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Abstract: The first Ni-catalyzed tandem synthesis of 2-substituted benzo[b]furans/furo-pyridines
from 2-halophenols and 1-alkynes was explored under Cu-free and phosphine-free conditions. The
protocol was carried out with NiCl2/5-nitro-1, 10-phenanthroline in DMA (N,N-dimethylacetamide)
at 120 ◦C. It was found to be simple, cost effective, and have a wide substrate scope. Additionally,
the method is compatible with heteroaryl substrates, resulting in the formation of 2-substituted
benzo[b]furans/furo-pyridines in reasonable to good yields.

Keywords: Ni; benzo[b]furan; coupling-cyclization reaction

1. Introduction

2-substituted benzo[b]furans/furo-pyridines are important building blocks in biologically active
compounds such as anti-inflammation agents and anti-fungal activities (Scheme 1) [1–6]. Due to these
excellent properties, the synthesis of these skeletons has become a hot spot in recent years [7,8]. Recently,
York, Panli, and co-workers showed the coupling of unsaturated hydrocarbons with heteroaryl and
aryl compounds using Pd catalysis [8,9]. Following their work, several methods were developed to
synthesize 2-substituted benzo[b]furan/furo-pyridines [10–13]. However, to obtain these skeletons,
noble metals (such as Pd and Rh), air sensitive phosphine ligands, or rigorous conditions usually seem
to be necessary [14–17].
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Scheme 1. Some 2-substituted benzo[b]furans/furo-pyridines with biologically active.

Ni is a superior substitution in catalysis reactions because it is less expensive, air stable,
and less toxic [18–20]. However, it has not been used in the construction of 2-substituted
benzo[b]furans/furo-pyridines except in one heterogeneous example. Wang Lei et al. developed a
catalytic system of ultrafine nickel(0) powder (100 nm)/CuI/PPh3 to synthesize 2-phenylbenzo[b]furan
with a 75% yield in 2004 [21]. Herein, we report on an inexpensive, Cu-free, and phosphine-free method
for the construction of 2-substituted benzo[b]furans/furo-pyridines by Ni-catalyzed intermolecular
cyclization of 2-iodopehenols or 2-bromophenols and 1-alkynes.
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2. Results and Discussion

For optimization studies of 2-substituted benzo[b]furan synthesis, 2-iodophenol 1a and
phenylacetylene 2a were chosen as the model substrates (Scheme 2). At first, a series of nickel salts
were screened and NiCl2 was found to be the best, affording the most results and the corresponding
product 3a in an 80% yield (Table 1, entry 1). Various bases were screened to identify the optimized
condition where weak and organic bases such as KHCO3 and Et3N (triethylamine) were found to be
unsuitable for this transformation (Table 1, entries 10–11, 16–17). However, a strong base like NaOH
could promote this cyclization to give the title product with the yield of 80% (Table 1, entry 1). Solvents
have a great influence in this reaction, so some solvents with different polarities were selected for this
reaction. The effect of the solvent was also studied and the data showed that DMA provided the best
result, while others like DMF (N,N-dimethylformamide), toluene, H2O, etc. produced lower yields
(Table 1, entries 18–23).
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Table 1. Optimization of reaction conditions 1.

Entry [Ni] Base Solvent Yield/%

1 NiCl2 NaOH DMA 80
2 NiCl2 NaOH DMA 47 2

3 - NaOH DMA 0.8
4 Ni(dppe)Cl2 NaOH DMA 26
5 Ni(dppp)Cl2 NaOH DMA 16
6 Ni(PPh3)2Cl2 NaOH DMA 41
7 Ni(PCy3)2Cl2 NaOH DMA 13
8 Ni(COD)2Cl2 NaOH DMA 28
9 NiSO4 NaOH DMA 75

10 NiCl2 NaHCO3 DMA 0.6
11 NiCl2 KHCO3 DMA 0.7
12 NiCl2 Na2CO3 DMA 2
13 NiCl2 Cs2CO3 DMA 1
14 NiCl2 K3PO4 DMA 26
15 NiCl2 KOH DMA 74
16 NiCl2 Et3N DMA 0.1
17 NiCl2 pyridine DMA 0.1
18 NiCl2 NaOH DMF 56
19 NiCl2 NaOH 1,4-Dioxane 0.2 3

20 NiCl2 NaOH Toluene 0.6 3

21 NiCl2 NaOH H2O - 3

22 NiCl2 NaOH n-BuOH 0.1 3

23 NiCl2 NaOH t-BuOH - 4

1 Reaction conditions: 1a (1 mmol), 2a (1.2 mmol), Base (2 mmol), [Ni] (0.1 mmol), 5-nitro-1, 10-phenanthroline
(0.1 mmol), DMA (2 mL), 120 ◦C, 20 h, N2; 2 in air; 3 100 ◦C; 4 80 ◦C.

Ligands play an important role in the metal catalyzed coupling reaction and so the
effect of N-ligands was investigated (Scheme 3). It was shown that the diamine ligand
5-nitro-1,10-phenanthroline L14 was the most effective ligand. The result revealed that a ligand
with a rigid skeleton could make the reaction work more smoothly than that with a flexible one. The
ligand with large steric hindrance could hinder the process of the coupling-cyclization reaction (L2–L4,
L8–L9, L13). Other bidentate N-ligands with a rigid skeleton such as 4-methyl-1,10-phenanthroline
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(L11), and 1,7-dichloro-1,10-phenanthroline (L12) were found to be less efficient for the conversion,
with 72% and 62% yields, respectively.
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Under the optimized reaction conditions, the functional group tolerance of this reaction was
explored (Scheme 4). 2-iodophenols with electron-withdrawing and electron-donating groups
could all react with phenylacetylene 2a and obtain the corresponding products (3a–3g). EWG
(electron-withdrawing groups) with more steric hinderance such as 4-t-butyl reduced the reactivity
and gave a 37% yield (3b). Heteroaryl substrates contain N, which has the potential to combine
to nickel, thus poisoning the catalyst. Nevertheless, these heteroaryl materials were all completed
smoothly in this system (3c–3d, 3n–3x). It is noteworthy that 2-iodo-6-methylpyridin-3-ol coupled
with 5-bromo-3-iodopyridin-2-ol easily during this system, giving 52% and 35% yields of the products
(3c, 3d). The alkynes bearing –OCH3, –CH3, –CH2CH2CH3, –COOCH3, –F, and –Br groups all
reacted successfully and produced the desired compounds (3h–3n) in reasonable to good yields
(30–75%). 3-ethynylpyridine was also found to be suitable during this one-pot reaction condition
(3n–3s). When reacted with the large steric hindrance material 4-t-butyl-2-iodophenol, it produced
3-(5-(t-butyl)benzofuran-2-yl)pyridine 3o with an 89% yield. When 6-methyl-2-iodo-pyridinol was
used to cyclize with various 1-alkynes, such as 4-bromo-phenylacetylene, 4-methyl-phenylacetylene,
4-propyl-phenylacetylene, and the corresponding 2-substituted furo-pyridines can be achieved
with medium yields (3t–3w). Since 2-bromophenols are less reactive and not susceptible to this
transformation, the Ni catalyzed system has not been reported in the literature with tandem
synthesis. Our results show that the procedure works well in the presence of 2-bromophenol,
2-bromo-6-methylpyridin-3-ol, 2-bromo-4-methylphenol, and even 2-bromopyridin-3-ol as starting
materials (3a, 3c, 3x–3y).
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Scheme 4. The exploration of the universality of substrates. Reaction conditions: 1 (1 mmol), 2
(1.2 mmol), NiCl2 (0.1 mmol), L14 (0.1 mmol), NaOH (2 mmol), 120 ◦C, 40 h, isolated yield.

3. Materials and Methods

All chemicals were purchased from commercial companies. All were used as received except for
some liquid materials that were sensitive to light and moisture (DMA) being purified prior to use. 1H
NMR (1H Nuclear Magnetic Resonance) and 13C NMR (13C Nuclear Magnetic Resonance) spectra were
measured on a VARIAN 400-MR. Mass spectroscopy data of the products were collected with a MS-EI
(Mass spectrometry-Electron ionization) instrument. All products were isolated by chromatography on
silica gel (300–400 mesh) using petroleum ether (60–90 ◦C). Compounds described in the literature were
characterized by 1H NMR and 13C NMR spectroscopy and compared to the reported data, detailed
information in Supplementary Materials.

NiCl2 (0.1 mmol), Ligand (0.1 mmol), 2-halophenol (1 mmol), 1-alkynes (1.2 mmol), NaOH
(2 mmol), and degassed DMA (2 mL) were added successively into a dried Schlenk tube with a
magnetic bar under nitrogen. The reaction was performed at 120 ◦C. At the end of reaction, the solution
was cooled to room temperature and water (3 mL) was added. The mixture solution was extracted
with ethyl acetate (3 × 3 mL). The organic layer was dried over MgSO4, then filtered and purified with
silica gel chromatography (petroleum ether) to give a corresponding product.

4. Conclusions

In conclusion, a novel, and simple route was developed for the synthesis of 2-substituted
benzo[b]furans/furo-pyridines via a tandem Sonogashira coupling-cyclization sequence of
2-iodophenols or 2-bromophenols and 1-alkynes catalyzed by Ni with Cu-free and phosphine-free in a
reasonable to good yield.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/12/1019/s1,
Table S1: Optimization of reaction conditions.
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curation, Y.D.; writing—original draft preparation, R.Z.; writing—review and editing, R.Z.; visualization, R.Z.;
supervision, R.Z.
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