied to a HisTrap HP affinity column on a Bio-Rad ProfiniaTM purification system
(Bio-Rad, Hercules, CA, USA). The collected fractions with hydrolytic activity were dialyzed against
50 mM citrate phosphate buffer (CPB) pH 5.5 for 16 h at 4 ◦C. The dialyzed solution was used as a
purified β-glycosidase from C. owensensis. The concentration of purified enzyme was measured by
Bradford protein assay.

3.4. SDS-PAGE and Gel-Filtration Chromatography

The subunit molecular mass of the recombinant β-glycosidase from C. owensensis was examined
by SDS-PAGE (Bio-Rad, Hercules, CA, USA). Cellular debris, crude enzyme extract, and purified
β-glycosidase were used with 1 mg/mL of concentration to compare the degree of purification.
Coomassie blue was used as a dye for visualization of all protein bands at each purification step.
Gel-filtration chromatography was used for determination of molecular mass of the recombinant
β-glycosidase from C. owensensis. The recombinant β-glycosidase was transferred through a HiPrepTM

16/60 Sephacryl® S-300 HR column (GE Healthcare, Chicago, IL, USA) and then the enzyme-bounded
column was eluted with 50 mM CPB (pH 5.5) containing 150 mM NaCl at a flow rate of 0.5 mL/min.
The cultured recombinant E. coli BL 21 cells were harvested by centrifugation, suspended in Ni-NTA
lysis buffer (50 mM sodium/phosphate buffer containing 5 mM imidazole and 300 mM NaCl, pH 7.0)
with 1 mg/mL lysozyme. The purified enzyme was eluted with the reference proteins: ovalbumin,
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conalbumin, aldolase and catalase have molecular masses of 43, 75, 158,and 232 kDa, respectively. The
retention time of β-glycosidase from C. owensensis was computed by comparison with the reference
protein migration lengths.

3.5. Preparation of BFLE

Two-year-old balloon flower leaf cultivated in Bonghwa-gun was used to prepare the extract. The
balloon flower leaf was dried for 72 h at 40 ◦C in a dry oven. The dried balloon flower leaves were
ground using an electric grinder. The 100 g of fine balloon flower leaf powder was extracted using
1 L of 80% (v/v) methanol at 70 ◦C for 24 h. The balloon flower leaf extract was filtered, the methanol
was completely removed by rotary evaporator and the residue was dissolved in the same volume of
distilled water. To prevent a Maillard reaction of free sugars with the β-glycosidase from C. owensensis
at enzyme reaction temperature above 70 ◦C, the sugars in the extract were removed using Diaion
HP20 resin (Sigma-Aldrich, St. Louis, MO, USA) column. The extract was loaded onto the column,
and then the platycoside-adsorbed resin was washed with distilled water. After washing, the column
absorbed platycosides eluted with methanol at a flow rate of 0.5 mL/min. The methanol in the eluent
was evaporated and 1 L of distilled water was added into residue. The resulting BFLE was used for
platycodin D production.

3.6. Hydrolytic Activity Assay

The enzyme reaction was performed at 80 ◦C in 50 mM CPB (pH 5.0) containing 50 µg/mL
β-glycosidase from C. owensensis and 400 µg/mL platycoside for 10 min. The specific activity of
β-glycosidase from C. owensensis for platycosides including deapi-platycodin D, deapi-platycodin
D3, deapi-platycoside E, platycodin D, platycodin D3 and platycoside E was evaluated with various
concentrations of the enzyme (5–50 µg/mL) and 400 µg/mL of each platycoside for 10 min. The effects
of temperature and pH on the activity of β-glycosidase from C. owensensis for PE were examined with
1 mM pNP-β-d-glucopyranoside by varying the temperature from 65 to 95 ◦C at a pH of 5.0 for 10 min
and by varying the pH from 4.0 to 7.5 at 75 ◦C for 10 min, respectively. The effect of thermostability of
the β-glycosidase from C. owensensis was monitored as a function of incubation time by maintaining
the solution of enzymes at 70, 75, 80, 85 and 90 ◦C in 50 mM CPB (pH 5.0). After incubating, the
reaction samples were assayed with 1 mM pNP-β-d-glucopyranoside in 50 mM CPB (pH 5.0) at 80 ◦C
for 10 min. Samples were withdrawn at regular time intervals and assayed.

3.7. Biotransformation of Platycoside

The optimal concentration of β-glycosidase for platycodin D production from BFLE was
determined by varying the concentration of β-glycosidase from 0.5 to 5 mg/mL with 5 mg/mL
platycoside E in BFLE. The optimal concentration of platycoside E in BFLE as a substrate was
determined by varying the concentration of platycoside E from 1 to 10 mg/mL at a constant enzyme
concentration of 3 mg/mL. The reactions were performed in 50 mM CPB (pH 5.0) for 3 h at 80 ◦C. The
time-course reaction for converting platycoside E in BFLE to platycodin D was performed in 50 mM
CPB (pH 5.0) with 3 mg/mL of β-glycosidase and 5 mg/mL platycoside E in BFLE (containing 5 mg/mL
platycoside E (PE) and 0.07 mg/mL platycodin D (PD)) at 80 ◦C for 8 h.

3.8. HPLC Analysis

After enzyme reaction, the reaction solution was extracted by the same volume of n-butanol
with an internal standard (digoxin). The n-butanol fraction in the extracted solution was evaporated
until it was completely dried and the same volume of methanol was added. Platycoside analysis was
performed using an Agilent 1100 series HPLC system at 203 nm with a hydrosphere C18 column (4.6 ×
150 mm; YMC, Kyoto, Japan). The column was eluted at 37 ◦C for 60 min at a flow rate of 1 mL/min
with the following gradient of acetonitrile/water (v/v): from 10/90 to 40/60 for 30 min; from 40/60 to



Catalysts 2019, 9, 1025 9 of 10

90/10 for 15 min; from 90/10 to 10/90 for 5 min; and constant at 10/90 for 10 min. All of the platycoside
standards were purchased from Ambo Laboratories (Daejeon, Korea)

4. Conclusions

In this study, the substrate specificity of β-glycosides from C. owensensis was measured using
aryl-glycosides and platycosides, and the enzyme reaction conditions for the production of platycodin
D were optimized. Under the optimum enzyme reaction conditions, the recombinant β-glycosides
from C. owensensis completely converted BFLE platycoside E into platycodin D with the highest
concentration and productivity reported so far. To the best of our knowledge, this is the first time BFLE
was used as an efficient substrate by recycling leaves discarded from Platycodi radix production. Our
results greatly improve the production process for deglycosylated platycosides.
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